Measurement of the Cross Section of the $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ Reaction via the Photodissociation of $^{16}\text{O}$

Moshe Gai (Spokesperson), William R. Zimmerman
LNS at Avery Point, University of Connecticut

Mohammad W. Ahmed, Calvin R. Howell, Sean C. Stave, Henry R. Weller,
Ying Wu
TUNL, Duke University

Amos Breskin
Weizmann Institute, Israel

Volker Dangendorf, Kai Titelmeier
PTB, Braunschweig, Germany

May 8, 2009

Abstract

We propose to measure the cross section of the $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ reaction by measuring the inverse reaction of the photo-dissociation of $^{16}\text{O}$. The measurements will utilize a unique Optical Readout Time Projection Chamber (O-TPC) that has been constructed over the last five years, operating with $\text{CO}_2(80\%) + \text{N}_2(20\%)$ gas mixture. First engineering runs were successfully completed and publishable data (on stellar formation of $^{12}\text{C}$ at high temperature) were obtained during these engineering runs. In this proposal we only contemplate Phase 1 of the measurement that will extend down to gamma energies of 8.73 MeV ($E_{\text{cm}} = 1.57$ MeV). The experiment will resolve nagging discrepancies of measured data (on resonance) with predictions based on unitarity and it will allow for precise measurement of the $S_{E2}/S_{E1}$ ratio. The lowest energy data points will already allow us to distinguish between various predictions for the $S_{E2}$ and $S_{E1}$ astrophysical cross section factor that need to be known at 300 keV.