Compton Scattering
from a High Pressure Polarized 3He Target at HIγS

M.W. Ahmed1, T. Averett2, M. Busch1, J.R. Calarco9, T. Clegg10, S. Cohen1, D. Dutta4,5, M. Emamian1, G. Feldman3, H. Gao1 (Contact Person/Spokesperson), H.W. Griesshammer3, C. Howell1, M. Huang1, H. Karwowski10, B. Lahremruata1, G. Laskaris1, S. Malace1, J.A. McGovern7, R. Miskimen8, A. Nathan11, D.R. Phillips6, X. Qian1, D. Shukla10, S. Stave1, H.R. Weller1 (Co-spokesperson), S. Whisnant4, Y. Wu1, Q. Ye1, Q.J. Ye1, A. Young12, W.Z. Zheng1

1Duke University
2College of William & Mary
3George Washington University
4James Madison University
5Mississippi State University
6Ohio University
7University of Manchester
8University of Massachusetts
9University of New Hampshire
10University of North Carolina, Chapel Hill
11University of Illinois, Urbana-Champaign
12North Carolina State University, Raleigh

Abstract

The High Intensity Gamma Source (HIγS) at Duke Free Electron Laboratory opens a new window to the study of fundamental quantities related to the structure of the nucleon through double polarized Compton scattering from a polarized nuclear target. We propose first measurements of the spin-dependent asymmetries from elastic Compton scattering of circularly polarized photons from a high-pressure polarized 3He gas target. The Compton scattered photons will be detected by the HIγS NaI Detector Array (HINDA) system. In combination with the forward and backward polarizabilities extracted from existing experiments, the proposed experiment will allow for the first time the extraction of neutron individual spin polarizabilities, and provide crucial tests of predictions based on effective field theories, dispersion theories, and lattice QCD calculations. The proposed experiment will be carried out at a photon energy of 125 MeV at HIγS. We request a total beam time of 1260 hours with 100% efficiency photon beam at a minimum photon flux of 5×10^7/sec for a photon energy spread of 5.0%. In addition, we request a beam test for 60 hours at an incident photon energy of 90 MeV with an energy spread of 3% and a minimum photon flux of 3×10^7/s for detector and background studies for the proposed experiment.