A New Proposal to the High Intensity Gamma-Ray Source (HI\(\gamma\)S) PAC-12

Decay behavior of low-lying M1 excitations in \(^{162,164}\text{Dy}\)

V. Werner (Spokesperson-Contact), N. Cooper, C. Bernards, F. Naqvi, Ch. Zhou
WNSL, Yale University, P.O. Box 208120, New Haven, CT 06520-8120, USA

N. Pietralla, M. Scheck, C. Romig, J. Beller, N. Benouaret, M. Zweidinger
IKP, TU Darmstadt, Schloßgartenstr. 9, 64289 Darmstadt, Germany

B. Löher, D. Savran, J. Isaak, E. Fiori
ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany, Frankfurt Institute for Advanced Studies FIAS, Ruth-Moufang-Str. 1, D-60438 Frankfurt, Germany

W. Tornow (Contact), M. Bhike
Department of Physics, Duke University, Durham, North Carolina 27708-0308, USA

J.H. Kelley
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA

Department of Physics & Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA

The \(\gamma^3\) Collaboration

October 19, 2012
1 Experiment Summary

We propose to measure the decays of 1^+ states around 3 MeV in excitation energy in 162,164Dy. This is the energy regime where the scissors mode has been found in this mass region. The aim of the experiment is to identify the coupling of the scissors mode to γ-vibrations through direct observation of decays to the 2^+ state. In a geometrical picture, such decay would be forbidden, but inferring a finite valence space, it is predicted to exist in algebraic collective models. We have previously observed indirect hints of this transition from the 3173-keV state in 163Dy at HIGS, which left questions about that particular 1^+ state unanswered. The aim of this proposal is to build on previous work with the present orders of magnitude improvements in beam and exploiting the new possibilities for coincidence measurements.