Fundamental Symmetries – III
Muons

R. Tribble
Texas A&M University
All about muons

Topics:

• Lifetime – MuLAN
• Normal decay – TWIST
• Exotic decays – MEGA, MEG, SINDRUM
• Anomalous Moment – (g-2)
Muon Lifetime

• Determines G_F by (two loop QED and SM)

$$
\tau_\mu^{-1} = \frac{G_F^2 m_\mu^5}{192\pi^3} F \left(\frac{m_e^2}{m_\mu^2} \right) \left(1 + \frac{3m_\mu^2}{5m_W^2} \right) \left[1 + \frac{\alpha(m_\mu)}{2\pi} \left(\frac{25}{4} - \pi^2 \right) \right]
$$

where

$$
F(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \ln x
$$

and

$$
\frac{1}{\alpha(m_\mu)} = \frac{1}{\alpha} - \frac{2}{3\pi} \ln \left(\frac{m_\mu}{m_e} \right) + \frac{1}{6\pi} \approx 136
$$

• MuLAN collaboration recently completed and published new result for lifetime
The experimental concept...

- **Kicker On**
- **Fill Period**
- **Measurement Period**

170 Inner/Outer tile pairs

Real data

Counts per 42 ns

Accumulation Period, T_A

Measurement Period, T_M

Kicker Transition

Background Level

- **450 MHz WaveForm Digitization** (2006/07)
- **MHTDC** (2004)

Slide from D. Hertzog
MuLan collected two datasets, each containing 10^{12} muon decays

- Two (very different) data sets
 - Different blinded clock frequencies used
 - Revealed only after all analyses of both data sets completed
 - Most systematic errors are common
Final Errors and Numbers

ppm units

Effect	2006	2007	Comment
-----------------------------	-------	-------	
Kicker extinction stability	0.20	0.07	Voltage measurements of plates
Upstream muon stops	0.10	0.10	Upper limit from measurements
Overall gain stability:	0.25	0.25	MPV vs time in fill; includes:
Short time; after a pulse			MPVs in next fill & laser studies
Long time; during full fill			Different by PMT type
Electronic ped fluctuation			Bench-test supported
Unseen small pulses			Uncorrected pileup effect \(\rightarrow\) gain
Timing stability	0.12	0.12	Laser with external reference ctr.
Pileup correction	0.20	0.20	Extrapolation to zero ADT
Residual polarization	0.10	0.20	Long relax; quartz spin cancelation
Clock stability	0.03	0.03	Calibration and measurement
Total Systematic	**0.42**	**0.42**	Highly correlated for 2006/2007
Total Statistical	**1.14**	**1.68**	

\[\tau(R06) = 2\ 196\ 979.9 \pm 2.5 \pm 0.9 \text{ ps} \]

\[\tau(R07) = 2\ 196\ 981.2 \pm 3.7 \pm 0.9 \text{ ps} \]
Lifetime “history”

The most precise particle or nuclear or (we believe) atomic lifetime ever measured

New G_F

$G_F(\text{MuLan}) = 1.166\,378\,8(7) \times 10^{-5} \text{ GeV}^{-2} \ (0.6 \text{ ppm})$

Slide from D. Hertzog
Muon decay spectrum

The energy and angle distributions of positrons following polarized muon decay obey the spectrum:

\[
\frac{d^2\Gamma}{x^2 dx d(cos \theta)} \propto (3 - 3x) + \frac{2}{3} \rho (4x - 3) + 3\eta \frac{x_0}{x} (1 - x) \\
+ P_\mu \xi \cos \theta \left[(1 - x) + \frac{2}{3} \delta(4x - 3)\right]
\]

where \(x = \frac{E_e}{E_{e,\text{max}}} \)

[Radiative corrections not included]
Muons decay matrix element

- Most general local, derivative-free, lepton-number conserving muon decay matrix element:

\[
M = \frac{4G_F}{\sqrt{2}} \sum_{\gamma=S,V,T} \sum_{\varepsilon,\mu=R,L} g^{\varepsilon\mu}_{\gamma} \langle \bar{e}_\varepsilon | \Gamma_{\gamma} | (\nu_\varepsilon)_n \rangle \langle (\bar{\nu}_\mu)_m | \Gamma_{\gamma} | \mu_\mu \rangle
\]

- In the Standard Model, \(g^{V}_{LL} = 1 \), all others are zero
- Pre-TWIST global fit results (all 90% c.l.):

<table>
<thead>
<tr>
<th>(g^{S}_{RR})</th>
<th>(g^{V}_{RR})</th>
<th>(g^{T}_{RR})</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.066</td>
<td>< 0.033</td>
<td>(\equiv 0)</td>
</tr>
<tr>
<td>(g^{S}_{LR})</td>
<td>(g^{V}_{LR})</td>
<td>(g^{T}_{LR})</td>
</tr>
<tr>
<td>< 0.125</td>
<td>< 0.060</td>
<td>< 0.036</td>
</tr>
<tr>
<td>(g^{S}_{RL})</td>
<td>(g^{V}_{RL})</td>
<td>(g^{T}_{RL})</td>
</tr>
<tr>
<td>< 0.424</td>
<td>< 0.110</td>
<td>< 0.122</td>
</tr>
<tr>
<td>(g^{S}_{LL})</td>
<td>(g^{V}_{LL})</td>
<td>(g^{T}_{LL})</td>
</tr>
<tr>
<td>< 0.550</td>
<td>> 0.960</td>
<td>(\equiv 0)</td>
</tr>
</tbody>
</table>
Muon decay parameters and coupling constants

\[\rho = \frac{3}{4} - \frac{3}{4} \left[|g_{RL}^V|^2 + |g_{LR}^V|^2 + 2 |g_{RL}^T|^2 + 2 |g_{LR}^T|^2 \right] + \Re \left(g_{RL}^S g_{RL}^{T*} + g_{LR}^S g_{LR}^{T*} \right) \]

\[\eta = \frac{1}{2} \Re \left[g_{RR}^V g_{LL}^S + g_{LL}^V g_{RR}^S + g_{RL}^V (g_{LR}^S + 6g_{LR}^T) + g_{LR}^V (g_{RL}^S + 6g_{RL}^T) \right] \]

\[\xi = 1 - \frac{1}{2} |g_{LR}^S|^2 - \frac{1}{2} |g_{RR}^S|^2 - 4 |g_{RL}^V|^2 + 2 |g_{LR}^V|^2 - 2 |g_{RR}^V|^2 + 2 |g_{LR}^T|^2 - 8 |g_{RL}^T|^2 + 4 \Re \left(g_{LR}^S g_{LR}^{T*} - g_{RL}^S g_{RL}^{T*} \right) \]

\[\xi \delta = \frac{3}{4} - \frac{3}{8} |g_{RR}^S|^2 - \frac{3}{8} |g_{LR}^S|^2 - \frac{3}{2} |g_{RR}^V|^2 - \frac{3}{4} |g_{RL}^V|^2 - \frac{3}{4} |g_{LR}^V|^2 - \frac{3}{2} |g_{RL}^T|^2 - 3 |g_{LR}^T|^2 + \frac{3}{4} \Re \left(g_{LR}^S g_{LR}^{T*} - g_{RL}^S g_{RL}^{T*} \right) \]

Prior to \textbf{TWIST}

\[\rho = 0.7518 \pm 0.0026 \quad 3/4 \]
\[\eta = -0.007 \pm 0.013 \quad 0 \]
\[P_\mu \xi = 1.0027 \pm 0.0079 \pm 0.0030 \quad 1 \]
\[\delta = 0.7486 \pm 0.0026 \pm 0.0028 \quad 3/4 \]
\[P_\mu (\xi \delta/\rho) > 0.99682 \ (90\% \ c.l.) \quad 1 \]
Goal of *TWIST*

- Search for new physics that can be revealed by **order-of-magnitude improvements** in our knowledge of ρ, δ, and $P_\mu \xi$

Two examples

- **Model-independent limit on muon handedness**

$$Q^\mu_R = \frac{1}{2} \left[1 + \frac{1}{3} \xi - \frac{16}{9} \xi \delta \right]$$

- **Left-right symmetric models**

$$\frac{3}{4} - \rho = \frac{3}{2} \zeta^2 \quad 1 - P_\mu \xi = 4 \left(\zeta^2 + \zeta \left(\frac{M_L}{M_R} \right)^2 + \left(\frac{M_L}{M_R} \right)^4 \right)$$

-
Must:

- Determine spectrum shape
 -- All three parameters
- Understand sources of muon depolarization
 -- P_μ and ξ come as a product
- Measure forward-backward asymmetry
 -- For $P_\mu \xi$ and δ

To within a few parts in 10^4
Analysis method

• **Extract energy and angle distributions for data:**
 – Apply (unbiased) cuts on muon variables.
 – Reject fast decays and backgrounds.
 – Calibrate e^+ energy to kinematic end point at 52.83 MeV.

• **Fit to identically derived distributions from simulation:**
 – GEANT3 geometry contains virtually all detector components.
 – Simulate chamber response in detail.
 – Realistic, measured beam profile and divergence.
 – Extra muon and beam positron contamination included.
 – Output in digitized format, identical to real data.
2-d momentum-angle spectrum

Acceptance of the TWIST spectrometer
Fitting the data distributions

- Decay distribution is linear in ρ, η, $P_{\mu \xi}$, and $P_{\mu \xi \delta}$, so a fit to first order expansion is exact.

- Fit data to simulated (MC) base distribution with hidden assumed parameters, $\lambda_{MC} = (\rho, \eta, P_{\mu \xi}, P_{\mu \xi \delta})$ plus MC-generated distributions from analytic derivatives, times fitting parameters ($\Delta \lambda$) representing deviations from base MC. (η is now fixed to global analysis value)

(graphic thanks to Blair Jamieson)
Results from first two data sets

- From Fall, 2002 run:
 - $\rho = 0.75080 \pm 0.00032 \text{ (stat)} \pm 0.00097 \text{ (syst)} \pm 0.00023 \text{ (}\eta\text{)}$
 - $\delta = 0.74964 \pm 0.00066 \text{ (stat)} \pm 0.00112 \text{ (syst)}$

- From Fall, 2004 run:
 - $\rho = 0.75014 \pm 0.00017 \text{ (stat)} \pm 0.00044 \text{ (syst)} \pm 0.00011 \text{ (}\eta\text{)}$
 - $\delta = 0.74964 \pm 0.00030 \text{ (stat)} \pm 0.00067 \text{ (syst)}$

R. McDonald et al., PRD 78, 032010
Global Analysis

Use general form of interaction:

\[
M = \frac{4G_F}{\sqrt{2}} \sum_{\gamma=S,V,T} \sum_{\varepsilon,\mu=R,L} g_{\varepsilon\mu}^\gamma \langle \bar{e}_\varepsilon | \Gamma_\gamma | (\nu_e)_n \rangle \langle (\bar{\nu}_\mu)_m | \Gamma_\gamma | \mu_\mu \rangle
\]

- Follow Fetscher, Gerber, Johnson formulation (Phys. Lett. 173B, 102 (1986))
Global Analysis

\[Q_{RR} = \frac{1}{4} |g_{RR}^S|^2 + |g_{RR}^V|^2, \]
\[Q_{LR} = \frac{1}{4} |g_{LR}^S|^2 + |g_{LR}^V|^2 + 3|g_{LR}^T|^2, \]
\[Q_{RL} = \frac{1}{4} |g_{RL}^S|^2 + |g_{RL}^V|^2 + 3|g_{RL}^T|^2, \]
\[Q_{LL} = \frac{1}{4} |g_{LL}^S|^2 + |g_{LL}^V|^2, \]
\[B_{LR} = \frac{1}{16} |g_{LR}^S + 6g_{LR}^T|^2 + |g_{LR}^V|^2, \]
\[B_{RL} = \frac{1}{16} |g_{RL}^S + 6g_{RL}^T|^2 + |g_{RL}^V|^2, \]
\[I_\alpha = \frac{1}{4} [g_{LR}^V (g_{RL}^S + 6g_{RL}^T)^* + (g_{RL}^V)^* (g_{LR}^S + 6g_{LR}^T)] \]
\[= (\alpha + i\alpha')/2A, \]
\[I_\beta = \frac{1}{2} [g_{LL}^V (g_{RR}^S)^* + (g_{RR}^V)^* g_{LL}^S] = -2(\beta + i\beta')/A \]

Constraints:

\[0 \leq Q_{\epsilon \mu} \leq 1, \quad \text{where } \epsilon, \mu = R, L, \]
\[0 \leq B_{\epsilon \mu} \leq Q_{\epsilon \mu}, \quad \text{where } \epsilon \mu = RL, LR, \]
\[|I_\alpha|^2 \leq B_{LR} B_{RL}, \quad |I_\beta|^2 \leq Q_{LL} Q_{RR}, \]

Normalization:

\[Q_{RR} + Q_{LR} + Q_{RL} + Q_{LL} = 1 \]

Note that \(Q_{LL} \approx 1 \)

(from Phys. Lett. 173B)
Global Analysis

Relation to muon decay observables:

\[
\begin{align*}
\rho &= \frac{3}{4} + \frac{1}{4} (Q_{LR} + Q_{RL}) - (B_{LR} + B_{RL}), \\
\xi &= 1 - 2 Q_{RR} - \frac{10}{3} Q_{LR} + \frac{4}{3} Q_{RL} + \frac{16}{3} (B_{LR} - B_{RL}), \\
\xi \delta &= \frac{3}{4} - \frac{3}{2} Q_{RR} - \frac{7}{4} Q_{LR} + \frac{1}{4} Q_{RL} + (B_{LR} - B_{RL}), \\
\xi' &= 1 - 2 Q_{RR} - 2 Q_{RL}, \\
\xi'' &= 1 - \frac{10}{3} (Q_{LR} + Q_{RL}) + \frac{16}{3} (B_{LR} + B_{RL}), \\
\text{rad. decay} \{ \bar{\eta} = \frac{1}{3} (Q_{LR} + Q_{RL}) + \frac{2}{3} (B_{LR} + B_{RL}), \\
\text{e}^+_L \{ \eta = (\alpha - 2 \beta)/A, \quad \eta'' = (3 \alpha + 2 \beta)/A. \\
\text{e}^+_T \{
\end{align*}
\]
Global Analysis

2005 Input:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>0.7518 ± 0.0026</td>
</tr>
<tr>
<td></td>
<td>$0.75,080 \pm 0.00,105^a$</td>
</tr>
<tr>
<td>δ</td>
<td>0.7486 ± 0.0038</td>
</tr>
<tr>
<td></td>
<td>$0.74,964 \pm 0.00,130$</td>
</tr>
<tr>
<td>$P_\mu \xi$</td>
<td>1.0027 ± 0.0085^b</td>
</tr>
<tr>
<td>$P_\mu \xi \delta / \rho$</td>
<td>$0.99,787 \pm 0.00,082^b$</td>
</tr>
<tr>
<td>ξ'</td>
<td>1.00 ± 0.04</td>
</tr>
<tr>
<td>ξ''</td>
<td>0.65 ± 0.36</td>
</tr>
<tr>
<td>$\bar{\eta}$</td>
<td>0.02 ± 0.08</td>
</tr>
<tr>
<td>α / A</td>
<td>0.015 ± 0.052^c</td>
</tr>
<tr>
<td>β / A</td>
<td>0.002 ± 0.018^c</td>
</tr>
<tr>
<td>η</td>
<td>0.071 ± 0.037^d</td>
</tr>
<tr>
<td>η''</td>
<td>0.105 ± 0.052^d</td>
</tr>
<tr>
<td>α' / A</td>
<td>-0.047 ± 0.052^e</td>
</tr>
<tr>
<td></td>
<td>-0.0034 ± 0.0219^f</td>
</tr>
<tr>
<td>β' / A</td>
<td>0.017 ± 0.018^e</td>
</tr>
<tr>
<td></td>
<td>-0.0005 ± 0.0080^f</td>
</tr>
</tbody>
</table>

2005 Output:

Fit Result ($\times 10^3$)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fit Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{RR}</td>
<td><1.14(0.60 ± 0.38)</td>
</tr>
<tr>
<td>Q_{LR}</td>
<td><1.94(1.22 ± 0.53)</td>
</tr>
<tr>
<td>B_{LR}</td>
<td><1.27(0.72 ± 0.40)</td>
</tr>
<tr>
<td>Q_{RL}</td>
<td><44(26 ± 13)</td>
</tr>
<tr>
<td>B_{RL}</td>
<td><10.9(6.4 ± 3.3)</td>
</tr>
<tr>
<td>Q_{LL}</td>
<td>>955(973 ± 13)</td>
</tr>
<tr>
<td>α / A</td>
<td>0.3 ± 2.1</td>
</tr>
<tr>
<td>β / A</td>
<td>2.0 ± 3.1</td>
</tr>
<tr>
<td>α' / A</td>
<td>−0.1 ± 2.2</td>
</tr>
<tr>
<td>β' / A</td>
<td>−0.8 ± 3.2</td>
</tr>
</tbody>
</table>

PRD 72, 073002
Final TWIST Results

\[\rho = 0.74977 \pm 0.00012 \text{ (stat)} \pm 0.00023 \text{ (syst)} \]
\(<1 \sigma \text{ from SM})

\[\delta = 0.75049 \pm 0.00021 \text{ (stat)} \pm 0.00027 \text{ (syst)} \]
\(+1.4 \sigma \text{ from SM})

\[\mathcal{P}_{\mu} \pi \xi = 1.00084 \pm 0.00029 \text{ (stat)} \pm 0.00063 \text{ (syst)} \]
\(+0.00165 \text{ (syst)} \)
\(-0.00063 \text{ (syst)} \)
\(+1.2 \sigma \text{ from SM})

\[\mathcal{P}_{\mu} \pi \xi \delta \rho > 0.99909 \text{ (90\%CL)} \]
from global analysis
Final Global Analysis Results

- Include new results with other muon decay observables to restrict coupling constants
 - summary of all terms (pre-\textbf{TWIST} in parentheses)
 \[
 \begin{align*}
 |g^S_{RR}| &< 0.035 (0.066) & |g^V_{RR}| &< 0.017 (0.033) & |g^T_{RR}| &\equiv 0 \\
 |g^S_{LR}| &< 0.050 (0.125) & |g^V_{LR}| &< 0.023 (0.060) & |g^T_{LR}| &< 0.015 (0.036) \\
 |g^S_{RL}| &< 0.420 (0.424) & |g^V_{RL}| &< 0.105 (0.110) & |g^T_{RL}| &< 0.105 (0.122) \\
 |g^S_{LL}| &< 0.550 (0.550) & |g^V_{LL}| &> 0.960 (0.960) & |g^T_{LL}| &\equiv 0
 \end{align*}
 \]

- influences mostly right-handed muon terms
 \[
 Q^\mu_R = \frac{1}{4}|g^S_{LR}|^2 + \frac{1}{4}|g^S_{RR}|^2 + |g^V_{LR}|^2 + |g^V_{RR}|^2 + 3|g^T_{LR}|^2 \\
 = \frac{1}{2}[1 + \frac{1}{3}\xi - \frac{16}{9}\xi \delta] \\
 < 8.2 \times 10^{-4} \text{ (90\%C.L.)}
 \]
Neutrino-less Muon Decays

• Three lepton-flavor violating muon decays are possible:
 – $\mu \rightarrow e + \gamma$
 – $\mu^+ \rightarrow e^+e^+e^-$
 – $\mu \rightarrow e$ conversion

• These decay modes are not allowed with massless neutrinos

• Highly suppressed in SM with known neutrino masses

• SM extensions affect the decay rates differently
$\mu \rightarrow e + \gamma$ Decay

• History of searches for this decay at LAMPF following preliminary work at TRIUMF and PSI
• Very high flux of muons at LAMPF
• MEGA collaboration most recent $\mu \rightarrow e + \gamma$ experiment (1985-1995)

High energy γ background:
• $\mu \rightarrow e\nu\bar{\nu}\gamma$
• Annihilation in flight
• External bremsstrahlung
Status of $\mu \rightarrow e + \gamma$

- Last results reported in 1999

<table>
<thead>
<tr>
<th>Place</th>
<th>Year</th>
<th>ΔE_e</th>
<th>ΔE_γ</th>
<th>$\Delta t_{e\gamma}$</th>
<th>$\Delta \theta_{e\gamma}$</th>
<th>Upper limit</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIUMF</td>
<td>1977</td>
<td>10%</td>
<td>8.7%</td>
<td>6.7 ns</td>
<td></td>
<td>$<3.6 \times 10^{-9}$</td>
<td>Dcpommier et al. (1977)</td>
</tr>
<tr>
<td>SIN</td>
<td>1980</td>
<td>8.7%</td>
<td>9.3%</td>
<td>1.4 ns</td>
<td></td>
<td>$<1.0 \times 10^{-9}$</td>
<td>Van der Schaaf et al. (1980)</td>
</tr>
<tr>
<td>LANL</td>
<td>1982</td>
<td>8.8%</td>
<td>8%</td>
<td>1.9 ns</td>
<td>37 mrad</td>
<td>$<1.7 \times 10^{-10}$</td>
<td>Kinnison et al. (1982)</td>
</tr>
<tr>
<td>LANL</td>
<td>1988</td>
<td>8%</td>
<td>8%</td>
<td>1.8 ns</td>
<td>87 mrad</td>
<td>$<4.9 \times 10^{-11}$</td>
<td>Bolton et al. (1988)</td>
</tr>
<tr>
<td>LANL</td>
<td>1999</td>
<td>1.2%a</td>
<td>4.5%a</td>
<td>1.6 ns</td>
<td>15 mrad</td>
<td>$<1.2 \times 10^{-11}$</td>
<td>Brooks et al. (1999)</td>
</tr>
</tbody>
</table>

- New experiment underway at PSI – MEG
- Liquid xenon calorimeter for γ’s, solenoid for positrons
- Goal is factor of ≈ 100 below MEGA
- Analysis of results underway – invited talk with new results is scheduled for DNP fall meeting!
Status of $\mu^+ \rightarrow e^+e^+e^-$

- Last results reported in 1991
- SINDRUM at PSI has best limit – solenoid tracking chamber

<table>
<thead>
<tr>
<th>Place</th>
<th>Year</th>
<th>90%-C.L. upper limit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>JINR</td>
<td>1976</td>
<td>$<1.9 \times 10^{-9}$</td>
<td>Korenchenko et al. (1976)</td>
</tr>
<tr>
<td>LANL</td>
<td>1984</td>
<td>$<1.3 \times 10^{-10}$</td>
<td>Bolton et al. (1984)</td>
</tr>
<tr>
<td>SII</td>
<td>1984</td>
<td>$<1.6 \times 10^{-10}$</td>
<td>Bertl et al. (1984)</td>
</tr>
<tr>
<td>SII</td>
<td>1985</td>
<td>$<2.4 \times 10^{-12}$</td>
<td>Bertl et al. (1985)</td>
</tr>
<tr>
<td>LANL</td>
<td>1988</td>
<td>$<3.5 \times 10^{-11}$</td>
<td>Bolton et al. (1988)</td>
</tr>
<tr>
<td>SII</td>
<td>1988</td>
<td>$<1.0 \times 10^{-11}$</td>
<td>Bellgardt et al. (1988)</td>
</tr>
<tr>
<td>JINR</td>
<td>1991</td>
<td>$<3.6 \times 10^{-11}$</td>
<td>Baranov et al. (1991)</td>
</tr>
</tbody>
</table>

- No new experiments planned that I know
- A non-zero result for $\mu \rightarrow e + \gamma$ would likely change that
\(\mu^- \rightarrow e^- \) Conversion – I

- Searches for this conversion process carried out in several different nuclei (Cu, S, Ti, Pb)
- Process involves \(\mu \) capture by atom and then a cascade to 1s atomic orbital
- After cascade, \(\mu \) orbit overlaps nucleus then have normal muon decay or
 - \(\mu^- + (A,Z) \rightarrow \nu_\mu + (A,Z-1) \) (allowed)
 - \(\mu^- + (A,Z) \rightarrow e^- + (A,Z) \) (not allowed)
- Ratio \(\Rightarrow \) branching ratio for conversion
$\mu^- \rightarrow e^-$ Conversion – II

- Signal \Rightarrow mono-energetic e^- at end point energy
- Backgrounds: μ decay in orbit, π capture, radiative μ capture with very asymmetric pair creation
- Titanium has high end point so attractive

Predicted signal and background level for $\mu - e$ conversion on Ti
Status of $\mu^- \rightarrow e^-$ Conversion

- Last results reported in 1998

<table>
<thead>
<tr>
<th>Process</th>
<th>90%-C.L. upper limit</th>
<th>Place</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu^- + Cu \rightarrow e^- + Cu$</td>
<td>$<1.6 \times 10^{-8}$</td>
<td>SREL</td>
<td>1972</td>
<td>Bryman et al. (1972)</td>
</tr>
<tr>
<td>$\mu^- + ^{32}S \rightarrow e^- + ^{32}S$</td>
<td>$<7 \times 10^{-11}$</td>
<td>SIN</td>
<td>1982</td>
<td>Badertscher et al. (1982)</td>
</tr>
<tr>
<td>$\mu^- + Ti \rightarrow e^- + Ti$</td>
<td>$<1.6 \times 10^{-11}$</td>
<td>TRIUMF</td>
<td>1985</td>
<td>Bryman et al. (1985)</td>
</tr>
<tr>
<td>$\mu^- + Ti \rightarrow e^- + Ti$</td>
<td>$<4.6 \times 10^{-12}$</td>
<td>TRIUMF</td>
<td>1988</td>
<td>Ahmad et al. (1988)</td>
</tr>
<tr>
<td>$\mu^- + Pb \rightarrow e^- + Pb$</td>
<td>$<4.9 \times 10^{-10}$</td>
<td>TRIUMF</td>
<td>1988</td>
<td>Ahmad et al. (1988)</td>
</tr>
<tr>
<td>$\mu^- + Ti \rightarrow e^- + Ti$</td>
<td>$<4.3 \times 10^{-12}$</td>
<td>PSI</td>
<td>1993</td>
<td>Dohmen et al. (1993)</td>
</tr>
<tr>
<td>$\mu^- + Pb \rightarrow e^- + Pb$</td>
<td>$<4.6 \times 10^{-11}$</td>
<td>PSI</td>
<td>1996</td>
<td>Honecker et al. (1996)</td>
</tr>
<tr>
<td>$\mu^- + Ti \rightarrow e^- + Ti$</td>
<td>$<6.1 \times 10^{-13}$</td>
<td>PSI</td>
<td>1998</td>
<td>Wintz (1998)</td>
</tr>
</tbody>
</table>

- New experiment proposed in U.S. – Mu2e to run at FNAL with accelerator upgrade
- Estimates of background suggest 10^{-16} possible
Measuring the **Muon (g-2) Factor**

- Like other precision measurements, the determination of \(g-2 \) for the muon has a long history.
- Most recent results from BNL E821.
- Store a polarized muon beam in ring and measure precession frequency as a function of time.
- AGS provides muons for ring.
- Requires precise knowledge of magnetic.
- The SM prediction for a non-zero \(g-2 \) includes several correction factors – higher order loop diagrams.
The Storage Ring for E821
An “event” is an isolated positron above a threshold.
$a_\mu = (g - 2)/2$ is non-zero because of virtual loops, which can be calculated very precisely.

Contributions:

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Result ($\times 10^{-11}$) Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED (leptons)</td>
<td>$116\ 584\ 718.09 \pm 0.14 \pm 0.04\alpha$</td>
</tr>
<tr>
<td>HVP (lo)</td>
<td>$6\ 914 \pm 42_{\text{exp}} \pm 14_{\text{rad}} \pm 7_{\rho\text{QCD}}$</td>
</tr>
<tr>
<td>HVP (ho)</td>
<td>$-98 \pm 1_{\text{exp}} \pm 0.3_{\text{rad}}$</td>
</tr>
<tr>
<td>HLxL</td>
<td>105 ± 26</td>
</tr>
<tr>
<td>EW</td>
<td>$152 \pm 2 \pm 1$</td>
</tr>
<tr>
<td>Total SM</td>
<td>$116\ 591\ 793 \pm 51$</td>
</tr>
</tbody>
</table>

The **“g-2 test”**: Compare experiment to theory. Is SM complete?

$$\delta a_\mu^{\text{NewPhysics}} = a_\mu^{\text{Expt.}} - a_\mu^{\text{Theory}}$$

Slide from D. Hertzog
Historical Evolution

+/-a_μ uncertainty
abs(a_μ) contribution

a_μ in units of 10^{-11}

Slide from D. Hertzog
HVP is determined from data

\[a_\mu(\text{had}) = \left(\frac{\alpha m_\mu}{3\pi} \right)^2 \int_{4m_\pi^2}^{\infty} \frac{ds}{s^2} K(s) \left(\frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} \right) \]
A world-wide effort exists to measure over full range

\[
a_\mu(\text{had}) = \left(\frac{\alpha m_\mu}{3\pi} \right)^2 \int_0^\infty \frac{ds}{s} K(s) \left(\frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} \right)
\]
HVP evaluations by 2 groups, updated Tau’10

- Hagiwara, Liao, Martin, Nomura, Teubner (HLMNT)

\[a_\mu^\text{exp} - a_\mu^\text{SM} = (296 \pm 81) \times 10^{-11} \rightarrow 3.2 \sigma \]

- M. Davier, A. Hoecker, B. Malaescu, Z. Zhang (DHMZ)
 - (BaBar team with access to preliminary data)

Biggest difference is from high multiplicity states now measured at BaBar; > 1 GeV region
 \(a_\mu^\text{exp} - a_\mu^\text{SM} = (259 \pm 81) \times 10^{-11} \rightarrow 3.2 \sigma \)

Slide from D. Hertzog
The new HVP evaluations also affect α_{QED} running ... and enter the global electroweak fits ...

Slide from D. Hertzog
The values & the new experimental goal

Theory uncertainty = 51×10^{-11} (0.44 ppm)
Experimental uncertainty = 63×10^{-11} (0.54 ppm)

- 0.46 ppm statistical ← limit was counts
- 0.21 ppm precession systematic
- 0.17 ppm field systematic

The values & the new experimental goal

Leads to $\Delta a_\mu(\text{Expt} - \text{Thy}) = 297 \pm 81 \times 10^{-11}$ 3.6 σ

Experimental goal: 63 → 16×10^{-11}
Theory uncertainty expect: 51 → 30×10^{-11}

Leads to $\Delta a_\mu(\text{Expt} - \text{Thy}) = XXX \pm 34 \times 10^{-11}$

If central value remained, Δa_μ would exceed 8σ

Slide from D. Hertzog
The Storage Ring exists. It will be moved to FNAL
- Transport coils to and from barge via Sikorsky aircrane
- Ship through St Lawrence -> Great Lakes -> Calumet SAG
- Subsystems can be transported overland, but probably more cost effective to ship steel on barge as well.
Fundamental Symmetries

- Many experimental avenues to explore
- Much to understand about neutrino’s
- Possible signatures for SM deviations from the LHC
- Low-energy SM tests

- A bright future for the field!