Table 11.20 from (1990AJ01):
Energy levels of ^{11}C from $^{10}\text{B}(d, n)^{11}\text{C}$ and $^{10}\text{B}^3\text{He}, d^{11}\text{C}$

<table>
<thead>
<tr>
<th>E_x (MeV±keV)</th>
<th>J^π</th>
<th>l</th>
<th>l c</th>
<th>$S_{d, n}$ c</th>
<th>$S_{3\text{He}, d}$ c</th>
<th>l d</th>
<th>$S_{3\text{He}, d}$ d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{3}{2}^-$</td>
<td>1</td>
<td>1</td>
<td>1.12</td>
<td>0.88</td>
<td>1</td>
<td>1.09</td>
</tr>
<tr>
<td>2.0006 ± 0.9</td>
<td>$\frac{1}{2}^-$</td>
<td>(1)</td>
<td>(1)</td>
<td>(0.18)</td>
<td>(0.036)</td>
<td>(3)</td>
<td>≤ 0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0.40</td>
</tr>
<tr>
<td>4.322 ± 10</td>
<td>$\frac{5}{2}^-$</td>
<td>1</td>
<td>1</td>
<td>0.27</td>
<td>0.20</td>
<td>1</td>
<td>0.17, 0.19</td>
</tr>
<tr>
<td>4.808 ± 10</td>
<td>$\frac{3}{2}^-$</td>
<td>1</td>
<td>1</td>
<td>< 0.02</td>
<td>(1)</td>
<td>(3)</td>
<td>< 0.08</td>
</tr>
<tr>
<td>6.345 ± 10</td>
<td>$\frac{1}{2}^+$</td>
<td>2</td>
<td></td>
<td>0.07</td>
<td>2</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td>6.476 ± 10</td>
<td>$\frac{3}{2}^-$</td>
<td>1</td>
<td>1</td>
<td>0.86</td>
<td>0.56</td>
<td>1</td>
<td>0.73, 0.79</td>
</tr>
<tr>
<td>6.903 ± 10</td>
<td>$\frac{5}{2}^+$</td>
<td>(1)</td>
<td></td>
<td>2</td>
<td>0.06</td>
<td>0</td>
<td>< 0.04</td>
</tr>
<tr>
<td>7.498 ± 10</td>
<td>$\frac{3}{2}^+$</td>
<td></td>
<td></td>
<td>1</td>
<td>0.07</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>8.107 ± 10</td>
<td>$\frac{1}{2}^-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>8.424 ± 8</td>
<td>$\frac{5}{2}^-$</td>
<td>1</td>
<td>1</td>
<td>0.65</td>
<td>0.46</td>
<td>1</td>
<td>0.73, 0.79</td>
</tr>
<tr>
<td>8.655 ± 8</td>
<td>$\frac{1}{2}^+$</td>
<td>0</td>
<td>0</td>
<td>0.84</td>
<td>0.45</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>$\frac{7}{2}^+$</td>
<td>0</td>
<td>2</td>
<td>0.63</td>
<td>0.33</td>
<td>2</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 < 0.34</td>
</tr>
<tr>
<td>8.701 ± 20</td>
<td>$\frac{5}{2}^+$</td>
<td>(0)</td>
<td>0</td>
<td>0.40</td>
<td>0.14</td>
<td>0</td>
<td>< 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0.8</td>
</tr>
<tr>
<td>10.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.68 e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0,2)</td>
</tr>
</tbody>
</table>

a See Table 11.23 in (1980AJ01) for references.
b From (d, n) work summarized in Table 11.20 of (1968AJ02).
c $S_{d, n}$ obtained at $E_d = 5.8$ MeV, $S_{3\text{He}, d}$ obtained at $E(3\text{He}) = 11.0$ MeV [both ±30%]. When $S_{d, n}$ and $S_{3\text{He}, d}$ differ appreciably, the more reliable value is underlined.
d $E(3\text{He}) = 21$ MeV; when two values are shown for $S_{3\text{He}, d}$, they are in order of descending j.
e $\Gamma \approx 200$ keV.