Table 13.1 from (1976AJ04): Energy levels of 13B

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>τ or Γ_{cm} (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>$\frac{3}{2}^{-}; \frac{3}{2}$</td>
<td>$\tau_{1/2} = 17.36 \pm 0.16$ msec</td>
<td>β^-</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>3.483 ± 5</td>
<td>($\frac{1}{2}^{-}; \frac{3}{2}^-, \frac{5}{2}^-$)</td>
<td>$\tau_m > 0.3$ psec</td>
<td>γ</td>
<td>2, 4</td>
</tr>
<tr>
<td>3.5347 ± 3.1</td>
<td>($\frac{1}{2}^{-}; \frac{3}{2}^-, \frac{5}{2}^-$)</td>
<td>$\tau_m < 0.38$ psec</td>
<td>γ</td>
<td>2, 4</td>
</tr>
<tr>
<td>3.681 ± 5</td>
<td>($\frac{1}{2}^+; \frac{3}{2}^-, \frac{5}{2}^-$)</td>
<td>$\tau_m = 0.062 \pm 0.050$ psec</td>
<td>(γ)</td>
<td>2, 4, 5</td>
</tr>
<tr>
<td>3.712 ± 5</td>
<td>($\frac{1}{2}^{-}; \frac{5}{2}^-, \frac{7}{2}^-)</td>
<td>$\tau_m = 0.062 \pm 0.050$ psec</td>
<td>(γ)</td>
<td>2, 4, 5</td>
</tr>
<tr>
<td>4.131 ± 5</td>
<td>($\frac{1}{2}^{-}; \frac{5}{2}^-, \frac{7}{2}^-)</td>
<td>$\tau_m = 0.062 \pm 0.050$ psec</td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
<tr>
<td>4.828 ± 6</td>
<td></td>
<td></td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
<tr>
<td>5.023 ± 6</td>
<td></td>
<td></td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
<tr>
<td>5.109 ± 10</td>
<td></td>
<td></td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
<tr>
<td>5.390 ± 7</td>
<td></td>
<td></td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
<tr>
<td>5.557 ± 7</td>
<td></td>
<td></td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
<tr>
<td>6.168 ± 7</td>
<td></td>
<td></td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
<tr>
<td>6.419 ± 8</td>
<td></td>
<td></td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
<tr>
<td>6.939 ± 15</td>
<td></td>
<td></td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
<tr>
<td>7.516 ± 8</td>
<td></td>
<td></td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
<tr>
<td>7.859 ± 20</td>
<td></td>
<td></td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
<tr>
<td>8.129 ± 10</td>
<td></td>
<td></td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
<tr>
<td>8.682 ± 9</td>
<td></td>
<td></td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
<tr>
<td>9.390 ± 15</td>
<td></td>
<td></td>
<td>(γ)</td>
<td>2, 4</td>
</tr>
</tbody>
</table>

$\Gamma = 60 \pm 8$ keV

15 ± 5