Table 17.27 from (1993TI07): β^+ decay of 17Ne a

<table>
<thead>
<tr>
<th>Decay to 17F# (MeV)</th>
<th>J^π</th>
<th>Total branching ratio (%)</th>
<th>$\log ft$ c</th>
<th>Decay branches d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ref. a</td>
<td>Ref. b</td>
</tr>
<tr>
<td>0.0</td>
<td>$\frac{5}{2}^+$</td>
<td>0.55 ± 0.17 e</td>
<td>9.561u+0.16 fg &</td>
<td></td>
</tr>
<tr>
<td>0.495</td>
<td>$\frac{1}{2}^+$</td>
<td>0.61 ± 0.10 e</td>
<td>6.80\textsuperscript{+0.08 −0.06} &</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>$\frac{1}{2}^-$</td>
<td>0.10±0.03 e</td>
<td>7.12\textsuperscript{+0.05 −0.11} & p\textsubscript{0}</td>
<td></td>
</tr>
<tr>
<td>4.65</td>
<td>$\frac{3}{2}^-$</td>
<td>16.54 ± 0.14</td>
<td>4.57 ± 0.05 & p\textsubscript{0}</td>
<td></td>
</tr>
<tr>
<td>5.49</td>
<td>$\frac{3}{2}^-$</td>
<td>59.16 ± 0.4</td>
<td>3.811 ± 0.015 & p\textsubscript{0}</td>
<td></td>
</tr>
<tr>
<td>6.04</td>
<td>$\frac{3}{2}^-$</td>
<td>7.8 ± 0.2</td>
<td>4.545 ± 0.018 & p\textsubscript{0}</td>
<td></td>
</tr>
<tr>
<td>8.08</td>
<td>$\frac{5}{2}^-$</td>
<td>7.3 ± 0.9</td>
<td>3.93 ± 0.06 & p\textsubscript{0}, p\textsubscript{1}, α\textsubscript{0}</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>$\frac{3}{2}^-$</td>
<td>1.7 ± 0.3</td>
<td>4.51 ± 0.09 & p\textsubscript{0}</td>
<td></td>
</tr>
<tr>
<td>8.43</td>
<td>$\frac{1}{2}^-$</td>
<td>4.0 ± 0.9</td>
<td>4.05 ± 0.10 & p\textsubscript{0}, p\textsubscript{1}, p\textsubscript{3}, α\textsubscript{0}</td>
<td></td>
</tr>
<tr>
<td>9.4h</td>
<td>$\frac{1}{2}^-$</td>
<td>0.6 ± 0.2</td>
<td>4.43\textsuperscript{+0.19 −0.13} & p\textsubscript{0}, p\textsubscript{1}/p\textsubscript{2}, α\textsubscript{0}</td>
<td></td>
</tr>
<tr>
<td>10.0h</td>
<td>$\frac{1}{2}^-$</td>
<td>0.7 ± 0.3</td>
<td>4.05\textsuperscript{+0.26 −0.16} & p\textsubscript{0}, p\textsubscript{1}, α\textsubscript{0}</td>
<td></td>
</tr>
<tr>
<td>10.66h</td>
<td>$\frac{1}{2}^-$</td>
<td>0.007 ± 0.004</td>
<td>5.7\textsuperscript{+0.4 −0.2} & p\textsubscript{0}, α\textsubscript{0}</td>
<td></td>
</tr>
<tr>
<td>10.9</td>
<td>$\frac{1}{2}^-$</td>
<td>0.016 ± 0.006</td>
<td>5.14\textsuperscript{+0.22 −0.17} & p\textsubscript{0}, α\textsubscript{0}</td>
<td></td>
</tr>
<tr>
<td>11.193</td>
<td>$\frac{1}{2}^-$</td>
<td>0.64 ± 0.14</td>
<td>3.31 ± 0.11 & p\textsubscript{0}, p\textsubscript{1}, p\textsubscript{2}, p\textsubscript{4}, α\textsubscript{0}, α\textsubscript{1}</td>
<td></td>
</tr>
<tr>
<td>12.23</td>
<td>$\frac{1}{2}^-$</td>
<td>0.001 ± 0.0006</td>
<td>4.98\textsuperscript{+0.41 −0.23} & p\textsubscript{0}</td>
<td></td>
</tr>
</tbody>
</table>

a (1988BO39). See also Table 17.21 in (1986AJ04).

b (1971HA05).

c We are grateful to Dr. M. Martin for providing these $\log ft$ values calculated for the branchings measured in (1988BO39).

d Proton decay to states 16O* (0.0, 6.05, 6.13, 6.92, 7.16) are indicated by p\textsubscript{0}, p\textsubscript{1}, p\textsubscript{2}, p\textsubscript{3}, p\textsubscript{4}, respectively. Alpha decay to 13N* (0.0, 2.36) are indicated by α\textsubscript{0}, α\textsubscript{1}, respectively.

e Based on assumption that $\log ft$ values are the same as for the 17N mirror decays.

f From 17N $\beta^−$ decay.

g Obtained by (1988BO39) from addition of several of the peaks in (1971HA05).

h New levels observed by (1988BO39) with measured energies, $E_x = 9.450 \pm 0.050, 10.030 \pm 0.060, 10.660 \pm 0.020$ MeV and widths $\Gamma = 200 \pm 40, 170 \pm 40, 90 \pm 60$ keV, respectively.