Energy Levels of Light Nuclei

$A = 5$

F. Ajzenberg-Selove

University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396

Abstract: An evaluation of $A = 5–10$ was published in *Nuclear Physics A*320 (1979), p. 1. This version of $A = 5$ differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC format.

(References closed in 1978)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-FG02-86ER40279]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).
Table of Contents for $A = 5$

Below is a list of links for items found within the PDF document. Figures from this evaluation have been scanned in and are available on this website or via the link below.

A. Nuclides: 5n, 5H, 5He, 5Li, 5Be

B. Tables of Recommended Level Energies:

Table 5.1: Energy levels of 5He

Table 5.3: Energy levels of 5Li

C. References

D. Figures: 5He, 5Li, Isobar diagram

E. Erratum to the Publication: PS or PDF
5n
(Not illustrated)

5n has not been observed: see (1972AG01) and (1977DE08).

5H
(Fig. 3)

From the work of (1967AD05) on the 3He(3He, n)5Be reaction (see 5Be) it follows that 5H is unstable by more than 2.1 MeV to decay into 3H + 2n (using Coulomb corrections based on the 16.7 MeV states in 5He–5Li). A study of 8Be(α, 8B)5H at $E_\alpha = 129$ MeV shows no evidence for sharp 5H states for several MeV above 3H + 2n (1968MC02). In 3H(t, p)5H, at $E_t = 22.25$ MeV, a broad peak appears in the proton spectrum which may correspond to a 5H state at 3H + 2n + 1.8 MeV, but which could also result from a four-body breakup (1968YO06). A recent study of the 7Li(6Li, 8B)5H reaction at $E(^6$Li) = 93.3 MeV shows no evidence for the formation of a narrow 5He ground state: at $\theta_{lab} = 14.7^\circ$ the yield near the predicted location of the 5H$_{g.s.}$, above the phase-space curve, is ≈ 100 nb/sr. MeV compared to an order of magnitude greater yield for the final state interaction in 4H (1977WE03, 1977WE1B). Attempts to observe 5H formation in 7Li + π^- have also been unsuccessful: see (1974AJ01). See also (1975BE31; theor.).

5He
(Figs. 1 and 3)

GENERAL: (See also (1974AJ01).)

Ground state of 5He: (1975BE31, 1977HI09).

1. 3H(d, γ)5He \hspace{1cm} Q_m = 16.70

At low energies the reaction is dominated by a resonance at $E_d = 107$ keV; the mirror reaction shows resonance at $E_d = 430$ keV. (1970BE1A) have measured the cross section for emission of 16.7 MeV γ-rays for $E_d = 25$ to 100 keV: the ratio $\sigma(d, \gamma)/\sigma(d, n)$ is approximately constant at
Table 5.1: Energy levels of ^5He a

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>$J^\pi; T$</th>
<th>$\Gamma_{c.m.}$ (MeV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>$\frac{3}{2}^-; \frac{3}{2}$</td>
<td>0.60 ± 0.02^a</td>
<td>n, α</td>
<td>1, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 26, 27, 29, 30</td>
</tr>
<tr>
<td>4 \pm 1</td>
<td>$\frac{1}{2}^-; \frac{1}{2}$</td>
<td>4 ± 1</td>
<td>n, α</td>
<td>4, 6, 10, 18, 22</td>
</tr>
<tr>
<td>16.76 \pm 0.13</td>
<td>$\frac{3}{2}^+; \frac{1}{2}$</td>
<td>0.10 ± 0.05</td>
<td>γ, n, d, t, α</td>
<td>1, 2, 5, 6, 8, 9, 11, 13, 14, 15, 21, 22</td>
</tr>
<tr>
<td>19.8 \pm 0.4 b</td>
<td>$(\frac{3}{2}^+, \frac{5}{2})^+; \frac{1}{2}$</td>
<td>2.5 ± 0.5</td>
<td>n, d, t, α</td>
<td>2, 3, 5, 8, 9, 10, 13, 14, 15, 19, 21, 22</td>
</tr>
<tr>
<td>24 $-$ 25 b</td>
<td>broad</td>
<td></td>
<td></td>
<td>21, 22</td>
</tr>
</tbody>
</table>

a See Table 5.2 in (1966LA04) and reactions 6 and 20 here.

b See (1974AJ01), pp. 7 – 8.

(2.1 \pm 0.6) $\times 10^{-4}$, leading to $\Gamma_\gamma = 14 \pm 4$ eV, where Γ_n is taken as 66 keV. (1963BU07) have measured thick target yields from $E_d = 150$ to 1300 keV. The derived cross sections are analyzed into resonant and direct-capture contributions: the cross section at resonance is here reported as 60 μb [versus 1 mb reported by (1970BE1A)]. At $E_d = 1025 \pm 47$ keV, the differential cross section is $0.44 \pm 0.12 \mu b/sr$ (90$^\circ$) and the γ to n branching ratio is an order of magnitude smaller: 2.3×10^{-5}. The angular distribution of the γ-rays is forward peaked and the total cross section is estimated to be 4.8 μb (1970KO09). The cross section for γ_0 has been measured (at 90$^\circ$) for $E_d = 2.0$ to 12.0 MeV and angular distributions were obtained at $E_d = 4.8$, 10 and 12 MeV for γ_0 (1975BA1E; and C.A. Barnes, private communication). See also (1974AJ01).

2. (a) $^3\text{H}(d, n)^4\text{He}$
(b) $^3\text{H}(d, 2n)^3\text{He}$
(c) $^3\text{H}(d, pn)^3\text{H}$

<table>
<thead>
<tr>
<th>Q_m</th>
<th>E_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5894</td>
<td>16.70</td>
</tr>
<tr>
<td>-2.9884</td>
<td></td>
</tr>
<tr>
<td>-2.2246</td>
<td></td>
</tr>
</tbody>
</table>

Below $E_d = 100$ keV, the cross section for reaction (a) follows the Gamow function, $\sigma = (A/E) \exp(-44.40E^{-1/2})$ (1953JA1A, 1954AR02). A strong resonance, σ(peak) = 5.0 b, appears at $E_d = 107$ keV: see Table 5.2. From $E_d = 10$ to 500 keV, the cross section is well fitted with the assumption of s-wave formation of a $J^\pi = \frac{3}{2}^+$ state (1952AR1A, 1952CO35, 1955KU03). Excitation curves and angular distributions for reaction (a) have been measured from $E_d = 8$ keV to 21 MeV: see (1974AJ01) for earlier references and (1976DR1A, 1976DR1B; preliminary work; angular distributions at $E_d = 7.00$ and 10.00 MeV, 13.36 and 16.50 MeV (partial) and at
Table 5.2: Resonance parameters for the $\frac{3}{2}^+$ states observed in $^3\text{H}(d, n)^4\text{He}$ and $^3\text{He}(d, p)^4\text{He}$

<table>
<thead>
<tr>
<th>E_r (keV)</th>
<th>Γ_{lab} (keV)</th>
<th>l_d</th>
<th>J^π</th>
<th>l_{np}</th>
<th>R (fm)</th>
<th>E_λ (keV)</th>
<th>γ^2_{d} (keV)</th>
<th>γ^2_{np} (keV)</th>
<th>θ^2_{d} (d)</th>
<th>θ^2_{np} (d)</th>
<th>E_x (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>107 b</td>
<td>135 b</td>
<td>0</td>
<td>$\frac{3}{2}^+$</td>
<td>2</td>
<td>5.0</td>
<td>-464</td>
<td>2000 ± 500</td>
<td>50 ± 10</td>
<td>1.0</td>
<td>0.018</td>
<td>16.76</td>
</tr>
<tr>
<td>450 c</td>
<td>≈ 450 c</td>
<td>0</td>
<td>$\frac{3}{2}^+$</td>
<td>2</td>
<td>5.0</td>
<td>-391</td>
<td>2930</td>
<td>42</td>
<td>1.4</td>
<td>0.013</td>
<td>16.66</td>
</tr>
</tbody>
</table>

Γ_{lab} refers to the laboratory width, l_d and l_{np} are the orbital angular momentum quantum numbers, R is the scattering radius, E_λ is the lambda energy, γ^2_{d} and γ^2_{np} are the gamma energies, θ^2_{d} and θ^2_{np} are the squared Legendre polynomials, and E_x is the excitation energy.

b $^3\text{H}(d, n)^4\text{He}$.

c $^3\text{He}(d, p)^4\text{He}$.

d Units of $3\hbar^2/2MR^2$.

$E_t = 10.48$ and 14.98 MeV; 0° excitation function for $E_d = 7$ to 16.5 MeV, (1975MA28; angular distributions at $E_d = 8$ to 16 MeV, in 1 MeV steps; 0° excitation function for same interval) and (1977JA07; $d\sigma/d\Omega$ at $E_\lambda = 20.00$ MeV; very accurate).

A study of reaction (a) with polarized deuterons at $E_d = 0.2$ to 1.0 MeV indicates intervention of the s-wave, $J^\pi = \frac{1}{2}^+$ channel, as well as possible p-waves above $E_d = 0.3$ MeV (1965TR01, 1971GR32). At higher energies, the neutron polarization $P_1(\theta_1)$ shows an angular distribution that peaks typically at $\theta_1 = 30^\circ$ lab, then goes negative with increasing angle and has a minimum between 90° and 130°, depending upon energy. (1971MU04) have made an extensive study of $P_1(30^\circ)$ for $E_d = 5$ to 15 MeV and, with deuterium as target, for $E_\lambda = 4.5$ to 19.5 MeV (neutrons near 135° lab). The polarization increases monotonically from 0.03 at $E_d = 3$ MeV to ≈ 0.5 at $E_d = 6.5$ MeV and then with a lower slope to 0.69 at $E_d = 13$ MeV. The change in the slope may be caused by excited states of ^5He near 20 MeV. Comparison with the $^3\text{He}(d, p)^4\text{He}$ mirror reaction at corresponding c.m. energies shows excellent agreement between the polarization values in the two reactions up to $E_d = 6$ MeV, but then the proton polarization becomes $\approx 15\%$ higher, converging back to the neutron values at $E_d \approx 12 - 13$ MeV. This may be due to experimental factors (1971MU04). Using polarized deuterons (1971HI07) find that the average ratio of vector analyzing power of $^3\text{He}(d, p)$ to $^3\text{H}(d, n)$ is 1.016 ± 0.015 at $E_d = 6$ MeV and 1.035 ± 0.020 at 10 MeV. The vector analyzing power of the two reactions agree to within 0.025 at all angles. This agreement between the mirror reactions is in apparent conflict with the result of (1971MU04). For earlier polarization measurements see Table 5.3 in (1974AJ01). Polarization studies are also reported by (1976SU06; $E_d = 7$ MeV), (1976LI15; $E_d = 3.5$ to 12.8 MeV), (1976OH02; $E_t = 5.37$ to 10.50 MeV) and (1975SA1A; preliminary; $E_d = 38$ MeV; looked at pol. of 50 MeV neutrons). See also (1977DR1B). The $K_3'(0^\circ)$ determined for $E_t = 5.37$ to 10.50 MeV show a minimum at $E_t = 9.6$ MeV (1976OH02). See also (1978CA13; $E_d = 0.7$ MeV).
Reaction (b) has been studied for $E_d = 10.9$ to 83 MeV: see (1974AJ01). A discussion and comparison of attempts to measure 1S_0 nn scattering length is presented by (1971GR45; $E_d = 13.4$ MeV): based on kinematically complete measurements and using the Watson-Migdal treatment, they find $a_{nn} = -16.0 \pm 1.0$ fm. Intervention of n-3He final state interactions is believed to be small in this work (1971GR45). At $E_t = 22$ MeV no clear evidence is seen for sequential processes via excited states of 4He (1971GR12).

A reanalysis of the work of (1963PO02) on reaction (c) by (1974SC04) leads to the suggestion of a resonance at $E_{c.m.} = 2.9 \pm 0.3$ MeV [$E_x = 19.6$ MeV], $\Gamma_{c.m.} = 1.9 \pm 0.2$ MeV, consistent with $J^\pi = \frac{3}{2}^-$ [see, however, Table 5.1]. n-p final-state interaction enhancement has been studied by (1973SL03) at $E_d = 35$ MeV. They find that only when $E_{np} \leq 1$ MeV is in agreement with the Watson-Migdal theory obtained, even if data far from dominant n-t final-state interaction and p-t quasi-free scattering are chosen. See also (1974AL01).

3. 3H(d, d)3H

The elastic scattering has been studied for $E_d = 2.6$ to 11.0 MeV. The excitation curves show an interference at $E_x \approx 19$ MeV and a broad ($\Gamma > 1$ MeV) resonance corresponding to $E_x = 20.0 \pm 0.5$ MeV, similar to that seen in 3He(d, d) [see 5Li]. Together with data from 3H(d, n)4He, this work favors an assignment $D_3/2$ or $D_5/2$ with a mixture of doublet and quartet components (channel spin $\frac{1}{2}$ and $\frac{3}{2}$) if only one state is involved (1967TO02, 1968IV01) [any appreciable doublet component would, however, be in conflict with results from 7Li(p, 3He)5He]. Measurements of differential cross section and analyzing power using polarized deuterons with $E_d = 3.2$ to 12.3 MeV show resonance-like behavior in the vector analyzing power near $E_d = 5$ MeV. The anomaly appears in the odd Legendre coefficients and is interpreted in terms of a (1, 3)- excited state of 5He with $E_x \approx 19.6$ MeV. Broad structure in the differential cross section near 6 MeV, principally in the even Legendre coefficients, corresponds to an even-parity state 5He*(20.0) (1971KI02). Tensor analyzing powers have been measured for $E_d = 5.0$ to 11.5 MeV (1973DE51), at $E_t = 10.5$ MeV (1976OH02) and at $E_\pi = 11.4$ and 14.4 MeV (1974DO05; angular distributions of tensor and vector polarizations). See also (1974ST14, 1975AB1C, 1975DO1B, 1976BA1E; theor.).

4. (a) 3H(t, n)5He

(b) 3H(t, 2n)4He

At $E_t = 0.5$ MeV, the reaction appears to proceed via three channels: (i) direct breakup into 4He + 2n, the three-body breakup shape being modified by the n-n interaction; (ii) sequential decay
via $^5\text{He}(0)$; (iii) sequential decay via a broad excited state of ^5He. The branching ratios at $\theta = 90^\circ$ are $0.7 : 0.2 : 0.1$. The width of $^5\text{He}(0)$ is estimated to be 0.74 ± 0.18 MeV. Some evidence is also shown for $^5\text{He}^*$ at $E_x \approx 2$ MeV, $\Gamma \approx 2.4$ MeV (1965WO03). For reaction (b), see ^6He and (1974LA02).

5. (a) $^3\text{He}(t, p)^5\text{He}$
(b) $^3\text{He}(t, pn)^4\text{He}$

\[Q_m = 11.20 \]
\[Q_m = 12.0959 \]

Some evidence is reported at $E_t = 22.25$ MeV in reaction (a) for a broad state of ^5He at $E_x \approx 20$ MeV, in addition to a sharp peak corresponding to $^5\text{He}^*(16.7)$ (1968YO06). For reaction (b) see ^6Li and (1975SC28, 1977JO1A).

6. $^4\text{He}(n, n)^4\text{He}$

\[E_b = -0.89 \]

The coherent scattering length (thermal, bound) is 3.0 ± 0.1 fm (1973MU14). The thermal scattering cross section is 0.773 ± 0.009 b and the absorption cross section at 2200 m/sec $\sigma_{n,\gamma}^0$ is < 0.05 b (1969RO16). (1973MU14) adopt 0.76 ± 0.01 b for $\bar{\sigma}_n$. Total cross sections for $E_n = 4 \times 10^{-4}$ eV to 150.9 MeV and at 10 GeV/c are summarized in (1974AJ01, 1976GAYV). Angular distribution measurements are summarized in (1970GA1A, 1974AJ01). Polarization studies are displayed in Table 5.4 of (1974AJ01): recent work includes that of (1976BO05: $E_n = 1.5$ to 6.0 MeV; used an absolutely calibrated source of polarized neutrons), (1976LI15: $E_n = 20$ to 30 MeV; $A_p(\theta)$ is the same for $^4\text{He} + n$ and $^4\text{He} + p$) and (1978YO1A: $E_n = 50$ MeV). See also (1974TO03).

The total cross section has a peak of 7.6 b (1973GO38) at $E_n = 1.15 \pm 0.05$ MeV, $E_{\text{c.m.}} = 0.92 \pm 0.04$ MeV, with a width of about 1.2 MeV (1964ST25). A second resonance is observed at $E_n = 22.15 \pm 0.12$ MeV, corresponding to the 16.7 MeV $J^\pi = \frac{3}{2}^+$ state (1959BO54, 1964SH1A): $\Gamma_{\text{c.m.}} = 100 \pm 50$ keV, $\Gamma_n = \Gamma_d = 50 \pm 35$ keV (1960HU1A). [(1966HO07) find that the data are fitted best by $\Gamma_n < \Gamma_d$ although $\Gamma_n < \Gamma_d$ is not excluded]. Attempts to detect additional resonances in the total cross section have been unsuccessful: see (1966LA04).

The $P_{3/2}$ phase shift shows strong resonance behavior near 1 MeV, while the $P_{1/2}$ shift changes more slowly, indicating a broad $P_{1/2}$ level at several MeV excitation (1952DO30, 1966HO07, 1970AR1B, 1972ST01). (1966HO07) have constructed a set of phase shifts for $E_n = 0$ to 31 MeV, $l = 0, 1, 2, 3$, using largely p-α phase shifts. They have measured differential cross sections from 6 to 30 MeV, with special attention to the region near 22.15 MeV and have fitted the data with the assumed phase shifts. At the $\frac{3}{2}^+$ state the best fit to all data is given by $E_{\text{res}} = 17.669$ MeV ± 10 keV, $\gamma_d^2 = 2.0$ MeV $\pm 25\%$, $\gamma_n^2 = 50$ keV $\pm 25\%$ (see Table 5.2). The polarization has been calculated from the phase shifts and is presented as a contour plot (1966HO07). The work of (1976LI15) indicates some discrepancies with the results of (1966HO07) [below $E_n = 22$ MeV] and with the measurements of (1972BR10).
A recent R-function analysis of the $^4\text{He} + n$ data below 21 MeV (including the absolute neutron analyzing power measurement of (1976BO05) and the accurate cross section measurements of (1973GO38)) has led to a set of phase shifts and analyzing powers which are based on the $^4\text{He} + n$ data alone (rather than also including the $^4\text{He} + p$ data). At $r = 3.3$ fm the values obtained for the $P_{1/2}$ and $P_{3/2}$ resonances are, respectively, $E_{\text{c.m.}} = 1.97$ and 0.77 MeV, $\Gamma_{\text{c.m.}} = 5.22$ and 0.64 MeV (1977BO24). See also (1974KR07). For earlier analyses, see (1974AJ01).

7. $^4\text{He}(n, d)^3\text{H}$

$$Q_m = -17.5894 \quad E_b = -0.89$$

See (1976BR1B), (1974AJ01) and (1976BA1E; theor.).

8. (a) $^4\text{He}(d, p)^5\text{He}$
(b) $^4\text{He}(d, pn)^4\text{He}$

$$Q_m = -3.12 \quad Q_m = -2.2246$$

A typical proton spectrum consists of a peak corresponding to formation of the ground state of ^5He, plus a lower continuum of protons ascribed to deuteron breakup (reaction (b)). Ground-state protons show pronounced azimuthal asymmetry when the reaction is induced by 8.5, 10 and 11 MeV vector polarized deuterons. A DWBA calculation is in only qualitative agreement (1967TR05, 1971KE16).

Reaction (b) has been studied for $E = 9$ to 165 MeV: see (1974AJ01) and $E_d = 6.8$ and 7.8 MeV (1978KA11), 8.9 MeV (1977SA21), at $E_{\alpha} = 15$ MeV (1978NA08), $E_{\alpha} = 21.9$ and 23.7 MeV (1974RA10), 22.5 MeV (1977PR06), 27.2 MeV (1974GR40) and 165 MeV (1974HO11). See also ^6Li.

At $E_d = 8.9$ MeV, the FSI (final state interaction) is very important (1977SA21). In the kinematically complete experiment of (1977PR06) at $E_{\alpha} = 22.5$ MeV, the results are in quite good agreement with the predictions of the sequential decay model: the slight deviations are assumed to be due to the omission of Coulomb interaction effects and to the restriction to partial waves with $l \leq 2$. At $E_{\alpha} = 70$ MeV, a kinematically complete experiment shows evidence for sequential decay, proceeding through excited states of ^5He. Peaks in the coincident yield of protons and deuterons are ascribed to narrow states at $E_x = 16.7 \pm 0.1$ MeV, $\Gamma = 80 \pm 30$ keV, at $E_x = 18.6 \pm 0.1, 18.8 \pm 0.1$ and 19.2 ± 0.1 MeV, all with $\Gamma = 180 \pm 60$ keV (1973TR04). The fine structure near 19 MeV is not confirmed in other experiments [see, however, reaction 12].

8
9. \(^4\)He(t, nd)\(^4\)He

\[Q_m = -0.4105 \]

At \(E_\alpha = 70\) MeV, there is indication of the population of \(^5\)He\(^*\)(0, 16.7) and of a structure with \(E_x = 18 - 20\) MeV (1974LA1A, 1975AL1A; preliminary results).

10. \(^6\)Li(\(\gamma\), p)\(^5\)He

\[Q_m = -4.59 \]

At \(E_\gamma = 60\) MeV, the proton spectrum shows two prominent peaks attributed to \(^5\)He\(^*\)(0 + 4.0, 20 ± 2) (1973GA16, 1976MA34). See also (1973DE17), (1975MA1E) and \(^6\)Li.

11. \(^6\)Li(e, ep)\(^5\)He

\[Q_m = -4.59 \]

At \(E_p = 1180\) MeV, the excitation of \(^5\)He\(^*\)(0, 16.7) is reported: the latter state is formed with the ejection of an s-proton (1972AN24, 1972AN27, 1972AN29). See also (1975ME27; theor.).

12. (a) \(^6\)Li(n, d)\(^5\)He

\[Q_m = -2.37 \]

(b) \(^6\)Li(n, nd)\(^4\)He

\[Q_m = -1.4735 \]

Angular distributions of ground state deuterons have been studied at \(E_n = 6.57\) and 6.77 MeV (1977RO01), 14.4 MeV (1965VA05) and 56.3 MeV (1977BR17). In the latter experiment, angular distributions have also been obtained to \(^5\)He\(^*\)(16.7, 18.5 ± 0.5, 20.5 ± 0.5). The observation of the two highest states is not certain: if they exist their widths are less than the instrumental width, 1.6 MeV (1977BR17). For reaction (b) see (1967VA12). See also (1974AJ01).

13. \(^6\)Li(p, d\(\pi^+\))\(^5\)He

\[Q_m = -142.72 \]

See (1976HU1A).

14. \(^6\)Li(p, 2p)\(^5\)He

\[Q_m = -4.59 \]

At \(E_p = 100\) MeV the population of \(^5\)He\(^*\)(0, 16.7) and possibly of a broad structure at \(E_x \approx 19\) MeV is observed: momentum distributions for \(^5\)He\(^*\)(0, 16.7) and angular correlation measurements are also reported. The main features of the data are reasonably well described by DWIA (1974BH03). For the earlier work see (1974AJ01). See also (1975VO04, 1977RO1E) and (1974GH03, 1974PR10, 1975CH1C, 1976OH04; theor.).
15. (a) 6Li(d, 3He)5He $Q_m = 0.90$
(b) 6Li(d, n3He)4He $Q_m = 1.795$

At $E_d = 14.5$ MeV, 5He gs. is populated (1955LE24). At $E_d = 80$ MeV, the population of 3He* (16.7) as well as a broad state near $E_x = 19$ MeV is reported (1975DI1A, 1975DI1B; abstracts). For reaction (b) see (1974AJ01).

16. 6Li(t, α)5He $Q_m = 15.22$

17. (a) 6Li(\(\alpha, ^5\)Li)4He + n $Q_m = -5.66$
(b) 6Li(\(\alpha, \alpha p\)5He $Q_m = -4.59$

See (1975GR42) for reaction (a) and (1978CA1E) for reaction (b).

18. 7Li(\(\gamma, d\)5He $Q_m = -9.62$

See (1975DE37) in 7Li.

19. (a) 7Li(\(\pi^+, 2p\)5He $Q_m = 128.51$
(b) 7Li(\(\pi^-, 2n\)5He $Q_m = 126.94$

The two-proton spectrum shows broad structures attributed to the ground state of 5He, and to $p^{-1}s^{-1}$ and s^{-2} states at ≈ 20 and (\(\approx 35\)) MeV excitation (1965CH12). For reaction (b) see (1977BA1M).

20. (a) 7Li(n, t)5He $Q_m = -3.36$
(b) 7Li(n, tn)4He $Q_m = -2.467$

The angular distribution of the t_0 group has been measured at $E_t = 14.4$ MeV: it is fairly well reproduced by DWBA (1970MI05). Reaction (b) at $E_n = 14.4$ MeV proceeds as a sequential process primarily involving 7Li* (4.63) and 5He gs. (1974AN02). See also (1974TU1A) and (1974AJ01) for the earlier work.
21. (a) \(^7\)Li(p, \(^3\)He)\(^5\)He \(Q_m = -4.12\)
(b) \(^7\)Li(p, pd)\(^5\)He \(Q_m = -9.618\)

At \(E_p = 43.7\) MeV, angular distributions of the \(^3\)He groups to the ground state of \(^5\)He (\(\Gamma \approx 0.80 \pm 0.04\) MeV) and to levels at 16.7 and 19.9 ± 0.4 MeV (\(\Gamma \approx 2.7\) MeV) have been determined. The angular distribution of the \(^5\)He ground state group indicates substantial mixing of \(L = 0\) and \(L = 2\) transfer. The distribution to \(^5\)He*\((16.7)\) is consistent with \(L = 1\). Since no transitions are observed in the \(^7\)Li(p, t)\(^5\)Li reaction to the analogue 20 MeV state in \(^5\)Li [see \(^5\)Li], the transition is presumably \(S\)-forbidden and the states in \(^5\)He–\(^5\)Li near 20 MeV are \(4D_{3/2}\) or \(4D_{5/2}\) [compare \(^3\)H(d, d)] (1966CE05). Particle-particle coincidence data have been obtained at \(E_p = 43.7\) MeV. They suggest the existence of \(^5\)He*\((20.0)\) with \(\Gamma = 3.0 \pm 0.6\) MeV and of a broad state at \(\approx 25\) MeV. No \(T = \frac{3}{2}\) states decaying via \(T = 1\) states in \(^4\)He were observed (1968MC02). In reaction (b) at \(E_p = 100\) MeV \(^5\)He*\((0, 19.9)\) are strongly populated while \(^5\)He*\((16.7)\) is very weak. Positive parity is suggested for \(^5\)He*\((19.9)\) (1975CH1B; preliminary).

22. (a) \(^7\)Li(d, \(\alpha\))\(^5\)He \(Q_m = 14.23\)
(b) \(^7\)Li(d, n)\(^4\)He\(^\ast\)\(^4\)He \(Q_m = 15.123\)

At \(E_d = 24\) MeV, the \(\alpha\)-particle spectrum from reaction (a) shows structures corresponding to the ground and 16.7 MeV states and to states at \(E_x \approx 20.2\) and 23.8 MeV with \(\Gamma \approx 2\) MeV and \(\approx 1\) MeV respectively (1972BA30). The width of the ground state of \(^3\)He is \(615 \pm 30\) keV (1973GA28). Angular distributions are reported for \(E_d = 0.6\) to 1.25 MeV.

Spectra measured in reaction (b) suggest the involvement of the \(P_{1/2}\) state: the values suggested are inconsistent with each other because of the difficulty of evaluating the contribution of other reactions: see (1974AJ01) for the earlier values and see (1976FO21) for a discussion of some of the problems involved in these. (1976FO21) suggest a width for \(^5\)He\(_{g.s.}\) = 0.6 MeV and \(E_x = 4.1 \pm 0.2, \Gamma_{c.m.} = 4.4 \pm 0.2\) MeV for the \(P_{1/2}\) state. Reaction (b) proceeds mainly via excited states of \(^8\)Be and \(^5\)He\(_{g.s.}\): see, e.g., (1967VA11). See also (1973HU12, 1974DA28, 1974GR44, 1978AR10, 1978SP03). Attempts to observe n-\(\alpha\) rescattering effects following formation of \(^8\)Be\(^\ast\)(16.63, 16.91) have been unsuccessful: an upper limit of 1% of the yield from sequential decay is given by (1968VA12). See (1974AJ01) for more complete references to the older work. See also \(^8\)Be and \(^9\)Be.

23. \(^7\)Li(\(^3\)He, d\(^3\)He)\(^5\)He \(Q_m = -9.62\)

See (1976WA12).

24. \(^7\)Li(\(\alpha\), \(^6\)Li)\(^4\)He + n \(Q_m = -7.251\)
25. $^9\text{Be}(\gamma, \alpha)^5\text{He}$

$Q_m = -2.47$

See ^9Be.

26. $^9\text{Be}(p, p\alpha)^5\text{He}$

$Q_m = -2.47$

Studies of this reaction have been carried out at $E_p = 26.0$ to 57 MeV [see (1974AJ01)] and at $E_p = 100$ MeV (1977RO02). In the latter experiment good agreement is found with DWIA calculations: the average value of $S_{\alpha} = 0.45 \pm 0.02$ (1977RO02). See also ^9Be.

27. $^9\text{Be}(t, ^7\text{Li})^5\text{He}$

$Q_m = 0.096$

See (1976VO1A).

28. $^9\text{Be}(^3\text{He}, \alpha^3\text{He})^5\text{He}$

$Q_m = -2.47$

See ^9Be.

29. (a) $^9\text{Be}(\alpha, 2\alpha)^5\text{He}$

$Q_m = -2.47$

(b) $^9\text{Be}(\alpha, ^8\text{Be})^5\text{He}$

$Q_m = -2.56$

Reaction (a) has been studied at $E_\alpha = 28$ to 37.4 MeV: see (1974AJ01). See also (1974GR42, 1977BR1E). Reaction (b) has been studied at $E_\alpha = 65$ MeV: only the ground state of ^5He is observed for $E_x < 25$ MeV; $S_{\alpha} = 0.53$ (1976WO11).

30. $^{11}\text{B}(d, n)^4\text{He}^4\text{He}^4\text{He}$

$Q_m = 6.4575$

At $E_d = 3.75$ MeV (1978GR07), 10.4 and 12.0 MeV (1971RE19), this reaction involves $^5\text{He}_{\text{g.s.}}$ and states in ^8Be and ^9Be (1971RE19, 1978GR07) and ^{12}C (1978GR07).

31. $^{12}\text{C}(n, n)^4\text{He}^4\text{He}^4\text{He}$

$Q_m = -7.2748$

See ^{12}C in (1975AJ02).
\(^5\)Li

(Figs. 2 and 3)

GENERAL: (See also \(1974\)AJ01.)

Model calculations: \(1975\)KR1\text{A}.

Special states: \(1974\)GO1\text{A3}, \(1974\)IR0\text{A4}, \(1976\)IR1\text{B1}).

Astrophysical questions: \(1974\)RA1\text{C}, \(1978\)ME1\text{C}).

Special reactions: \(1975\)BR1\text{A}, \(1976\)VA2\text{A9}, \(1978\)ME1\text{C}).

Reactions involving pions: \(1973\)AR1\text{B}, \(1974\)AM0\text{I1}).

Applied topics: \(1975\)HU1\text{A}).

Other topics: \(1974\)GO1\text{A3}, \(1974\)IR0\text{A4}, \(1976\)IR1\text{B1}, \(1978\)GO1\text{D}).

Ground state of \(^5\)Li: \(1975\)BE3\text{A1}).

1. \(^3\)He(d, \(\gamma\))\(^5\)Li

\(Q_m = 16.39\)

Excitation curves and angular distributions have been measured for \(E_d = 0.2\) to 5 MeV and \(E(\(^3\)He) = 2\) to 26 MeV: see \(1974\)AJ01).

A broad maximum in the cross section is observed at \(E_d = 0.45 \pm 0.04\) MeV \([\(^5\)Li*(16.66)]\): \(\sigma = 50 \pm 10\) \(\mu\)b, \(\Gamma_\gamma = 11 \pm 2\) eV \((1954\)BU0\text{A6}: \(\gamma_0 + \gamma_1\)); \(\sigma_{\gamma_0} = 21 \pm 4\) \(\mu\)b, \(\Gamma_{\gamma_0} = 5 \pm 1\) eV \((1968\)BU0\text{A9}). The radiation at resonance is isotropic, consistent with s-wave capture: see \((1954\)BU0\text{E6}, 1968BU0\text{A9}, 1968KR0\text{A3}). Study of \(\gamma_0\) and \(\gamma_1\) yield \(\Gamma = 2.6 \pm 0.4\) MeV for the ground state width, and \(E_x = 7.5 \pm 1\) MeV, \(\Gamma = 6.6 \pm 1.2\) MeV for the \(^{1}\frac{3}{2}^\text{−}\) state. The ratio of \(\gamma_0\) to \(\gamma_1\) is 1.00 \pm 0.2 and 1.9 \pm 0.4 at \(E_d = 480\) and 1025 keV \((1968\)BU0\text{A9})).

An excess in the cross section at higher bombarding energies is interpreted by \((1972\)KI0\text{A1}) as being due to a state at \(E_x \approx 18\) MeV: even parity is deduced from the relative intensity of \(\gamma_0\) and \(\gamma_1\). It is presumed to be the \(^{1}\frac{3}{2}^+\) state reported in reactions 3 and 7. A broad peak is also observed at \(E_x \approx 20.7\) MeV in the \(\gamma_0\) cross section. The cross section for \(\gamma_1\) is \(\approx 0\). The observations are consistent with \(J^\pi = \frac{5}{2}^+\): angular distributions appear to require at least one other state with significant strength near 19 MeV \((1972\)KI0\text{A1}). \((1970\)SC0\text{A8}) also report this state but find \(E_x = 19.7 \pm 0.2\) MeV \([\Gamma = 5.0\) MeV]: \((2J + 1)\Gamma_{\gamma_0} = 1.32\) keV \((\pm 50\%\)), suggesting E1 (if only one state is involved).

2. \(^3\)He(d, n)\(^4\)Li

\(E_b = 16.39\)
Table 5.3: Energy levels of ^5Li\(^a\)

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>$J^\pi; T$</th>
<th>$\Gamma_{c.m.}$ (MeV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>$\frac{1}{2}^-; \frac{1}{2}^-$</td>
<td>≈ 1.5</td>
<td>p, α</td>
<td>1, 5, 6, 7, 9, 13, 14, 15, 16, 17</td>
</tr>
<tr>
<td>5 - 10</td>
<td>$\frac{1}{2}^-; \frac{1}{2}^-$</td>
<td>5 ± 2</td>
<td>p, α</td>
<td>1, 5, 7, 13, 15, 16, 17</td>
</tr>
<tr>
<td>16.66 ± 0.07</td>
<td>$\frac{1}{2}^+; \frac{1}{2}^+$</td>
<td>≈ 0.3</td>
<td>$\gamma, p, d, ^3\text{He, }\alpha$</td>
<td>1, 3, 4, 7, 13, 15</td>
</tr>
<tr>
<td>(18 ± 1)</td>
<td>$(\frac{1}{2}^+; \frac{1}{2}^+)$ broad</td>
<td></td>
<td>$\gamma, p, d, ^3\text{He, }\alpha$</td>
<td>1, 3, 7</td>
</tr>
<tr>
<td>(20.0 ± 0.5)</td>
<td>$\frac{3}{2}^+, \frac{5}{2}^+$</td>
<td>≈ 5</td>
<td>$\gamma, p, d, ^3\text{He, }\alpha$</td>
<td>1, 3, 4, 5, 7, 13, 15</td>
</tr>
</tbody>
</table>

\(^a\) See also discussion in reactions 3, 4, 7, 14 and 15.

This reaction has not been observed: see (1966LA04) and (1974POZN; abstract). See also (1978MC1C).

3. (a) $^3\text{He}(d, p)^4\text{He}$ \(Q_m = 18.3532\) \(E_b = 16.39\)
 (b) $^3\text{He}(d, np)^3\text{He}$ \(Q_m = -2.2246\)
 (c) $^3\text{He}(d, 2p)^3\text{H}$ \(Q_m = -1.4608\)
 (d) $^3\text{He}(d, 2d)^1\text{H}$ \(Q_m = -5.4936\)

Below 100 keV the cross section follows the simple Gamow form: \(\sigma = (18.2 \times 10^3 / E)\exp(-91E^{-1/2})\) b (\(E\) in keV) (1953JA1A, 1954AR02). The zero-energy cross section factor \(S_0 = 6700\) keV \cdot b (1964PA1A). A pronounced resonance occurs at \(E_d = 430\) keV, \(\Gamma \approx 450\) keV. The peak cross section is given as 695 ± 14 mb (1952BO68, 1955KU03); see Table 5.2. Excitation functions for ground state protons have also been reported for \(E(^3\text{He}) = 0.39\) to 1.46 MeV and 18.7 to 44.1 MeV and for \(E_d = 2.8\) to 17.8 MeV; see (1974AJ01). Angular distributions have been measured for \(E_d = 0.25\) to 27 MeV and \(E(^3\text{He}) = 18.7\) to 44.1 MeV [see Table 5.6 in (1974AJ01)]. At \(E_d = 10.02\) MeV differential cross sections have been measured at four angles to better than 3% (1974JA15). Polarization measurements have been carried out at many energies: see Table 5.6 in (1974AJ01) and Table 5.4 here.

Below \(E_d = 1.1\) MeV, the polarization analyzing power of the reaction is minimally affected by \(p\)-wave contributions (less than a few percent). However, at \(E_d = 500\) keV, the analyzing power is reduced by \((12 \pm 5)\%\) by intervention of the \(s\)-wave \(J^\pi = \frac{1}{2}^+\) channel (1966BR02, 1967MC01, 1971LE27). Contour maps, \(T_{ab}\) versus \(\theta, E_d\), for the vector and tensor analyzing powers are presented for \(E_d = 0\) to 12 MeV by (1971GR47). Energy dependence of the angular distributions indicate resonance-like beavior at \(E_x = 16.6, 17.5, 20.0, 20.9\) and 22.4 MeV in ^5Li (1971GR47). At \(E_d \approx 6\) MeV (1971KL02) find the angular distribution more complex than
Table 5.4: Polarization measurements in $^3\text{He}(\text{d}, \text{p})^4\text{He}$

<table>
<thead>
<tr>
<th>E_T (MeV)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.344, 0.465, 0.727</td>
<td>(1974GA21)</td>
</tr>
<tr>
<td>0.34 − 11.60</td>
<td>(1976SC15)</td>
</tr>
<tr>
<td>0.75, 1.5 b</td>
<td>(1976BR1C) c</td>
</tr>
<tr>
<td>1 − 6</td>
<td>(1976DR1C, 1977DR1B) c</td>
</tr>
<tr>
<td>6.44 d</td>
<td>(1977ST06)</td>
</tr>
<tr>
<td>6.6 − 15.8</td>
<td>(1974TR02)</td>
</tr>
<tr>
<td>8.5 − 10.5 e</td>
<td>(1976GR10)</td>
</tr>
<tr>
<td>12 b,f</td>
<td>(1974BE67)</td>
</tr>
<tr>
<td>15 g</td>
<td>(1976ME13)</td>
</tr>
<tr>
<td>15 − 40</td>
<td>(1975RO1C, 1976RO1G) c</td>
</tr>
<tr>
<td>27 h</td>
<td>(1976OK1A) c</td>
</tr>
<tr>
<td>30, 35, 40 i</td>
<td>(1976RO1H) c</td>
</tr>
</tbody>
</table>

a See Table 5.6 in (1974AJ01) for a listing of the earlier work.

b E_d.

c Preliminary results.

d Measurement to better than 1% of iT_{11}.

e Maximum value of the tensor analyzing power (A_{yy}) at 9.28 MeV is nearly 1.

f ^3He target.

g Reactions 3(b) and 3(c).

h $E(^3\text{He})$.

i Reaction 3(b).
could be accounted for by a single $^2D_{3/2}$ or $^2D_{5/2}$ level at $E_x \approx 20$ MeV [see 3He(d, d)]. For E_d(c.m.) = 7 to 18 MeV, differential cross sections fall monotonically with no indication of states of 5Li with $23.4 < E_x < 34$, with $\Gamma > 0.8$ MeV and with appreciable widths for decay into 3He + d (1972KI02).

Table 5.5: Measurements of elastic scattering and polarization in 4He(p, p)4He a

<table>
<thead>
<tr>
<th>Elastic scattering angular distribution and cross sections</th>
<th>Polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_p (MeV)</td>
<td>Refs.</td>
</tr>
<tr>
<td>11.16, 12.04, 13.60, 14.23</td>
<td>(1977DO01)</td>
</tr>
<tr>
<td>85.0</td>
<td>(1974VO05)</td>
</tr>
<tr>
<td>156</td>
<td>(1975CO1B)</td>
</tr>
<tr>
<td>185 – 500</td>
<td>(1978MC06)</td>
</tr>
<tr>
<td>200, 350, 500</td>
<td>(1977ST30)</td>
</tr>
<tr>
<td>350, 650, 1050, 1150</td>
<td>(1977AS01)</td>
</tr>
<tr>
<td>438, 648, 1036</td>
<td>(1976BE45)</td>
</tr>
<tr>
<td>$[E_\alpha = 4.00, 5.08, 6.09 \text{ GeV/c}]$</td>
<td></td>
</tr>
<tr>
<td>560, 800, 1030, 1270, 1730</td>
<td>(1977KL08)</td>
</tr>
<tr>
<td>580, 720</td>
<td>(1975VE09)</td>
</tr>
<tr>
<td>600</td>
<td>(1976FA09)</td>
</tr>
<tr>
<td>788</td>
<td>(1978FO33)</td>
</tr>
<tr>
<td>1000</td>
<td>(1977AL1E)</td>
</tr>
<tr>
<td>1050</td>
<td>(1974BA14, 1978BE30)</td>
</tr>
<tr>
<td>$E_\alpha = 7.0 \text{ GeV/c}$</td>
<td>(1977GE01)</td>
</tr>
<tr>
<td>$[E_p = 1050]$</td>
<td></td>
</tr>
<tr>
<td>2680</td>
<td>(1975IG1B, 1977IG1A, 1977IG1B, 1977IG1C)</td>
</tr>
<tr>
<td>4.89 GeV</td>
<td>(1978NA1H)</td>
</tr>
<tr>
<td>50 – 500 GeV/c</td>
<td>(1978SM1C)</td>
</tr>
</tbody>
</table>

a See also Tables 5.5 in (1966LA04) and 5.7 in (1974AJ01) for a listing of the earlier work.

Reactions (b), (c) and (d) have been studied at $E_d = 22.3$ and 35 MeV and at $E(^3\text{He}) = 30, 33.5$ and 52.5 MeV by (1977SL04) and analyzed with a PWIA: Fourier transforms of the wave functions were obtained. At $E(^3\text{He}) = 35.9$ MeV, the spectra in reactions (b) and (c) are dominated by the nucleon-nucleon FSI: the results were fitted with a fully antisymmetrized PWBA and with DWBA (1974WA06, 1975WA31). At $E_\pi = 15$ MeV (1976ME13) have measured the vector and the two tensor analyzing powers for reactions (b) and (c). (1974SC04, 1976SC26) have studied the excitation function for reaction (c) for $E_d = 2.2$ to 6 MeV in a kinematically complete experiment. They have extracted the p + t FSI going via $^4\text{He}^*(20.1) [J^\pi = 0^+]$ and suggest that the reaction goes primarily via a $J^\pi = \frac{3}{2}^-, T = \frac{1}{2}$ state of ^5Li located 0.8 ± 0.2 MeV above threshold [i.e.,
\(E_x = 18.9 \pm 0.2 \text{ MeV} \). This suggests that the attraction of a \(p_{3/2} \) nucleon to \(^4\text{He}^* (0^+) \) is stronger than is the attraction of such a nucleon to \(^4\text{He}_{g.s.} \) (1976SC26). See also (1975RU04) for reaction (c). See (1974AJ01) for the earlier work.

4. \(^3\text{He} (d, d)^3\text{He} \)

In the range \(E_d = 380 \) to 570 keV, the scattering cross section is consistent with s-wave formation of the \(J^\pi = \frac{3}{2}^+ \) state at 16.66 MeV (1954BR05). The excitation curves for \(E_d = 1.96 \) to 10.99 MeV show a broad resonance (\(\Gamma > 1 \text{ MeV} \)) corresponding to \(E_x = 20.0 \pm 0.5 \text{ MeV} \). From the behavior of the angular distributions an assignment of \(^2D_{3/2} \) or \(^2D, ^4D_{5/2} \) is favored, if only one state is involved (1967TO02). [There is some evidence that there is more than one \(D \)-wave state in this \(E_x \) region: see reaction 3]. See also (1976AL22: \(E_d = 1.01 \) to 2.95 MeV). In the range \(E_d \) (c.m.) = 7 to 18 MeV differential cross sections show only a monotonic variation with energy. There is no evidence for any other resonances from \(E_x = 23 \) to 34 MeV (1972BA30, 1972KI02). Angular distributions have been measured at a number of energies from \(E(\vec{3}\text{He}) = 18.7 \) to 44.1 MeV (1972KI02) and at \(E(\vec{3}\text{He}) = 10.00 \text{ MeV} \) (1974JA15, \(d\sigma/d\Omega \) to \(\pm 1\% \)) and \(E_d = 39 \text{ MeV} \) (1975RU04).

Polarization measurements have been reported for \(E_d = 4.0 \) to 12 MeV [see (1974AJ01)] and polarization analyzing powers have been studied at \(E_\pi = 2.0 \) to 11.5 MeV (1975JE1A; abstract), \(E_\pi = 3.73 \) to 11.89 MeV (1974OH05; \(^3\overline{\text{He}} \); also spin correlation parameters), \(E_d = 5.35 \) to 9.2 MeV (1974LO06; polarization transfer coefficients), \(E_\pi = 15 \) to 40 MeV (1976RO1B, 1976RO1C; vector analyzing powers) and \(E(\vec{3}\overline{\text{He}}) = 33 \text{ MeV} \) (1977KA10).

See also (1975TO1A) and (1973HA1F, 1974CH02, 1974CH1E, 1974LY03, 1975DO1B, 1975HA1E, 1975KA1D, 1975NE11, 1975TA1A, 1976DO1B, 1976LY1A, 1977KA1H, 1977SA1C; theor.).

5. (a) \(^3\text{He}(t, n)^5\text{Li} \)

(b) \(^3\text{He}(t, np)^4\text{He} \)

Angular distributions have been measured at \(E(^3\text{He}) = 2.0 \) to 5.5 MeV for \(n_0 \) (\(\Gamma_{g.s.} = 2.03 \pm 0.15 \text{ MeV} \)) and at 3.5 to 5.5 MeV (partial distributions) for \(n_1 \) to an excited state at \(E_x = 10.21 \pm 0.28 \text{ MeV} \), \(\Gamma = 1.49 \pm 0.61 \text{ MeV} \) (1975AB11). At \(E(^3\text{He}) = 14 \) to 26 MeV, the spectra show the \(n_0 \) group and a broad resonance with \(E_x = 20.5 \pm 0.8 \text{ MeV} \) (1974CH15). Reaction (b) has been studied at \(E(^3\text{He}) = 0.31 \) to 2.80 to attempt to detect a possible resonant energy dependence of the spin-singlet (\(T = 1 \)) n-p FSI: a marked effect is not present (1975SC28). See also (1977JO1A) and \(^6\text{Li} \).
6. (a) $^3\text{He} (^3\text{He}, p)^5\text{Li}$ \quad Q_m = 10.89
(b) $^3\text{He} (^3\text{He}, 2p)^4\text{He}$ \quad Q_m = 12.8596
(c) $^3\text{He} (^3\text{He}, 3p)^3\text{H}$ \quad Q_m = -6.9544

The spectrum of protons shows a pronounced peak at $E(^3\text{He}) = 3$ to 18 MeV corresponding to $^5\text{Li}_{g.s.}$ superposed on a continuum: see (1974AJ01). At $E(^3\text{He}) = 13.6$ MeV differential cross sections and polarizations have been measured for the p_0 group (1976IR02). A deuteron cluster transfer process may be involved (1976AS05). At $E(^3\text{He}) = 43.7$ and 53.0 MeV, the spectra show a prominent peak at the high energy end whose angular distributions exhibit a pronounced diffraction pattern (1967SL01, 1968MO10). Searches for three-proton enhancement (reaction (c)) have been unsuccessful: see (1974AJ01). See also (1976HE07; theor.).

7. $^4\text{He}(p, p')^4\text{He}$ \quad E_{th} = -1.97

Differential cross sections and polarizations have been measured at many energies: see Tables 5.5 in (1966LA04), 5.7 in (1974AJ01) and 5.5 here.

Phase shifts below $E_p = 18$ MeV have been determined by (1977DO01) based on all the available cross section and polarization measurements, using an R-matrix analysis program. The $P_{3/2}$ phase shift shows a pronounced resonance corresponding to $^5\text{Li}_{g.s.}$ while the $P_{1/2}$ shift changes slowly over a range of several MeV, suggesting that the first excited state is very broad and located $5 - 10$ MeV above the ground state. (1977DO01) find that the reduced widths of the P-wave resonance states are nearly the same. See also (1974KR07: $E_x = 2.3 \pm 0.5$ MeV, $\Gamma = 9.0 \pm 1.5$ MeV for the $P_{1/2}$ state). The $D_{5/2}$, $D_{3/2}$, $F_{7/2}$ and $F_{5/2}$ phase shift become greater than 1° at $E_p \approx 11, 13, 14$ and 16 MeV, respectively (1977DO01). A contour plot of A_y is shown in (1973AR1N): the results are not significantly different from those of (1977DO01). The work of (1977DO01) relies heavily on the very accurate elastic scattering cross sections which they measured (better than 1%) and on the polarization measurements of (1977HA06) [absolute precision of ± 0.01]. It should be noted that $A_y = 0.984 \pm 0.005$ at $E_p = 11.93$ MeV, $\theta_{c.m.} = 128.28^\circ$ (1977HA06). For other phase-shift analyses, see (1976BR17) and (1974AJ01).

A resonance is observed at $E_p = 23$ MeV, corresponding to the known $^3\frac{1}{2}^+$ state at $E_x = 16.7$ MeV (1968AL1B, 1968DA04). An anomaly in the polarization is also observed at this energy (1966WE03, 1968DA04, 1972BA24). A further broad feature in the polarization excitation function ($\theta = 102^\circ$) is observed at $E_p = 30$ MeV ($E_x = 22$ MeV) (1972BA24). Cross sections for $23 < E_p < 45$ MeV show no further evidence of excited states (1969BU10). An extensive phase-shift analysis, using complex phases with $l \leq 4$ over the range $E_p = 20$ to 40 MeV has been made by (1972PL02), using mainly the polarization and differential cross-section data of (1972BA24). The $D_{3/2}$ level is fit with R-matrix formalism, including background interference, with the following parameters: $E_x = 16.68$ MeV, $\gamma_p^2 = 122$ keV, $\gamma_d^2(l = 0) = 1.58$ MeV (negative sign), $\gamma_d^2(l = 2) = 1.58$ MeV, $\theta_p^2 = 0.014, \theta_d^2 = 0.765$.

18
The $E_p = 30$ MeV structure is not reflected in anomalous behavior of any single phase shift. Strong absorption of even partial waves may indicate broad overlapping positive-parity levels, $J^\pi = \frac{1}{2}^+, \frac{3}{2}^+, \frac{5}{2}^+, \frac{7}{2}^+$, of d + 3He character near $E_x = 22$ MeV, but there is no unambiguous identification of excited states other than the $\frac{3}{2}^+$ state in the p-α results (1972PL02). In an analysis of the data of (1971PL07) for $E_p = 25$ to 29 MeV, (1971RA27) report evidence for a $\frac{5}{2}^+$ level at $E_x = 20$ MeV [$\Gamma_{el}/\Gamma_{total} = 0.15, \Gamma_{tot} = 8$ MeV] and a $\frac{1}{2}^+$ level at $E_x = 18 \pm 1$ MeV.

A recent analysis by (1975PL01) of the phase shifts below 50 MeV suggests a small D-state admixture to the dominant S-state configuration of 4He$_{gs}$.

Total reaction cross sections have been measured at $E_p = 18$ to 48 MeV (1974SO06, 1976SO01) and at 0.87 and 2.1 GeV (1975JA1A). At an equivalent E_p of 1.05 GeV, the elastic distribution is characterized by a shallow first minimum (1977GE01) and is said to be in excellent agreement with the predictions of multiple-diffraction theory (1977WA06). Alpha-proton bremsstrahlung is observed at $E_p = 7.0$ to 155.4 MeV [see (1974AJ01)] and at $E_p = 85$ MeV (1974VO05), 275 to 500 MeV (1978CA05: back angles), 770 MeV (1976CO1C, 1977BA19) and at $E_\alpha = 3.98$ GeV/c (1977BE34). The 85 MeV data are in agreement with DWBA at forward angles but the back angle behavior probably results from the need to include two-nucleon pickup in the analysis (1974VO05). The differential cross section is strongly backward peaked at $E_p = 275$ and 500 MeV and the differential cross section is similar in slope and magnitude to that for 3He(p, p), suggesting that deuteron exchange may be the major component of the reaction mechanism (1978CA05). The excitation function shows no indication of resonance for $E_p = 38.5$ to 44.6 MeV (1969BU10). Polarization measurements have been reported for $E_p = 32$ to 63 MeV [see (1974AJ01)] and at 45.04 and 52.34 MeV (1977SA1E).

8. (a) 4He(p, d)3He
 $Q_m = -18.3532$
 $E_b = -1.97$

(b) 4He(p, pn)3He
 $Q_m = -20.5778$

(c) 4He(p, 2p)3H
 $Q_m = -19.8140$

(d) 4He(p, pd)2H
 $Q_m = -23.8467$

Angular distributions of 3He ions (reaction (a)) have been measured for $E_p = 27.9$ to 155.4 MeV [see (1974AJ01)] and at $E_p = 85$ MeV (1974VO05), 275 to 500 MeV (1978CA05: back angles), 770 MeV (1976CO1C, 1977BA19) and at $E_\alpha = 3.98$ GeV/c (1977BE34). The 85 MeV data are in agreement with DWBA at forward angles but the back angle behavior probably results from the need to include two-nucleon pickup in the analysis (1974VO05). The differential cross section is strongly backward peaked at $E_p = 275$ and 500 MeV and the differential cross section is similar in slope and magnitude to that for 3He(p, p), suggesting that deuteron exchange may be the major component of the reaction mechanism (1978CA05). The excitation function shows no indication of resonance for $E_p = 38.5$ to 44.6 MeV (1969BU10). Polarization measurements have been reported for $E_p = 32$ to 63 MeV [see (1974AJ01)] and at 45.04 and 52.34 MeV (1977SA1E).
and 350, 400 and 500 MeV (1978CA05). At $E_\alpha = 6.85$ GeV/c, the integrated cross section for 3He production (reactions (a) + (b)) is 24.1 ± 1.9 mb, suggesting an important component of 3He in 4He (1977BI05).

Reaction (b) and (c) have also been reported at $E_p = 46.8$ to 156 MeV [see (1974AJ01)]. The (p, 2p) reaction (reaction (c)) has also been studied at 350 and 500 MeV (1978EP1C, 1978KO1F) and 600 MeV (1969PE15), while both that reaction and reaction (d) have been studied at $E_p = 156$ MeV (1975FR14). See also (1973KR1A, 1978GL1B), (1977TE1A, 1978IG1B), (1976CO1B; astrophysics) and (1974BA34, 1974CH02, 1974CH29, 1974DO10, 1974HA36, 1974KA1D, 1974RO19, 1974YO01, 1975HA03, 1975KA1D, 1977CL1A, 1977KA1D, 1977KA1G, 1977RE1A, 1978BI1C, 1978RO06; theor.).

9. (a) 4He(d, n)5Li $Q_m = -4.19$
(b) 4He(d, np)4He $Q_m = -2.2246$

Reaction (b) has been studied at $E_d = 14.2$ MeV and at $E_\alpha = 18.0$ to 42 MeV [see (1974AJ01)] and at $E_\alpha = 18$ MeV (1978SA07) and 21.9 and 23.7 MeV (1974RA10). The data show that at 42 MeV, direct breakup, with quasi-free α-p scattering taking place and the n acting as a spectator, is at least as important a mechanism as the FSI in the 5Li$_{g.s.}$ (1968WA01). See also (1974HE21, 1976KO21, 1976LI1E, 1977BR25; theor.) and 6Li.

10. 4He(t, 2np)4He $Q_m = -8.3820$

See (1974LA1A, 1975AL1A; $E_\alpha = 70$ MeV; abstracts).

11. 4He(3He, np)5Li $Q_m = -9.68$

See (1973HA50).

12. 6Li(\gamma, n)5Li $Q_m = -5.66$

See 6Li.

13. (a) 6Li(p, d)5Li $Q_m = -3.44$
(b) 6Li(p, pd)4He $Q_m = -1.4735$
(c) 6Li(p, pn)5Li $Q_m = -5.66
Angular distributions have been measured at \(E_p = 18.6 \) to 156 MeV [see (1974AJ01)] and at \(E_p = 185 \) MeV (1974KA28, 1976FA03). In the latter experiment the spectra are characterized by a broad, asymmetric peak corresponding to \(^5\)Li_{g.s.}, a narrow peak \(^5\)Li*(16.7) and a broad peak at \(E_x \approx 20 \) MeV. DWBA analysis leads to \(C^2 S = 0.64 \) and 0.57 for \(^5\)Li*(0, 16.7) (1976FA03).

The first excited state of \(^5\)Li is reported to be populated by (1969BA05; \(E_p = 156 \) MeV). See also (1978IG1A : 0.65 and 0.8 GeV).

Reaction (b) has been studied at \(E_p = 9 \) and 10 MeV, at 45 MeV [see (1974AJ01)] and 40, 45 and 50 MeV (1974BE46): the p-\(^4\)He FSI corresponding to \(^5\)Li_{g.s.} is observed. See also (1975MI1A).

For reaction (c) see (1977WA05). See also (1975ST1C, 1975VO04, 1978CH1G) and \(^6\)Li.

14. (a) \(^6\)Li(d, t\(^5\)Li

\[Q_m = 0.59 \]

(b) \(^6\)Li(d, pt\(^4\)He

\[Q_m = 2.5592 \]

Angular distributions of the t\(_0\) group have been measured at \(E_d = 15 \) and 20 MeV: see (1974AJ01). For reaction (b) see (1977RO18; \(E_d = 0.47 \) MeV), (1974MI10, 1977MI13; \(E_d = 7.5 \) to 10.5 MeV) and (1975KO1A; theor.).

15. (a) \(^6\)Li(\(^3\)He, \(\alpha \))^\(5\)Li

\[Q_m = 14.91 \]

(b) \(^6\)Li(\(^3\)He, p\(\alpha \))^\(4\)He

\[Q_m = 16.880 \]

At \(E(\(^3\)He) = 25.5 \) MeV, the spectra show \(^5\)Li*(0, 16.7) and two broad peaks at \(E_x \approx 19.8 \) and 22.7 MeV with \(\Gamma_{c.m.} = 2 \) and 1 MeV, respectively (1972BA30). In a kinematically complete experiment at \(E(\(^3\)He) = 36 \) MeV the population of \(^5\)Li*(16.7, 20.2, 22.6) is reported (1976RA1B). The decay of the ground state has also been studied at \(E(\(^3\)He) = 1.25 \) MeV (1974LI10) and at 1.47 to 1.75 MeV (1978GU15).

Cylindrical asymmetry observed in the breakup of \(^5\)Li(0) is attributed to the short lifetime of the \(^5\)Li intermediate state and to the memory retained by the proton of its localization at the time of formation of \(^5\)Li (1967RE03, 1968RE10). The first excited state of \(^5\)Li also appears to be involved (1972TH08, 1972TH1B): its parameters are given as \(E_x = 3.2 \pm 0.2 \) MeV, \(\Gamma = 1.5 \pm 0.5 \) MeV (1975GA14). See also (1975GL08, 1976ST1B, 1977AR09) and \(^8\)Be.

16. (a) \(^7\)Li(p, t\(^5\)Li

\[Q_m = -4.43 \]

(b) \(^7\)Li(p, p\(\alpha \))^\(3\)H

\[Q_m = -2.467 \]

At \(E_p = 43.7 \) MeV, a triton group is observed to \(^5\)Li(0) (\(\Gamma = 1.55 \pm 0.15 \) MeV): the angular distribution is consistent with a substantial mixing of \(L = 0 \) and 2 transfer. There is some evidence also for a very broad excited state between \(E_x = 2 \) and 5 MeV. \(^5\)Li*(16.7, 20.0) were not observed.
The formation of $^5\text{Li}^\ast (16.7) (^4S_{3/2})$ would be S-forbidden: the absence of $^5\text{Li}^\ast (20.0)$ would indicate that this state(s) is also of quartet character [see reaction 20 in ^5He] (1966CE05). Weak, broad states at $E_x = 22.0 \pm 0.5$ MeV and 25.0 ± 0.5 MeV and possibly 34 MeV are reported by (1968MC02) in a coincidence experiment in which three- and four-particle breakup was analyzed. The t_0 angular distribution has also been studied at $E_p = 16.6$ and 30.3 MeV: see (1974AJ01).

17. $^{10}\text{B}(^3\text{He}, p\alpha)^4\text{He}^4\text{He}$ \hspace{1cm} $Q_m = 12.4192$

At $E(^3\text{He}) = 2.45$ and 6.00 MeV the reaction proceeds in part via the first two states of ^5Li (1966WA16).

18. $^{12}\text{C}(p, 2\alpha)^5\text{Li}$ \hspace{1cm} $Q_m = -9.24$

Not observed: see (1972MA62).

\begin{center}
^5Be
\end{center}

(Fig. 3)

The absence of any group structure in the neutron spectrum in the reaction $^3\text{He}(^3\text{He}, n)^5\text{Be}$ at $E(^3\text{He}) = 18.0$ to 26.0 MeV indicates that $^5\text{Be}(0)$ is at least 4.2 MeV unstable with respect to $^3\text{He} + 2p \ [(M - A) > 33.7 \text{ MeV}]$. With Coulomb corrections adjusted to match the 16.7 MeV states of $^5\text{He} - ^5\text{Li}$, this observation places the first $T = \frac{3}{2}$ level in these nuclei above $E_x = 21.4$ MeV (1967AD05). See also (1975BE31; theor.).
References

(Closed 1978)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author’s name and then by two additional characters. Most of the references appear in the National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form 1A, 1B, etc. In response to many requests for more informative citations, we have, when possible, included up to ten authors per paper and added the authors’ initials.

1952AR1A Argo, Taschek, Agnew, Hemmendinger and Leland, Phys. Rev. 87 (1952) 612
1952CO35 J.P. Conner, T.W. Bonner and J.R. Smith, Phys. Rev. 88 (1952) 468
1952DO30 D.C. Dodder and J.L. Gammel, Phys. Rev. 88 (1952) 520
1955KU03 W.E. Kunz, Phys. Rev. 97 (1955) 456
1960HU1A Hughes, Magurno and Brussel, BNL-325, 2nd Ed., Suppl. 1 (1960)
1964PA1A Parker, Bahcall and Fowler, Astrophys. J. 139 (1964) 602
1964SH1A Shamu and Jenkin, Phys. Rev. 135 (1964) B99

23
1965WO03 C. Wong, J.D. Anderson and J.W. McClure, Nucl. Phys. 71 (1965) 106
1966LA04 T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1
1966WE03 W.G. Weitkamp and W. Haeberli, Nucl. Phys. 83 (1966) 46
1967TO02 T.A. Tombrello, R.J. Spiger and A.D. Bacher, Phys. Rev. 154 (1967) 935
1967TR05 A. Trier and W. Haeberli, Phys. Rev. Lett. 18 (1967) 915
1968AL1B Allison and Smythe, Nucl. Phys. A121 (1968) 97
<table>
<thead>
<tr>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
</table>
1973BE1A Berthot et al., U. Clajde Bernard de Lyon, Rept. No. Lycen 7338 (1973)
1974JA1F Jackson, Prog. in Phys. 37 (1974) 55
1974KA1D Kanada, Kaneko and Nomoto, Prog. Theor. Phys. 52 (1974) 725
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>Langley, Picrajx and Vook</td>
<td>J. Nucl. Materials</td>
<td>53</td>
<td>257</td>
</tr>
<tr>
<td>1974</td>
<td>Maayouf and Galloway</td>
<td>Nucl. Instrum. Meth.</td>
<td>118</td>
<td>343</td>
</tr>
<tr>
<td>1974</td>
<td>Pronko</td>
<td>J. Nucl. Materials</td>
<td>53</td>
<td>252</td>
</tr>
<tr>
<td>1974</td>
<td>W. Tornow</td>
<td>Z. Phys.</td>
<td>266</td>
<td>357</td>
</tr>
</tbody>
</table>
1974WI1D Wiemer, Atomkernenergie 23 (1974) 261
1975AL1A Allas et al., Few Body Problems, Quebec, 1974 (U. Laval, 1975) p. 422
1975BA1G Baldin, in LASL, AIP Conf. Proc. 26 (1975) 621
1975CH1B Chang and Bhowmik, in Clustering Phenomena in Nuclei, II, ORO-4856-26 (1975) p. 317
1975CH1C Chang, Bhowmik, Chant and Roos, ORO-4856-32 (1975)

30
1975DI1A Didelez et al., Bull. Amer. Phys. Soc. 20 (1975) 597
1975DI1B Didelez et al., in JUL-Conf-16 (1975) 90
1975DU1A Dubnicka and Dumbrajs, Phys. Rept. 19 (1975) 141
1975GR1C Green, Few Body Problems, Quebec, 1974 (Univ. Laval, 1975) p. 352
1975HA1E Hackenbroich, in Clustering Phenom. in Nucl., II, ORO-4856-26 (1975) 107
1975IG1A Igo, in Lasl, AIP Conf. Proc. 26 (1975) 63
1975KA1D Kanada, Kaneko and Nomoto, Prog. Theor. Phys. 54 (1975) 1707
1975KR1A Kramer, in Clustering Phenom. in Nucl., II, ORO-4856-26 (1975) 56
1976BR1B Brady et al., in Lowell Conf., CONF-760715-P2 (1976) p. 1273
1976BR1C Brook et al., in Polariz., Zurich, 1975 (Birkhauser Verlag, 1976) 546
1976CO1B Colgate, Audouze and Fowler, OAP-458 (1976)
1976DO1B Dodder, Polarization, Zurich, 1975 (Birkhauser Verlag, 1976) 167
1976DO1C Dodder et al., LA 6186 MS (1976)
1976DR1A Drosg, in Lowell Conf., CONF-760715-P2 (1976) p. 1384
1976DR1B Drosg, Smith and Woods, LA 6262 MS (1976)

33
1976GR1D Gruebler, in Polariz., Zurich, 1975 (Birkhauer Verlag, 1976) 307
1976HA1C Hackenbroich, in Polariz., Zurich, 1975 (Birkhauser Verlag, 1975) 133
1976LI1E Lindner, in Polariz., Zurich, 1975 (Birkhauser Verlag, 1976) 817
1976LY1A Lyovshin, Nemets and Yasnogorodsky, in Polariz., Zurich, 1975 (Birkhauser Verlag, 1976) 542
1976MO1A Motonaga et al., in Polariz., Zurich, 1975 (Birkhauser Verlag, 1976) 837
1976OH1B Ohlsen, in Polariz., Zurich, 1975 (Birkhauser Verlag, 1976) 315
1976OK1A Okumusoglu, Blyth and Dahme, in Polariz., Zurich, 1975 (Birkhauser Verlag, 1976) 560
1976RO1C Roy et al., in Polariz., Zurich, 1975 (Birkhauser Verlag, 1976) 540
1976RO1G Roy et al., in Polariz., Zurich, 1975 (Birkhauser Verlag, 1976) 548
1976RO1H Roy, Rad, Conzett and Seiler, in Polariz., Zurich, 1975 (Birkhauser Verlag, 1976) 554
1976SE1B Seiler, in Polariz., Zurich, 1975 (Birkhauser Verlag, 1976) 159
1976VO1A Von Oertzen and Flynn, Ann. Phys. 95 (1976) 326
1976WA1B Walter, in Polariz., Zurich, 1975 (Birkhauser Verlag, 1976) 377
1977BA1M Bassalleck et al., in Proc., Zurich-Sin (1977) 35

35
1977BR1C Bruton et al., in Proc., Zurich-Sin (1977) 158
1977CH1C Chuu and Han, J. Phys. G3 (1977) 555
1977CH1D Chwieroth, Tang and Thompson, Fizika (Yugoslavia) 9, Suppl. 2 (1977) 13; Phys. Abs. 581 (1978)
1977IG1A Igo et al., Bull. Amer. Phys. Soc. 22 (1977) 562
1977IG1B Igo et al., in Tokyo (1977), Contrib. Papers p. 13, 15
1977IG1C Igo et al., in Proc., Zurich-Sin. (1977) 219
1977JO1A de Jong et al., in Tokyo (1977), Contrib. Papers p. 18
1977LE1E Lesniak and Lesniak, in Proc., Zurich-Sin (1977) 193

37
<table>
<thead>
<tr>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
</table>
1978BI1C Bizard and Tekou, in Proc., Cluster, Winnipeg (1978) D1
1978BR1E Brown, Invited Paper, 3rd Int. Conf. on Clustering Aspects of Nucl. Structure and Nucl. reactions, Winnipeg (1978)
1978CH1G Chant, 3rd Int. Conf. on Clustering Aspects of Nucl. Struct. & Nucl. Reactions, Winnipeg (1978)
1978IG1A Igo et al., Bull. Amer. Phys. Soc. 23 (1978) 47
1978IG1B Igo, Rev. Mod. Phys. 50 (1978) 523
1978KO1F Koene et al., in Proc., Cluster, Winnipeg (1978) D9
1978LE1H Le Mere and Tang, in Proc., Cluster, Winnipeg (1978) A21
1978MC1C McNally, Nucl. Fusion 18 (1978) 133
1978RO06 E. Rost, J.R. Shepard and D.A. Sparrow, Phys. Rev. C17 (1978) 1513
1978YE1A Yeh, Bull. Amer. Phys. Soc. 23 (1978) 553
1978YO1A York et al., Bull. Amer. Phys. Soc. 23 (1978) 602