Energy Levels of Light Nuclei

$A = 8$

F. Ajzenberg-Selove

University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396

Abstract: An evaluation of $A = 5$–10 was published in *Nuclear Physics A227* (1974), p. 1. This version of $A = 8$ differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC format.

(References closed December 31, 1973)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-FG02-86ER40279]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).
Table of Contents for $A = 8$

Below is a list of links for items found within the PDF document. Figures from this evaluation have been scanned in and are available on this website or via the link below.

A. Nuclides: ^8He, ^8Li, ^8Be, ^8B, ^8C

B. Tables of Recommended Level Energies:

Table 8.1: Energy levels of ^8Li
Table 8.3: Energy levels of ^8Be
Table 8.11: Energy levels of ^8B

C. References

D. Figures: ^8Li, ^8Be, ^8B, Isobar diagram

E. Erratum to the Publication: PS or PDF
^8He

(Figs. 11 and 14)

GENERAL: (See also (1966LA04).)

Mass of ^8He: The atomic mass excess of ^8He derived from the Q of the $^{26}\text{Mg}(\alpha, ^8\text{He})^{22}\text{Mg}$ reaction is 31.65 ± 0.12 MeV. See also (1968BA48). ^8He is then stable to decay into $^6\text{He} + 2n$ by 2.1 MeV (1966CE01). See also (1966BA38, 1968CE1A, 1972CE1A).

1. $^8\text{He}(\beta^-)^8\text{Li}$

$Q_m = 10.70$

The half-life is 122 ± 2 msec. The decay takes place 88% to $^8\text{Li}^*(0.98)$ [log $ft = 4.20$; B. Zimmerman, private communication] and $12 \pm 1\%$ via ^8Li states decaying by neutron emission (1965PO06). See also (1966NE07) and (1973HA49; theor.).

2. $^{11}\text{B}(\gamma, 3p)^8\text{He}$

$Q_m = -44.85$

See (1966NE07).

3. $^{26}\text{Mg}(\alpha, ^{22}\text{Mg})^8\text{He}$

$Q_m = -45.05$

This reaction has been studied at $E_{\alpha} = 80$ MeV (1966CE01).

^8Li

(Figs. 11 and 14)

GENERAL: (See also (1966LA04).)

Special levels: (1966BA26, 1970FR1C).

Table 8.1: Energy levels of 8Li

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>τ_m or $\Gamma_{c.m.}$ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>$2^+; 1$</td>
<td>$\tau_{1/2} = 842 \pm 6$ msec</td>
<td>β^-</td>
<td>1, 2, 3, 10, 11, 14, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27</td>
</tr>
<tr>
<td>0.9808 ± 0.1</td>
<td>$1^+; 1$</td>
<td>$\tau_m = 12 \pm 4$ fsec</td>
<td>γ</td>
<td>2, 3, 10, 13, 14, 15, 17, 18, 19, 21, 24, 25, 26</td>
</tr>
<tr>
<td>2.261 ± 2</td>
<td>$3^+; 1$</td>
<td>$\Gamma = 31 \pm 5$</td>
<td>γ, n</td>
<td>3, 4, 10, 14, 17, 18, 19, 25</td>
</tr>
<tr>
<td>3.21</td>
<td>$1^+; 1$</td>
<td>≈ 1000</td>
<td>n</td>
<td>5, 14</td>
</tr>
<tr>
<td>5.4</td>
<td>$(2^+, 3^+); 1$</td>
<td>≈ 650</td>
<td>n</td>
<td>4, 5</td>
</tr>
<tr>
<td>6.1 ± 100</td>
<td></td>
<td>≈ 900</td>
<td>n</td>
<td>4</td>
</tr>
<tr>
<td>6.530 ± 20</td>
<td></td>
<td>< 40</td>
<td>(n)</td>
<td>4, 19</td>
</tr>
<tr>
<td>7.1 ± 100</td>
<td></td>
<td>≈ 350</td>
<td>n</td>
<td>4</td>
</tr>
<tr>
<td>(9.)</td>
<td></td>
<td>≈ 6000</td>
<td></td>
<td>14, 17</td>
</tr>
</tbody>
</table>

$J = 2$ (1973NE10);

$\mu = +1.65335 \pm 0.00035$ nm (1973HA12);

$\mu = +1.6532 \pm 0.0008$ nm (1959CO68, 1962CO08);

$\mu = +1.6530 \pm 0.0008$ nm (1967GU14). See also (1967SH14, 1969FU11, 1971SH26).

1. 8Li(β^-)8Be $Q_m = 16.006$

The β-decay leads mainly to 8Be*(2.9): see 8Be. Measurements of the half-life of 8Li include $\tau_{1/2} = 841 \pm 4$ msec (1954KL36), 848 ± 5 msec (1960JA12), 844.0 ± 0.7 msec (1966CL02),
854 ± 8 msec \((1968DA12)\), 838 ± 6 msec \((1971WI05)\): \(\tau_{1/2} = 842 ± 6\) msec is adopted. [For other measurements see Table 8.2 in \((1966LA04)\).] See also \((1968BO32)\). Taking \(\tau_{1/2} = 842\) msec and \(Q = 16.006 - 2.94\), \(\log ft = 5.61\) (B. Zimmerman, private communication). See also \((1966BA1A, 1969BA43)\). The distribution of recoil momenta indicates \(J^p = 2^+\) (see \(^8\)Be).

The coefficient for the angular correlation between \(\beta^-\), \(\bar{\nu}_e\) and \(\alpha\)-particles, \(b = -0.88 ± 0.08\) \((1965GR25)\), \(-1.01 ± 0.07\) \((1966EII02)\), in substantial agreement with \(b = -1\), expected from axial vector coupling.

See also \((1970SC34)\) and \(^8\)Be.

2. \(^6\)Li\((t, p)^8\)Li

\(Q_m = 0.801\)

Transitions to \(^8\)Li\(^*\)(0, 0.98) have been observed: see \((1966LA04)\). See also \((1968CO1H)\).

3. \(^7\)Li\((n, \gamma)^8\)Li

\(Q_m = 2.0327\)

\(Q_0 = 2032.78 ± 0.15\) keV (E.T. Jurney, private communication);

\(Q_0 = 2032.8 ± 1\) keV \((1967RA24)\).

The thermal capture cross section is \(45.4 ± 3\) mb. Neutron capture \(\gamma\)-rays are observed with \(E_\gamma = 980.6 ± 0.2, 1052.0 ± 0.2\) and \(2032.5 ± 0.28\) keV, with intensities of \(10.6 ± 1, 10.6 ± 1\) and \(89.4 ± 1 \gamma/100\) neutrons: \(E_x = 980.7 ± 0.2\) keV for the first excited state (E.T. Jurney, private communication). The cross section for capture radiation has been measured for \(E_n = 40\) to \(1000\) keV: it decreases from \(50\) \(\mu\)b to \(5\) \(\mu\)b over that interval. The cross section shows the resonance corresponding to \(^8\)Li\(^*\)(2.26): \(\Gamma_\gamma = 0.07 ± 0.03\) eV \((1959IM04)\). See also \((1967GU14), (1966LA04)\) and \((1970AU1B, 1973MU14)\); astrophys. calculations).

4. \(^7\)Li\((n, n)^7\)Li

\(E_b = 2.0327\)

The thermal cross section is \(1.07 ± 0.04\) b \((1960HU1A)\); the coherent scattering length (thermal, bound) is \(-2.1 ± 0.1\) fm \((1969BA1P, 1973MU14)\). Total cross-section measurements have recently been reported at \(E_n = 0.010\) to \(1.236\) MeV \((1968HI1E)\), \(0.10\) to \(1.50\) MeV \((1970ME1C)\), \(1.12\) to \(2.30\) MeV \((1968KN1B)\), \(2.5\) to \(15.0\) MeV \((1971FO1A)\), \(3.35, 4.83, 5.74\) and \(7.5\) MeV \((1968HO03; also \sigma_{el})\), \(10\) MeV \((1967CO01)\) and \(0.6\) to \(30.0\) MeV (C.A. Goulding, private communication, and \((1973GO2B)\)). See also \((1968EN1A, 1972PR03)\). Polarization measurements at \(E_n = 4.4\) MeV are reported by \((1966ST09; n_0)\). For earlier references see \((1966LA04)\). See also \((1966DA1B, 1972LA1F)\) and \((1966AG1A, 1966SE1E, 1967BE1F, 1967HO1F; theor.)\). For angular distribution measurements see \(^7\)Li and \((1970GA1A)\).
Table 8.2: Resonance parameters for 8Li*(2.26) (1970ME1C) a,b

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{res} (keV)</td>
<td>261.2</td>
</tr>
<tr>
<td>E_x (MeV) c</td>
<td>2.261</td>
</tr>
<tr>
<td>Γ (keV)</td>
<td>35 ± 5 d</td>
</tr>
<tr>
<td>$\Gamma_n(E_r)$ (keV)</td>
<td>36.5</td>
</tr>
<tr>
<td>Γ_γ (eV) c</td>
<td>0.07 ± 0.03 c</td>
</tr>
<tr>
<td>γ_0^2 (keV)</td>
<td>594</td>
</tr>
<tr>
<td>θ^2</td>
<td>0.091</td>
</tr>
<tr>
<td>radius (fm)</td>
<td>3.30</td>
</tr>
<tr>
<td>σ_{max} (b)</td>
<td>12.0 f</td>
</tr>
<tr>
<td>J^π</td>
<td>3$^+$</td>
</tr>
<tr>
<td>l_n</td>
<td>1</td>
</tr>
</tbody>
</table>

a See also (1956TH06, 1956WI04, 1960HU1A).

b Energies in laboratory system except for those labeled c.

c Energies in c.m. system.

d (1960HU1A).

e (1959IM04).

f See also (1968HI1E).

A pronounced resonance is observed at $E_n = 261$ keV with $J^\pi = 3^+$, formed by p-waves (Table 8.2) (1970ME1C). A good account of the polarization is given by the assumption of levels at $E_n = 0.25$ and 3.4 MeV, with $J^\pi = 3^+$ and 2^-, together with a broad $J^\pi = 3^-$ level at higher energy (1964LA19). Broad peaks are reported at $E_n = 4.6$ and 5.8 MeV (± 0.1 MeV) [8Li*(6.1, 7.1)] with $\Gamma \approx 1.0$ and 0.4 MeV, respectively, and there is indication of a narrow peak at $E_n = 5.1$ MeV [8Li*(6.5)] with $\Gamma \ll 80$ keV and of a weak, broad peak at $E_n = 3.7$ MeV (1971FO1A: D.G. Foster and C.A. Goulding, private communications). See also reaction 5.

5. 7Li(n, n')7Li* $E_b = 2.0327$

The excitation function for 0.48 MeV γ-rays shows an abrupt rise from threshold (indicating s-wave formation and emission) and a broad maximum ($\Gamma \approx 1$ MeV) at $E_n = 1.35$ MeV. A good fit is obtained with either $J^\pi = 1^-$ or 1$^+$ (2$^+$ not excluded), $\Gamma_{\text{lab}} = 1.14$ MeV (1955FR10). At higher energies a prominent peak is observed at $E_n = 3.8$ MeV ($\Gamma_{\text{lab}} = 0.75$ MeV) and there is
some indication of a broad resonance ($\Gamma_{\text{lab}} = 1.30 \text{ MeV}$) at $E_n = 5.0 \text{ MeV}$. Between $E_n = 6.0$ and 9.0 MeV, the cross section decreases monotonically. The two resonances are interpreted as being due to states with $J^{\pi} = 2^+$ or 3^+ [$^9\text{Li}^*(5.4)$] and $J^{\pi} = 3^+$ or 3^- [$^9\text{Li}^*(6.4)$] [(1972PR03: Γ_{λ}, γ_{λ} and θ_{λ} are listed for these two states under various assumptions)]. Cross-section measurements have also recently been reported for $E_n = 3.35, 4.83, 5.74$ and 7.5 MeV (1968HO03; n_1, n_2), 10 MeV (1967CO01: n_2) and 19.0 to 21.0 MeV (1972PR03; γ_1). See also (1965DE1G, 1972CO1K), and (1966LA04) for a listing of earlier references.

6. $^7\text{Li}(n, 2n)^6\text{Li}$
 $Q_m = -7.251$
 $E_b = 2.0327$

7. (a) $^7\text{Li}(n, p)^7\text{He}$
 $Q_m = -10.42$
 $E_b = 2.0327$

 (b) $^7\text{Li}(n, p)^4\text{He} + 3n$

 At $E_n = 19 \text{ MeV}$, the upper limit for reaction (b) is 10 mb (1971KO24). See also ^7He and (1973LI02).

8. $^7\text{Li}(n, d)^6\text{He}$
 $Q_m = -7.753$
 $E_b = 2.0327$

 See (1967VA12, 1973LI02) and (1966LA04).

9. $^7\text{Li}(n, t)^4\text{He} + n$
 $Q_m = 2.4668$
 $E_b = 2.0327$

 The cross section rises to 450 mb at $E_n \approx 8 \text{ MeV}$ and thereafter decreases slowly to 300 mb at $E_n = 15 \text{ MeV}$ (1964ST25). The large cross section, comparable to the geometric value, is understood in terms of the ($\alpha + t$) cluster nature of ^7Li (1962RO12). Cross sections for this reaction have recently been reported at $E_n = 3.35, 4.83, 5.74$ and 7.5 MeV (1968HO03) and at 10 MeV (1967CO01). See also (1967VA12, 1971AN1M, 1973LI02) and ^3He, and (1966JE1B).

10. $^7\text{Li}(d, p)^8\text{Li}$
 $Q_m = -0.1919$
 $Q_0 = -188 \pm 7 \text{ keV}$ (1967SP09).
Proton groups have been observed to \(^8\)Li\(^*(0, 0.98, 2.26)\): see (1966LA04). At \(E_d = 15\) MeV, no states are observed in the region \(2.3 < E_x < 8\) MeV: a limit of 0.6 mb/sr is placed on groups with widths \(\lesssim 100\) keV \((\theta = 10^\circ, 14^\circ, 25^\circ)\) (1960HA14). Angular distributions of the \(p_0\) and \(p_1\) groups \([l_n = 1]\) at \(E_d = 12\) MeV have been analyzed by DWBA: \(S_{\text{exp.}} = 0.87\) and 0.48, respectively for \(^8\)Li\(^*(0, 0.98)\) \([S_{\text{exp.}}/S_{\text{theor.}} = 0.84, 1.09]\) (1967SC29). For PWBA analyses, see (1966LA04).

The first excited state decays by emitting a \(980 \pm 10\) keV \(\gamma\)-ray. The transition is M1 (1962CH14). The lifetime of \(^8\)Li\(^*(0.98)\) is \(10.1 \pm 4.5\) fsec (1971TH02). See also (1966TH1B, 1968FI1F).

11. \(^7\)Li(t, d)\(^8\)Li \[Q_m = -4.2249\]

See (1970CH1Q) and \(^{10}\)Be. See also (1970JA1J; theor.).

12. \(^7\)Li(\(\alpha\), \(^3\)He)\(^8\)Li \[Q_m = -18.546\]

Not reported.

13. \(^8\)He(\(\beta^-\))\(^8\)Li \[Q_m = 10.70\]

\(^8\)He decays with \(\tau_{1/2} = 122 \pm 2\) msec to \(^8\)Li\(^*(0.98)\) with an 88\% branch \([\log ft = 4.20; B. Zimmerman, private communication]\) and to neutron unstable states with a 12 \(\pm\) 1\% branch. The allowed decay supports the assignment \(J^\pi = 1^+\) to \(^8\)Li\(^*(0.98)\) (1965PO06).

14. \(^9\)Be(\(\gamma\), p)\(^8\)Li \[Q_m = -16.888\]

15. \(^9\)Be(e, ep)\(^8\)Li \[Q_m = -16.888\]

See (1969BA1F; theor.). See also \(^9\)Be.

16. \(^9\)Be(n, d)\(^8\)Li \[Q_m = -14.664\]
See (1969SC05) in 10Be.

17. 9Be(p, 2p)8Li \[Q_m = -16.888 \]

The summed proton spectrum at $E_p = 156$ MeV shows peaks corresponding to 8Li(0) and 8Li*(0.98 + 2.26) [unresolved]. In addition s-states [$J^\pi = 1^-, 2^-$] are suggested at $E_x = 9$ and 16 MeV, with $\Gamma_{c.m.} \approx 6$ and 8 MeV: the latter may actually be due to continuum protons (1967RO06). See also 9Be and (1966LA04) [(1965TY1A) has now been published as (1966TY01)]. See also (1971GR1K), (1965CO1E) and (1967KO1B, 1968JA1D, 1973AS02; theor.).

18. 9Be(d, 3He)8Li \[Q_m = -11.395 \]

At $E_d = 38$ MeV, differential cross sections have been obtained for the 3He groups corresponding to 8Li*(0, 0.98, 2.26) (1966GA21: see 9Be(d, t)8Be).

19. 9Be(t, α)8Li \[Q_m = 2.926 \]

At $E_t = 12.98$ MeV, α-particle groups are observed to 8Li*(0, 0.98, 2.26) and to a state at $E_x = 6.530 \pm 0.020$ MeV with $\Gamma_{c.m.} < 40$ keV (1965WA12). For angular distributions to these four states, see (1968AJ01): the distribution of the α-particles to 8Li*(6.53) is rather featureless and does not involve a forward maximum, suggesting $l > 1$. A large l-transfer is consistent with the narrow width of this unbound state (1968AJ01). At $E_t = 20$ MeV these four 8Li states were also observed. 8Li*(6.53) was found to have $\Gamma_{c.m.} = 40 \pm 10$ keV. No other groups corresponding to sharp states of 8Li ($\Gamma \lesssim 100$ keV) with $E_x \lesssim 16$ MeV were observed at $\theta = 15^\circ$, 25$^\circ$ and 35$^\circ$ (F. Ajzenberg-Selove and O. Hansen, private communication). The α_0 angular distribution has also been measured at $E_t = 2.10$ MeV (1970CO04) and 0.52 to 1.31 MeV (1969NA04; also α_1 at $E_t = 0.52$ to 1.67 MeV). The mean lifetime, $\tau_m = 14 \pm 5$ fsec for 8Li*(0.98): $E_x = 980.80 \pm 0.10$ keV (1972CO09).

See also 12B in (1975AJ02).

20. 9Be(7Li, 8Be)8Li \[Q_m = 0.368 \]

See (1966LE10) and (1968TO1C; theor.).

21. 10Be(d, α)8Li \[Q_m = 2.372 \]
This reaction has been observed for $E_\alpha = 0.7$ to 3.0 MeV: see 12B (1970GO11, 1973GO09).

22. 10B(n, 3He)8Li

\[Q_m = -15.755 \]

Not reported.

23. 11B(\gamma, 3He)8Li

\[Q_m = -27.211 \]

See (1963NE07).

24. 11B(n, α)8Li

\[Q_m = -6.633 \]

Angular distributions have been obtained at $E_n = 14.1$ MeV for the α_0 and α_1 groups (1973BO26). See also (1966JA1C) and 12B in (1975AJ02).

25. 12C(α, 8B)8Li

\[Q_m = -41.445 \]

At $E_\alpha = 129$ MeV, 8B groups are observed to 8Li*(0, 0.98, 2.26) (1968MC02).

26. 13C(7Li, 12C)8Li

\[Q_m = -2.914 \]

At $E(\tilde{7}$Li) = 34 MeV angular distributions have been measured for the transitions to 8Li\textsubscript{g.s.} + 12C\textsubscript{g.s.}, 8Li\textsubscript{0.98} + 12C\textsubscript{g.s.}, 8Li\textsubscript{g.s.} + 12C\textsubscript{4.4} and 8Li\textsubscript{0.98} + 12C\textsubscript{4.4} (1973SC26).

27. 18O(7Li, 17O)8Li

\[Q_m = -6.014 \]

See (1969NE1E).
GENERAL: (See also (1966LA04).)

Table 8.3: Energy levels of 8Be

<table>
<thead>
<tr>
<th>E_x (MeV \pm keV)</th>
<th>$J^\pi; T$</th>
<th>$\Gamma_{c.m.}$</th>
<th>Deacy</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>$0^+; 0$</td>
<td>6.8 ± 1.7 eV</td>
<td>α</td>
<td>1, 4, 12, 13, 14, 15, 22, 23, 24, 25, 27, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 62, 64</td>
</tr>
<tr>
<td>2.94 ± 30^a</td>
<td>$2^+; 0$</td>
<td>1.56 ± 0.03 MeV</td>
<td>α</td>
<td>4, 13, 14, 15, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55</td>
</tr>
<tr>
<td>(6.0 ± 3000)</td>
<td>$0^+; 0$</td>
<td>$(9 \pm 4$ MeV)</td>
<td>α</td>
<td>4</td>
</tr>
<tr>
<td>(10.0 ± 3000)</td>
<td>$2^+; 0$</td>
<td>$(12^{+4}_{-2}$ MeV)</td>
<td>α</td>
<td>4, 29</td>
</tr>
<tr>
<td>11.4 ± 300</td>
<td>$4^+; 0$</td>
<td>≈ 3.5 MeV d</td>
<td>α</td>
<td>4, 14, 22, 24, 31, 32, 33, 38, 42, 49, 51</td>
</tr>
<tr>
<td>16.627 ± 4^b</td>
<td>$2^+; 0 + 1$</td>
<td>107 ± 3 keV</td>
<td>$(\gamma), \alpha$</td>
<td>2, 4, 13, 15, 22, 23, 24, 28, 29, 33, 37, 38, 42, 46, 49</td>
</tr>
<tr>
<td>16.911 ± 4^b</td>
<td>$2^+; 0 + 1$</td>
<td>77 ± 3 keV</td>
<td>$(\gamma), \alpha$</td>
<td>2, 4, 13, 15, 22, 23, 24, 31, 32, 33, 37, 38, 42, 46, 49</td>
</tr>
<tr>
<td>$17.642 \pm 1.5^b,c$</td>
<td>$1^+; 1$</td>
<td>10.7 ± 0.5 keV</td>
<td>γ, p</td>
<td>13, 16, 18, 22, 23, 31, 32, 33, 38, 42</td>
</tr>
<tr>
<td>$18.154 \pm 4^b,c$</td>
<td>$1^+; 0$</td>
<td>138 ± 6 keV</td>
<td>γ, p</td>
<td>13, 16, 18, 22, 31, 33, 38, 42</td>
</tr>
<tr>
<td>18.91^c</td>
<td>$2^-; 0$</td>
<td>48 ± 20 keV</td>
<td>γ, n, p</td>
<td>13, 16, 17, 18, 22, 31, 32, 42</td>
</tr>
<tr>
<td>19.06 ± 20^c</td>
<td>3^+</td>
<td>270 ± 20 keV</td>
<td>γ, p</td>
<td>13, 16, 18, 22, 31, 32, 42</td>
</tr>
<tr>
<td>19.22</td>
<td>$3^+; (1)$</td>
<td>208 ± 30 keV</td>
<td>n, p</td>
<td>13, 17, 18, 22, 31, 33, 38</td>
</tr>
<tr>
<td>19.4</td>
<td>1^-</td>
<td>≈ 650 keV</td>
<td>n, p</td>
<td>13, 17, 18</td>
</tr>
<tr>
<td>19.9</td>
<td>$4^+; 0$</td>
<td>< 1 MeV</td>
<td>α</td>
<td>4, 13, 24, 32, 33</td>
</tr>
</tbody>
</table>
Table 8.3: Energy levels of 8Be (continued)

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>$\Gamma_{c.m.}$ (keV)</th>
<th>Deacy</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>$2^+; 0$</td>
<td>≈ 1.1 MeV</td>
<td>n, p, α</td>
<td>4, 17, 18, 21, 32</td>
</tr>
<tr>
<td>20.2</td>
<td>$0^+; 0$</td>
<td>< 1 MeV</td>
<td>α</td>
<td>4</td>
</tr>
<tr>
<td>20.9 ± 200</td>
<td>4^-</td>
<td>1.6 ± 0.2 MeV</td>
<td>p</td>
<td>18</td>
</tr>
<tr>
<td>21.5 ± 300</td>
<td>(3$^+$)</td>
<td>1 MeV</td>
<td>γ, p, n</td>
<td>16, 17, 31</td>
</tr>
<tr>
<td>22.0</td>
<td>$1^-; 1$</td>
<td>$4 - 5$ MeV</td>
<td>γ, p</td>
<td>16</td>
</tr>
<tr>
<td>22.2</td>
<td>$2^+; 0$</td>
<td>≈ 0.8 MeV</td>
<td>n, p, d, α</td>
<td>4, 6, 7, 11, 15, 18, 21, 33</td>
</tr>
<tr>
<td>23.6</td>
<td></td>
<td></td>
<td>γ, p</td>
<td>16</td>
</tr>
<tr>
<td>24.0</td>
<td>$1^-, 2^-$</td>
<td>≈ 8 MeV</td>
<td>γ, p</td>
<td>16</td>
</tr>
<tr>
<td>25.2</td>
<td>$2^+; 0$</td>
<td>≈ 1 MeV</td>
<td>p, d, α</td>
<td>4, 7, 11, 21</td>
</tr>
<tr>
<td>25.5</td>
<td>$4^+; 0$</td>
<td></td>
<td>α</td>
<td>4</td>
</tr>
<tr>
<td>27.483 ± 10</td>
<td>$0^+; 2$</td>
<td>10 ± 3 keV</td>
<td>p, d, α</td>
<td>7, 11</td>
</tr>
<tr>
<td>(28.6)</td>
<td></td>
<td>broad</td>
<td>γ, p</td>
<td>16</td>
</tr>
</tbody>
</table>

a See also Table 8.4.
b See also Table 8.5.
c See also Table 8.7.
d We are greatly indebted to Prof. F.C. Barker for enlightening discussions concerning the width of 8Be*(11.4).

Adjusted mass excess † of 8Be: 4941.87 ± 0.13 keV (1972WA1G).

1. 8Be \rightarrow 4He4He $\quad Q_m = 0.09189$
$\quad Q_0 = 92.6 \pm 0.8$ keV (1966RE02).

In α-α scattering (reaction 4) the Q_0 is found to be 92.12 ± 0.05 keV, $\Gamma_{c.m.} = 6.8 \pm 1.7$ eV (1968BE02). See also (1966LA04) for earlier values.

† Not used in Q_m calculations in this paper.
2. $^4\text{He}(\alpha, \gamma)^8\text{Be}$

$$Q_m = -0.09189$$

Radiative widths have been measured for $^8\text{Be}^*(16.6, 16.9)$: see (1974NA1H: $E_\alpha = 31$ to 35 MeV).

3. (a) $^4\text{He}(\alpha, n)^7\text{Be}$
(b) $^4\text{He}(\alpha, p)^7\text{Li}$

$$Q_m = -18.9921 \quad E_b = -0.09189$$

$$Q_m = -17.348$$

For reaction (a) see (1952WA31). For reaction (b) see ^7Li.

4. $^4\text{He}(\alpha, \alpha)^4\text{He}$

$$E_b = -0.09189$$

Alpha-α scattering reveals the ground state as a resonance with $Q_\theta = 92.12 \pm 0.05$ keV, $\Gamma_{c.m.} = 6.8 \pm 1.7$ eV, $[\tau = (0.97 \pm 0.24) \times 10^{-16}$ sec] (1966BE05, 1968BE02). Effective range theory analysis of higher energy scattering yields widths consistent with this value but subject to considerable uncertainty (1966TO1B). However, (1967KE1B, 1967KE1E) and (1967RA1B) have carried out such analyses yielding $\Gamma = 6.14 \pm 0.04$ eV and $6.4^{+0.8}_{-0.5}$ eV, respectively. Using a three-level, one-channel R-matrix formalism (1968BA2D) find $\Gamma = 5.1 \pm 0.4$ eV for the ground state of ^8Be. R-matrix analysis of the s-wave scattering and of the $^8\text{Be}(p, d)^8\text{Be}$ reaction indicates the presence of a second 0$^+$ state at $E_x \approx 6 \pm 3$ MeV, $\Gamma = 9 \pm 4$ MeV ($a_0 = 7$ fm) (1968BA2D). For $E_\alpha = 30$ to 70 MeV the $l = 0$ phase shift shows resonant behavior at $E_\alpha = 40.7$ MeV, corresponding to a 0$^+$ state at $E_x = 20.2$ MeV, $\Gamma < 1$ MeV, $\Gamma_0/\Gamma < 0.5$. No evidence for other 0$^+$ states is seen above $E_\alpha = 43$ MeV (1972BA83).

The d-wave phase shift becomes appreciable for $E_\alpha > 2.5$ MeV and passes through resonance at $E_\alpha = 6$ MeV ($E_x = 3.18$ MeV, $\Gamma = 1.5$ MeV, $J^\pi = 2^+$) (1963TO02). See Table 8.4. Analyses by many-level R-matrix theory of the α-scattering, of the $^8\text{Be}(p, d)^8\text{Be}$ reaction and of the ^8Li and ^8B β-decays lead to approximately correct values for the E_x and Γ of $^8\text{Be}^*(2.9)$ and suggest a second 2$^+$ state at $E_x \approx 8.5$ MeV, $\Gamma \approx 10.5$ MeV (1969BA43: $a_2 = 6.75$ fm), $E_x = 12.0^{+3.0}_{-3.5}$ MeV, $\Gamma = 14.5^{+7.5}_{-6}$ MeV (1969CL10: $a_2 = 6.0 \pm 0.5$ fm). Five 2$^+$ levels are observed from the $l = 2$ phase shifts measured from $E_\alpha = 30$ to 70 MeV. $^8\text{Be}^*(16.6, 16.9)$ with $\Gamma_0 = \Gamma$, and states with $E_x = 20.2, 22.2$ and 25.2 MeV. The latter has a small Γ_0 (1972BA83). See also reaction 11.

The $l = 4$ shift rises from $E_\alpha \approx 11$ MeV and indicates a broad 4$^+$ level at $E_x = 11.4 \pm 0.3$ MeV (1959BR71). See also (1973CH1W). A rapid rise of δ_4 at $E_\alpha = 40$ MeV corresponds to a 4$^+$ state at 19.9 MeV with $\Gamma_0/\Gamma \approx 0.96$; $\Gamma < 1$ MeV and therefore $\Gamma_0 < 1$ MeV, which is < 5% of the Wigner limit. A broad 4$^+$ state is also observed near $E_\alpha = 51.3$ MeV ($E_x = 25.5$ MeV) but there is no evidence for a previously reported state at $E_x = 27.5$ MeV (1972BA83).

Over the range $E_\alpha = 30$ to 70 MeV a gradual increase in δ_6 is observed (1972BA83). Some indications of a 6$^+$ state at $E_x \approx 28$ MeV and of an 8$^+$ state at ≈ 57 MeV have been reported.
Table 8.4: Parameters of $^8\text{Be}^*(2.9)$

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>Γ_{cm} (MeV)</th>
<th>Reaction</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.83 ± 0.20</td>
<td>1.75 ± 0.30</td>
<td>$^6\text{Li}(^3\text{He}, \text{p}), ^{10}\text{B}(\alpha, \text{p})$</td>
<td>(1969NU01)</td>
</tr>
<tr>
<td>3.1 ± 0.1</td>
<td>1.2 ± 0.3</td>
<td>$^6\text{Li}(\alpha, \text{d})$</td>
<td>(1969BA18)</td>
</tr>
<tr>
<td>3.10 ± 0.09</td>
<td>1.75 ± 0.1</td>
<td>$^7\text{Li}(\text{d}, \text{n})$</td>
<td>(1964JO04)</td>
</tr>
<tr>
<td>2.90 ± 0.06</td>
<td>1.53 ± 0.04</td>
<td>$^7\text{Be}(\text{d}, \text{p})$</td>
<td>(1960KA17)</td>
</tr>
<tr>
<td>2.90 ± 0.04</td>
<td>1.35 ± 0.15</td>
<td>$^9\text{Be}(^3\text{He}, \alpha)$</td>
<td>(1963DO08)</td>
</tr>
<tr>
<td></td>
<td>1.48 ± 0.07</td>
<td>$^{11}\text{B}(\text{p}, \alpha)$</td>
<td>(1971KA21)</td>
</tr>
<tr>
<td>2.94 ± 0.03</td>
<td>1.56 ± 0.03</td>
<td>mean</td>
<td></td>
</tr>
</tbody>
</table>

a See also Table 8.9 in (1966LA04) and reaction 32 (1973SO08).

by (1965DA1A), with $\Gamma_{\text{cm}} \approx 20$ and ≈ 73 MeV, respectively. The elastic scattering has been studied at $E_\alpha = 140$ MeV by (1972FR1K). For a listing of the older work see Table 8.7 [(dσ/dΩ)], Table 8.8 [parameters of ^8Be states from $^4\text{He}(\alpha, \alpha)$] and Table 8.9 [parameters of $^8\text{Be}^*(2.9)$] in (1966LA04). See also (1972FR1J). For studies of inelastic scattering of α-particles from ^4He see (1969GR06, 1971HA41) and the review in (1973FI04). See also (1965SL1A, 1967ST30, 1968CO1M).

The bremsstrahlung cross section has been measured at $E_\alpha = 9.35$ MeV and for $E_\alpha = 11.4$ to 13.5 MeV: no significant enhancement is found at the final state energy corresponding to $^8\text{Be}^*(2.9)$ (1972FR02, 1973FR17). The cross section has also been measured for $E_\alpha = 12.1$ to 18.7 MeV by (1972PE16).

5. $^6\text{Li}(\gamma)^8\text{Be}$

\[Q_m = 22.282 \]

Not observed: (1953SA1A, 1954SI07).
6. (a) $^6\text{Li}(d, n)^7\text{Be}$

$$Q_m = 3.382$$

$$E_b = 22.282$$

(b) $^6\text{Li}(d, n)^4\text{He} + ^3\text{He}$

$$Q_m = 1.795$$

The yield curve has been measured for $E_d = 0.06$ to 5.5 MeV [see (1966LA04) and (1966SC26)], and at $E_d = 12$ to 17 MeV (1970GA07: population of $^7\text{Be}^*$(0 + 0.43)). A broad s-wave resonance is indicated at $E_d = 0.41$ MeV, $\Gamma = 0.45$ MeV (1952BA1A, 1956NE13). Polarization measurements are reported at $E_d = 0.27$ to 0.60 MeV (1966MI06; n$_1$) and 2.5 to 3.7 MeV (1970TH08; n$_0$, n$_1$). The distributions observed by (1970TH08) are quite constant over the range 2.5 to 3.7 MeV, indicating that the predominant reaction mechanism is direct. See also ^7Be.

Comparisons of the populations of $^7\text{Be}^*$(0, 0.43) and of $^7\text{Li}^*$(0, 0.48) have been made at many energies, up to $E_d = 7.2$ MeV. The n/p ratios are closely equal for analog states, consistent with charge symmetry (1957WI24, 1963BI1B, 1963CR08). See also (1966AU1A).

7. (a) $^6\text{Li}(d, p)^7\text{Li}$

$$Q_m = 5.026$$

$$E_b = 22.282$$

(b) $^6\text{Li}(d, p)^4\text{He} + ^3\text{H}$

$$Q_m = 2.559$$

Excitation functions have been measured for $E_d = 30$ keV to 5.4 MeV [see (1966LA04) and (1966LO18, 1968BE1P, 1969BL14)]. A broad maximum near $E_d = 1.0$ MeV is interpreted as indicating a level at $E_d = 0.4$ MeV (1950WH02). In the range $E_d = 1$ to 5 MeV there is evidence for both direct interaction and compound nucleus formation (1963BI1B, 1963ME09, 1964PA06): at back angles the (d, p$_1$) data show evidence of the $E_d = 3.7$ MeV resonance [see $^6\text{Li}(d, \alpha)^4\text{He}$]. An anomaly is observed in the p$_1$/p$_0$ intensity ratio at $E_d = 6.945$ MeV, corresponding to the $J^\pi = 0^+; T = 2$ analog of the ground state of ^8He: $E_x = 27.483 \pm 0.010$ MeV, $\Gamma = 10 \pm 3$ keV, $\Gamma_{p_0} \ll \Gamma_{p_1}$, $\Gamma_{p_0} < \Gamma_d$ (1969BL14). The parameters of this state have been calculated by (1969BA36).

Polarization measurements have been made at $E_d = 0.6$ and 0.96 MeV (1969NA1J, 1972SE09; p$_0$, p$_1$) and at $E_d = 2.1$ to 10.9 MeV (1968DU09, 1968FI07, 1970FI07; p$_0$, p$_1$). The latter report pronounced differences in the angular distributions of the vector analyzing power of the two $l_n = 1$ transitions to $^7\text{Li}^*(0, 0.48)$. See also (1972FI1E, 1973FI1C). For reaction (b) see (1966FR06). See also ^7Li and (1966AU1A, 1966BR25).

8. $^6\text{Li}(d, d)^6\text{Li}$

$$E_b = 22.282$$

The yield of elastically scattered deuterons has been measured for $E_d = 2$ to 4.8 MeV (1964PA06), 4.0 to 6.5 MeV (1966BR1J), and 6.33 to 7.14 MeV (1969BL14): no resonances are reported. At $E_d = 12.0$ MeV, $\theta_{\text{lab}} = 95^\circ$, the differential cross section for elastic scattering is 9.82 ± 0.20 mb/sr (1971BI11). See also ^6Li and (1972FI1E, 1973FI1C).
9. $^6\text{Li}(d, t)^{^6}\text{Li}$

$Q_m = 0.59

E_b = 22.282$

The cross section for tritium production rises rapidly to 190 mb at 1 MeV, then more slowly to 290 mb near 4 MeV. There is evidence of deviation from isotropy near 0.4 MeV (1955MA20). See also ^5Li.

10. $^6\text{Li}(d, \, ^3\text{He})^{^5}\text{He}$

$Q_m = 0.90

E_b = 22.282$

See ^5He.

11. (a) $^6\text{Li}(d, \alpha)^4\text{He}$

$Q_m = 22.374

E_b = 22.282$

(b) $^6\text{Li}(d, \alpha p)^3\text{H}$

$Q_m = 2.559$

(c) $^6\text{Li}(d, \alpha n)^3\text{He}$

$Q_m = 1.795$

(d) $^6\text{Li}(d, 2d)^4\text{He}$

$Q_m = -1.4737$

Cross sections and angular distributions (reaction (a)) have been measured for $E_d = 0.03$ to 12 MeV: see (1966LA04) and (1969LE22: $E_d = 40$ to 130 keV), (1966LO18: 0.2 to 2 MeV), (1968BE1P: 0.3 to 1.0 MeV), (1965RO1E, 1969DE31, 1969HU17: 0.35 to 1.50 MeV), (1966BR25: 1.0 to 2.0 MeV), (1964AN1A: 1.0 to 2.5 MeV), (1967CL06: 3 to 12 MeV) and (1969BL14: 6.33 to 7.14 MeV). Polarization measurements are reported at $E_d = 0.40, 0.60, 0.80, 0.96$ MeV (1971NE12, 1972SE09), 0.7 to 2.2 MeV (1967PL02), 2.1 to 10.9 MeV (1968DU07), 4.3, 6.3, 8.0, 10.1 and 11.8 MeV (1968BU13) and at $E(6\text{Li}) = 0.6$ MeV (1970HO11). See also (1967BU1B, 1972KO1P).

Maxima are observed at $E_d = 0.8$ MeV, $\Gamma_{lab} \approx 0.8$ MeV and $E_d = 3.75$ MeV, $\Gamma_{lab} \approx 1.4$ MeV (1963ME09, 1964PA06). Analysis of these and other data up to $E_d = 12$ MeV indicate a 2^+, 0^+, (6^+), 2^+, 4^+ sequence of states: see Table 8.10 in (1966LA04) (1965FR02, 1967CL06). See, however, reaction 4.

The assignment of $J^\pi = 2^+$ to $^8\text{Be}^*$ (22.2) is consistent with the polarization information (1971NE12, 1972SE09), but the 0^+ state may actually be virtual with respect to $^6\text{Li}+d$ (1972SE09) [$^8\text{Be}^*$ (20.3); see reaction 4 and (1972BA83)]. At $E_d = 6.945$ MeV, the α-yield shows an anomaly corresponding to $^8\text{Be}^*$ (27.48), the $J^\pi = 0^+$; $T = 2$ analog of the ^8He ground state (1969BL14). See also reaction 7 and (1969BA36; theor.).

See also (1966LE1C), (1971PL1C) and (1967TS1A, 1968CO1L, 1968KO1G, 1969CH1J, 1970FI11; theor.). For reactions (b), (c) and (d), see (1972HA34) and (1973FI04).

12. (a) $^6\text{Li}(t, n)^8\text{Be}$

$Q_m = 16.024$

(b) $^6\text{Li}(t, n)^4\text{He}^4\text{He}$

$Q_m = 16.116$
For reaction (b) see (1966LA02, 1967BE13, 1967BI1D). See also (1966LA04).

13. (a) 6Li(3He, p)8Be
 \[Q_m = 16.788 \]
 (b) 6Li(3He, p)4He
 \[Q_m = 16.880 \]

Proton groups are observed to 8Be*(0, 2.9, 16.63, 16.91, 17.64): see (1966LA04) and Tables 8.4 and 8.5. The excitation of 8Be*(18.15, 19.0, 19.4, 19.9) is also reported by (1971GI07). Angular distributions have been measured at $E(^3$He) = 1.4 to 1.8 MeV (1969VI05; p_0, p_1) and 5, 6, 7, 9, 10, 13 and 17 MeV (1965FL03; p_0, p_1; PWBAE analysis). A gradual change is observed from a dominant back angle maximum to a dominant forward maximum (1965FL03). Measurements of the energies of all the particles emitted in this reaction and reactions 23, 38 and 42 show that the apparent width of 8Be*(2.9) does not depend on the relative velocity of the spectator particle: $E_x = 2.83 \pm 0.20$ MeV, $\Gamma = 1.75 \pm 0.30$ MeV (1969NU01). See also Table 8.4.

Reaction (b) proceeds via 8Be*(16.63, 16.91): $\Gamma = 117 \pm 10$ and 85 ± 10 keV, respectively. Interference effects are observed (1969VI05). See also 6Li and (1967RE03, 1968RE10, 1972TH08). See also (1964MA57, 1968VI03, 1970GA1G, 1971TR1B), (1967HO1C) and (1967BA1E, 1968HE1F, 1969TH1D, 1970DE41, 1973ED02; theor.).

14. (a) 6Li(α, d)8Be
 \[Q_m = -1.5656 \]
 (b) 6Li(α, 2α)2H
 \[Q_m = -1.4737 \]

Deuteron groups have been observed to 8Be*(0, 2.9, 11.3 ± 0.4) (1959ZE1A, 1962CE01). Angular distributions have been measured at $E_\alpha = 20$ and 24 MeV (1973GR1N), 20.5 to 24.5 MeV and at 38 MeV (1965DE1F; d_0), 43 MeV (1959ZE1A; d_0, d_1) and 48 MeV (1962CE01; d_0, d_1). At $E_\alpha = 12$ MeV ($\theta = 15^\circ$ and 20°) the deuteron spectrum does not show a “ghost” anomaly at $E_x = 0.1 - 0.5$ MeV (1971BE52). A study of reaction (b) shows that the peak due to 8Be*(2.9) is best fitted by using $\Gamma = 1.2 \pm 0.3$ MeV (1969BA18): see also Table 8.4. See also (1968LA1E) and (1971BU1K; theor.). For reaction (b) see 6Li. See also (1966LA04).

15. (a) 6Li(6Li, α)8Be
 \[Q_m = 20.808 \]
 (b) 6Li(6Li, α)4He4He
 \[Q_m = 20.900 \]

This reaction proceeds via 8Be*(0, 2.9, 16.6, 16.9, 22.5), and there is indication also that the direct three-body break-up (reaction (b)) is possible (1971GA1N, 1971GA21, 1972GA32: $E_{\text{max}}(^6$Li) = 13.0 MeV). The involvement of a state at $E_x = 19.9$ MeV ($\Gamma = 1.3$ MeV) is suggested by (1966MA40). See also (1971GI07). Good agreement with the shapes of the peaks
<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$\Gamma_{c.m.}$ (keV)</th>
<th>Reaction</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.625 ± 10</td>
<td>95 ± 20</td>
<td>6Li(3He, p)</td>
<td>(1961ER01)</td>
</tr>
<tr>
<td></td>
<td>117 ± 10</td>
<td>6Li(3He, p)</td>
<td>(1969VI05)</td>
</tr>
<tr>
<td>16.627 ± 5</td>
<td>113 ± 3</td>
<td>7Li(3He, d)</td>
<td>(1967MA12)</td>
</tr>
<tr>
<td>16.627 ± 15</td>
<td>105 ± 30</td>
<td>9Be(3He, α)</td>
<td>(1961ER01)</td>
</tr>
<tr>
<td>16.635 ± 15</td>
<td>96 ± 20</td>
<td>9Be(3He, α)</td>
<td>(1963DO08)</td>
</tr>
<tr>
<td>16.623 ± 10</td>
<td>95 ± 20</td>
<td>10B(d, α)</td>
<td>(1961ER01)</td>
</tr>
<tr>
<td></td>
<td>90 ± 5</td>
<td>10B(d, α)</td>
<td>(1971NO04)</td>
</tr>
<tr>
<td>16.627 ± 4</td>
<td>107 ± 3</td>
<td>mean</td>
<td></td>
</tr>
<tr>
<td>16.931 ± 10</td>
<td>85 ± 20</td>
<td>6Li(3He, p)</td>
<td>(1961ER01)</td>
</tr>
<tr>
<td></td>
<td>85 ± 10</td>
<td>6Li(3He, p)</td>
<td>(1969VI05)</td>
</tr>
<tr>
<td>16.901 ± 5</td>
<td>77 ± 3</td>
<td>7Li(3He, d)</td>
<td>(1967MA12)</td>
</tr>
<tr>
<td></td>
<td>103 ± 15</td>
<td>9Be(p, d)</td>
<td>(1967KU10)</td>
</tr>
<tr>
<td>16.914 ± 12</td>
<td>88 ± 25</td>
<td>9Be(3He, α)</td>
<td>(1961ER01)</td>
</tr>
<tr>
<td>16.930 ± 15</td>
<td>80 ± 15</td>
<td>9Be(3He, α)</td>
<td>(1963DO08)</td>
</tr>
<tr>
<td>16.919 ± 10</td>
<td>85 ± 20</td>
<td>10B(d, α)</td>
<td>(1961ER01)</td>
</tr>
<tr>
<td></td>
<td>70 ± 5</td>
<td>10B(d, α)</td>
<td>(1971NO04)</td>
</tr>
<tr>
<td>16.911 ± 4</td>
<td>77 ± 3</td>
<td>mean</td>
<td></td>
</tr>
<tr>
<td>17.642 ± 10</td>
<td>< 20</td>
<td>6Li(3He, p)</td>
<td>(1961ER01)</td>
</tr>
<tr>
<td>17.642 ± 1.5</td>
<td>10.7 ± 0.5</td>
<td>7Li(p, γ)</td>
<td>Table 8.6</td>
</tr>
<tr>
<td>17.636 ± 10</td>
<td>< 15</td>
<td>9Be(3He, α)</td>
<td>(1961ER01)</td>
</tr>
<tr>
<td>17.641 ± 10</td>
<td>10.7 ± 0.5</td>
<td>9Be(3He, α)</td>
<td>(1963DO08)</td>
</tr>
<tr>
<td></td>
<td>best</td>
<td>best</td>
<td></td>
</tr>
<tr>
<td>18.157 ± 5</td>
<td>147</td>
<td>7Li(p, γ)</td>
<td>Table 8.6</td>
</tr>
<tr>
<td>18.150 ± 5 c</td>
<td>138 ± 6</td>
<td>10B(d, α)</td>
<td>(1970CA12)</td>
</tr>
<tr>
<td>18.154 ± 4</td>
<td>138 ± 6</td>
<td>mean</td>
<td></td>
</tr>
</tbody>
</table>

a See also Table 8.11 in (1966LA04).
b Based on listed Q_m.
c Based on $E_x = 17.642$ MeV.
corresponding to $^8\text{Be}^*(16.6, 16.9)$ is obtained by using a simple two-level formula with interference, corrected for the effect of final state Coulomb interactions, assuming $\Gamma(16.6) = 90$ and $\Gamma(16.9) = 70$ keV; see also Table 8.5 (1971NO04). See also (1968NO03, 1969IN06). The ratio of the intensities of the groups corresponding to $^8\text{Be}^*(16.6, 16.9)$ remains constant for $E(^6\text{Li}) = 4.3$ to 5.5 MeV: $I(16.6)/I(16.9) = 1.22 \pm 0.08$ (1966KI09, 1966MA40). Partial angular distributions for the α_0 group have been measured at fourteen energies for $E(^6\text{Li}) = 4$ to 24 MeV (1970FR06). For reaction (b) see also (1966BE22).

16. $^7\text{Li}(p, \gamma)^8\text{Be}$ $Q_m = 17.256$

Cross sections and angular distributions have been reported from $E_p = 30$ keV to 18 MeV. Gamma rays are observed to the ground (γ_0) and to the broad, 2^+, excited state at 2.9 MeV (γ_1) and to $^8\text{Be}^*(16.6, 16.9)$ (γ_3, γ_4). Resonances for both γ_0 and γ_1 occur at $E_p = 0.44$ and 1.03 MeV, and for γ_1 alone at 2, 4.9, 6.0, 7.3, and possibly at 3.1 and 11.1 MeV. In addition broad resonances are reported at $E_p \approx 5$ MeV (γ_0), $\Gamma \approx 4 - 5$ MeV, and at $E_p \approx 7.3$ MeV (γ_1), $\Gamma \approx 8$ MeV. The $E_p \approx 5$ MeV resonance ($E_x \approx 22$ MeV) represents the giant dipole resonance based on $^8\text{Be}(0)$ while the γ_1 resonance, ≈ 2.3 MeV higher, is based on $^8\text{Be}^*(2.9)$. The γ_0 and γ_1 giant resonance peaks each contain about 10% of the dipole sum strength (1966FI1B, 1968BL1E, 1970FI1B). The main trend between $E_p = 8$ and 17.5 MeV is a decreasing cross section (1970FI1B). See, however, (1967FE04). See also Table 8.6.

At the $E_p = 0.44$ MeV resonance ($E_x = 17.64$ MeV) the radiation is nearly isotropic consistent with p-wave formation, $J^\pi = 1^+$, with channel spin ratio $\sigma(J_c = 2)/\sigma(J_c = 1) = 3.2 \pm 0.5$ (1961ME10). Radiative widths for the γ_0 and γ_1 decay are displayed in Table 8.7. The E2/M1 amplitude ratio for the 17.6 \rightarrow 2.9 transition varies over the energy of the broad final state: the average value is $\delta = 0.21 \pm 0.04$ (1967CO19). See also (1967CO29).

$^8\text{Be}^*(16.63, 16.91)$ are 2^+ states with mixed $T = 0$, 1 isospin [see (1965MA1G, 1966MA03, 1968PA09, 1969SW01)], with the lower state of $^7\text{Li} + p$ parentage and the higher of $^7\text{Be} + n$ parentage (1965SW03, 1968PA09). A careful study of the α-breakup of $^8\text{Be}^*(16.63, 16.91)$ for $E_p = 0.44$ to 2.45 MeV shows that the non-resonant part of the cross section for production of $^8\text{Be}^*(16.63)$ is accounted for by an extranuclear direct-capture process. Resonances for production of $^8\text{Be}^*(16.63, 16.91)$ are observed at $E_p = 0.44, 1.03$ and 1.89 MeV [$^8\text{Be}^*(17.64, 18.15, 18.9)$]. The results are consistent with the hypothesis of nearly maximal isospin mixing for $^8\text{Be}^*(16.63, 16.91)$; decay to these states is not observed from the 3^+ states at $E_x = 19$ MeV, but rather from the 2^- state at 18.9 MeV excitation (1969SW01). See also reaction 17. (1968PA09) find squared $T = 1$ components of 40% and 60% in $^8\text{Be}^*(16.6, 16.9)$ and of 95% and 5% in $^8\text{Be}^*(17.6, 18.2)$. Gamma-$\alpha$ angular correlation measurements at $E_p = 0.44$ MeV show that the $17.64 \rightarrow 16.63 \gamma$ is nearly pure M1 $\delta(E2/M1) = -0.014 \pm 0.013$ (1969SW02). See also (1965SW03). Radiative widths are shown in Table 8.7.
Table 8.6: 8Be levels from 7Li(p, γ)8Be

<table>
<thead>
<tr>
<th>E_{res} (keV)</th>
<th>Γ_{lab} (keV)</th>
<th>8Be*</th>
<th>l_p</th>
<th>J^π</th>
<th>Res. c in</th>
<th>$\omega\Gamma_\gamma$ (eV)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>441.4 ± 0.5 a</td>
<td>12.2 ± 0.5</td>
<td>17.642</td>
<td>1</td>
<td>1^+</td>
<td>$\gamma_0, \gamma_1, \gamma_3, \gamma_4$</td>
<td>9.4</td>
<td>(1949FO18, 1956BU27, 1969SW01)</td>
</tr>
<tr>
<td>1030 ± 5</td>
<td>168</td>
<td>18.157</td>
<td>1</td>
<td>1^+</td>
<td>$\gamma_0, \gamma_1, \gamma_3, \gamma_4$</td>
<td>2</td>
<td>(1954KR06, 1960MA33, 1963RI09, 1970FI1B)</td>
</tr>
<tr>
<td>1890</td>
<td>150 ± 50</td>
<td>18.91</td>
<td></td>
<td>(2$^-$)</td>
<td>γ_3, γ_4</td>
<td>(1969SW01)</td>
<td></td>
</tr>
<tr>
<td>2060 ± 20</td>
<td>310 ± 20</td>
<td>19.06</td>
<td></td>
<td>$J = 1, 2, 3$</td>
<td>$\pi = (-)^b$</td>
<td>γ_1</td>
<td>(1957NE1A, 1963PE15, 1963RI09, 1967NI1A, 1970FI1B)</td>
</tr>
<tr>
<td>(3100)</td>
<td>(20.0)</td>
<td></td>
<td>(0)</td>
<td>1^-</td>
<td>γ_0</td>
<td>(1970FI1B)</td>
<td></td>
</tr>
<tr>
<td>4900</td>
<td>21.5</td>
<td></td>
<td></td>
<td></td>
<td>γ_1</td>
<td>(1970FI1B)</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>≈ 4500</td>
<td>21.6</td>
<td>(0)</td>
<td>1^-</td>
<td>γ_0</td>
<td>(1959GE33, 1963MI08, 1963PE15, 1966FI1B, 1968BL1E, 1970FI1B)</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
<td>γ_1</td>
<td>(1963MI08, 1970FI1B)</td>
<td></td>
</tr>
<tr>
<td>7300</td>
<td>23.6</td>
<td></td>
<td></td>
<td></td>
<td>γ_1</td>
<td>(1970FI1B)</td>
<td></td>
</tr>
<tr>
<td>7500</td>
<td>≈ 8000</td>
<td>23.8</td>
<td>(0)</td>
<td>$1^-, 2^-$</td>
<td>γ_1</td>
<td>(1963MI08, 1963PE15, 1966FI1B, 1968BL1E, 1970FI1B)</td>
<td></td>
</tr>
<tr>
<td>(11100)</td>
<td>(27.0)</td>
<td></td>
<td></td>
<td></td>
<td>γ_1</td>
<td>(1970FI1B)</td>
<td></td>
</tr>
<tr>
<td>13000</td>
<td>broad</td>
<td>28.6</td>
<td></td>
<td></td>
<td></td>
<td>(1967FE04)</td>
<td></td>
</tr>
</tbody>
</table>

a See (1959AJ76).

b (1964SC19). See however reaction 18.

c $\gamma_0, \gamma_1, \gamma_3, \gamma_4$ represent transitions to 8Be*(0, 2.9, 16.6, 16.9), respectively.
Table 8.7: Electromagnetic transitions in 8Be a

| Transition | Γ_γ (eV) | $|M|^2$ (W.u.) | Refs. |
|------------|----------------------|----------------|-------|
| $17.6 \rightarrow 0$ | 16.7 | 0.15 | (1949FO18, 1961ME10, 1968PA09) |
| $17.6 \rightarrow 2.9$ | 8.15 ± 0.07 (M1) | 0.12 | (1961ME10, 1968PA09) |
| $17.6 \rightarrow 16.6$ | 0.032 ± 0.003 | 1.48 \pm 0.15 (M1) | (1969SW01) |
| $17.6 \rightarrow 16.9$ | 0.021 \pm 0.004 b | 1.1 | (1968PA09) |
| $17.6 \rightarrow 16.9$ | 0.0013 ± 0.0003 | 0.15 ± 0.04 (M1) | (1969SW01) |
| $17.6 \rightarrow 16.9$ | 0.0016 ± 0.0004 b | 0.22 | (1968PA09) |
| $18.15 \rightarrow 0$ | 3.0 | 0.03 | (1970FI1B) |
| $18.15 \rightarrow 2.9$ | 3.8 | 0.05 | (1970FI1B) |
| $18.15 \rightarrow 16.6$ | 0.077 ± 0.019 | 1.04 \pm 0.26 (M1) | (1969SW01) |
| $18.15 \rightarrow 16.9$ | 0.084 ± 0.018 b | 1.2 | (1968PA09) |
| $18.15 \rightarrow 16.9$ | 0.062 ± 0.007 | 1.51 ± 0.17 (M1) | (1969SW01) |
| $18.15 \rightarrow 16.9$ | 0.041 ± 0.011 b | 1.1 | (1968PA09) |
| $18.9 \rightarrow 16.6$ | 0.168 | 0.053 (E1) | (1969SW01) |
| $18.9 \rightarrow 16.9$ | 0.099 | 0.045 (E1) | (1969SW01) |
| $19.06 \rightarrow 2.9$ | 10.5 | 0.12 | (1970FI1B) |

a See also (1966LA04).

b Values listed by (1968PA09) multiplied by factor 0.56: see (1969SW01), p. 1019.

For a review of the earlier work, see (1959AJ76, 1966LA04). See also (1973SU1E), (1966EV1B, 1966PE1D, 1966WA1C, 1969KA1J), and (1973AS02; theor.).

17. 7Li(p, n)7Be

$Q_m = -1.64422 \quad E_b = 17.256$

Recent measurements of cross sections have been made for $E_p = 1.9$ to 2.36 MeV (1967BE61; σ_1), 1.93 to 2.66 MeV (1969LE23), 2.1 to 3.8 MeV (1971BU1D), 2.4 to 6.0 MeV (1972PR03; $n_1\gamma$), 2.6 to 5.4 MeV (1972EL19; n_0), 3 to 10 MeV (1966HA1J; $n_1\gamma$), 3.2 to 5.4 MeV (1972EL19; n_1), 23 to 52 MeV (1967LO07; $n_1\gamma$), and 30 and 50 MeV (1969CL06; n_0, n_1). See also (1973WA34). The shape of the neutron yield near threshold has been studied by (1966PA03). Polarization measurements are reported at $E_p = 2.05$ to 3.00 MeV (1973RO35, 1973RO2E), 3.0 to 4.0 MeV (1971HA27; n_0, n_1), 3.0 to 5.5 MeV (1971TH07; n_0, n_1) and 30 and 50 MeV (1969RO20). For a report on the earlier yield and polarization measurements, see (1966LA04). For angular distributions, see 7Be.

22
Table 8.8: ^8Be levels from $^7\text{Li}(p, n)^7\text{Be}$

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Γ_{lab} (keV)</th>
<th>$^8\text{Be}^*$</th>
<th>J^π</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.88</td>
<td>55 ± 20</td>
<td>18.90</td>
<td>2$^-$</td>
<td>(1974AR10) a</td>
</tr>
<tr>
<td>2.25</td>
<td>220</td>
<td>19.22</td>
<td>3$^+$</td>
<td>(1957NE1A, 1961BE05)</td>
</tr>
<tr>
<td>2.6 b</td>
<td>≈ 750</td>
<td>19.5</td>
<td>1$^-$</td>
<td>(1972PR03) a</td>
</tr>
<tr>
<td>3.0</td>
<td>≈ 1250</td>
<td>19.9</td>
<td>(2$^+$)</td>
<td>(1972PR03) a</td>
</tr>
<tr>
<td>4.9</td>
<td>1100</td>
<td>21.5</td>
<td>3(+)</td>
<td>(1959GI47, 1963BO06)</td>
</tr>
<tr>
<td>5.5</td>
<td>broad</td>
<td>22.1</td>
<td>c</td>
<td>(1972PR03)</td>
</tr>
</tbody>
</table>

a See also (1966LA04).

b γ_{n1}^2 and $\gamma_{p1}^2 \approx 1\%$ of the Wigner limit (1972PR03).

c The broad dip in the n_1 yield at the same energy as the broad bump in the p_1 yield may be due to interference of two 2^+ states (1972PR03).

The yield of ground state neutrons (n_0) rises steeply from threshold and shows pronounced resonances at $E_p = 2.25$ and 4.9 MeV (1963BO06). The yield of n_1 also rises steeply from threshold (1964BU08) and exhibits a broad maximum near $E_p = 3.2$ MeV (1961BE05, 1972PR03) and a broad dip at $E_p \approx 5.5$ MeV, also observed in the p_1 yield (1972PR03).

Multi-channel scattering length approximation analysis of the 2^- partial wave near the n_0 threshold indicates that the 2^- state at $E_x = 18.9$ MeV is virtual relative to the threshold and that its width $\Gamma = 50 \pm 20$ keV (1974AR10). The ratio of the cross section for $^7\text{Li}(p, \gamma)^8\text{Be}^*(18.9)$ to the thermal neutron capture cross section $^7\text{Be}(n, \gamma)^8\text{Be}^*(16.6 + 16.9)$ [obtained by (1969SW01)] provides a rough estimate of the isospin impurity of $^8\text{Be}^*(18.9)$: $\sigma_{p,\gamma}/\sigma_{n,\gamma} \approx 1.5 \times 10^{-5}$ and therefore the $T = 1$ isospin impurity is $< 4\%$ in intensity (1974AR10).

The structure at $E_p = 2.25$ MeV is ascribed to a 3^+, $T = (1)$, $l = 1$ resonance with $\Gamma_n \approx \Gamma_p$ and $\gamma_n^2/\gamma_p^2 = 3$ to 10: see (1966LA04). See also (1973RO35). At higher energies the broad peak in the n_0 yield at $E_p = 4.9$ MeV can be fitted by $J^\pi = 3(+)$ with $\Gamma = 1.1$ MeV, $\gamma_n^2 \approx \gamma_p^2$ (1963BO06). The behavior of the n_1 cross section can be fitted by assuming a 1^- state at $E_x = 19.5$ MeV and a $J = 0, 1, 2$, positive-parity state at 19.9 MeV [presumably the 20.2 MeV state reported in reaction 4]. In addition the broad dip at $E_p \approx 5.5$ MeV may be accounted for by the interference of two 2^+ states (1972PR03). See Table 8.8.

The ratio of the cross sections of the (p, n_1) reaction to $^7\text{Be}^*(0.43)$ to that for the (p, p_1) reaction to the analog state $^7\text{Li}^*(0.48)$ has been measured for $E_p = 2.4$ to 6.0 MeV (1972PR03), 3 to 10 MeV (1966HA11) and 23 to 52 MeV (1967LO07). At the lower energies it deviates markedly from unity and varies strongly with energy (1966HA11). At the higher energies the measurements seem to indicate that the spin-flip, isospin-flip part of the effective interaction is essentially independent of energy while the pure central part appears to decrease as the energy increases (1967LO07).
also (1969CL06).

18. (a) 7Li(p, p)7Li

$$E_b = 17.256$$

(b) 7Li(p, p')7Li*

Absolute differential cross sections for elastic scattering have been reported for $E_p = 0.4$ to 12 MeV (1953WA27, 1956MA12, 1965GL03), 14.5, 20.0 and 31.5 MeV (1956KI54) and more recently at 0.85 to 2.0 MeV (1966BA1Q), at 1.36 MeV (1969LE08) and at 6.868 MeV (1971BI11). The yield of inelastically scattered protons (p$_1$, to 7Li*(0.48)) and of 0.48 MeV γ-rays have been measured in the range $E_p = 0.8$ to 12 MeV (1953WA27, 1956MA12, 1965GL03), 14.5, 20.0 and 31.5 MeV (1956KI54) and more recently at 0.85 to 2.0 MeV (1966BA1Q, 1970RO22, 1971BI11; p$_0$).

Polarization measurements are reported at $E_p = 0.67$ to 2.45 MeV (1973BR13; p$_0$), 2.7 to 10.6 MeV (1969KI04; p$_0$, p$_1$), 14.5 MeV (1965RO22; p$_0$), 49.8 MeV (1971MA13, 1971MA44; p$_0$, p$_1$), 152 MeV (1966RO1C; p$_0$) and 155 MeV (1968GE04; p$_0$, p$_2$). For earlier measurements see (1966LA04). For a summary of angular distribution studies see 7Li.

Anomalies in the elastic scattering appear at $E_p = 0.44$, 1.03, 1.88, 2.1, 2.5, 4.2 and 5.6 MeV. Resonances at $E_p = 1.03$, 3 and 5.5 MeV and an anomaly at $E_p = 1.88$ MeV appear in the inelastic channel. A phase shift analysis and a review of the existing cross section data by (1973BR13) show that the 0.44 and 1.03 MeV resonances are due to 1^+ states which are a mixture of 5P_1 and 3P_1 with a mixing parameter of $+25^\circ$; that the 2^- state at the neutron threshold ($E_p = 1.88$ MeV) has a width of about 50 keV [see also reaction 17]; and that the $E_p = 2.05$ MeV resonance corresponds to a 3^+ state. The anomalous behavior of the 5P_3 phase around $E_p = 2.2$ MeV appears to result from the coupling of the two 3^+ states [resonances at $E_p = 2.05$ and 2.25 MeV]. The 3S_1 phase begins to turn positive after 2.2 MeV suggesting a 1^- state at $E_p = 2.5$ MeV (1973BR13): see Table 8.9 and (1972PR03).

An attempt has been made to find the $T = 2$ analog of the ground state of 8He: no resonances were observed in either the p$_0$ or the p$_1$ yield for $E_p = 11.1$ to 11.9 MeV (1968HA1H). Measurements of the intensity ratios of the reactions (p, p$_1$) and (p, n$_1$) have been made by (1966HA1J, 1967LO07, 1972PR03): see reaction 17.

See also (1967CA1G, 1972RU1C) and (1967JO01, 1967SA1C, 1969WA11; theor.).

19. 7Li(p, d)6Li

$$Q_m = -5.026$$

$$E_b = 17.256$$

See (1969KO1P; theor.) and 6Li.

20. 7Li(p, t)6Li

$$Q_m = -4.43$$

$$E_b = 17.256$$
Table 8.9: 8Be levels from 7Li(p, p)7Li and 7Li(p, p)7Li*

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Γ_{lab} (keV)</th>
<th>8Be*</th>
<th>J^π</th>
<th>$\Gamma_{p'}$ (keV)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.441</td>
<td>12.2 b</td>
<td>17.642</td>
<td>1+</td>
<td></td>
<td>(1953CH1A, 1953WA27, 1973BR13)</td>
</tr>
<tr>
<td>1.030 ± 0.005</td>
<td>168</td>
<td>18.157</td>
<td>1+</td>
<td>6</td>
<td>(1954MO04, 1955LI1B, 1973BR13)</td>
</tr>
<tr>
<td>2.05</td>
<td>≈ 400</td>
<td>19.05</td>
<td>3+</td>
<td>small</td>
<td>(1956MA12, 1957NE1A, 1973BR13)</td>
</tr>
<tr>
<td>2.25</td>
<td></td>
<td>19.22</td>
<td>3+</td>
<td>small</td>
<td>(1956MA12, 1957NE1A, 1973BR13)</td>
</tr>
<tr>
<td>2.5 c</td>
<td>≈ 750</td>
<td>19.4</td>
<td>1−</td>
<td>res.</td>
<td>(1972PR03, 1973BR13)</td>
</tr>
<tr>
<td>d</td>
<td>1800 ± 200</td>
<td>20.9 e</td>
<td>4−</td>
<td>(res.)</td>
<td>(1965GL03)</td>
</tr>
<tr>
<td>4.2 ± 0.2</td>
<td>broad</td>
<td>22.2</td>
<td>f</td>
<td>res.</td>
<td>(1965GL03, 1972PR03)</td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a (p, n) threshold: see reaction 17.
b $\theta^2_p = 0.064$.
c See also Table 8.8, $\gamma^2_{\alpha n}$, and γ^2_{p1} ≈ 1% of the Wigner limit (1972PR03).
d A 2+ state at $E_x \approx 20$ MeV appears to be necessary to account for the cross sections: see Table 8.3 and reaction 4 (1972PR03).
e Reduced width is 70% of the Wigner limit (1965GL03).
f May be due to two 2+ states (1972PR03). See also reaction 17.

See 5Li.

21. 7Li(p, α)4He

$Q_m = 17.348$
$E_b = 17.256$

The cross section follows the expression $E^{-1}e^{-B/\sqrt{E}}$, with $B = 91.5 \pm 4.5$ keV$^{1/2}$, in the range $E_p = 23$ to 50 keV. The cross section in that interval rises from 0.013 to 2.4 µb (1967FI05). In the range $E_p = 131$ to 561 keV, the cross section increases from 0.16 ± 0.02 to 3.7 ± 0.4 mb (1971SP05; and T.A. Tombrello, private communication). The cross section has also been measured for $E_p = 0.04$ to 0.13 MeV by (1969LE22). Taking into account 8Be $J^\pi = 2^+$ levels at 16.7, 16.9 and 20.6 MeV, (1972BA41) has made an R-matrix fit to the revised data of (1971SP05) and has obtained a quadratic energy dependence for the S-factor: $S = 0.065[1 + 1.82E - 2.51E^2]$ MeV · b, over the energy range $E_p = 0$ to 600 keV.

Excitation functions and angular distributions have been measured at many energies up to 18.6 MeV; see (1966LA04) for earlier references. Recently, differential cross-section measurements are reported by (1966MA03, 1969SW01: $E_p = 0.4$ to 2.45 MeV), (1969LE08: $E_p = 1.36$ MeV).
and (1967CR05; \(E_p = 41.3 \) and 45.2 MeV). Polarization measurements have been carried out for
\(E_p = 0.8 \) to 3 MeV (1968PE03), 2.7 to 10.6 MeV (1969KI04), 3.00 to 10.04 MeV (1968PL01), 5.5
to 6.7 MeV (1966BO09), and 7.4 to 10.4 MeV (1968AR04). See also (1966LA04) for a listing of
the earlier references and (1966DA1B, 1971PL1C). In the range \(E_p = 3 \) to 10 MeV the asymmetry
has one broad peak in the angular distribution at all energies except near 5 MeV; the peak value is
0.98 ± 0.04 at 6 MeV and is essentially 1.0 for \(E_p = 8.5 \) to 10 MeV (1968PL01, 1969KI04) [see
Fig. 12 in (1969KI04) and Fig. 6 (1968PL01) for contour maps of the asymmetry].

Broad resonances are reported to occur at \(E_p = 3.0 \) MeV, \(\Gamma \approx 1 \) MeV (1948HE1A) and at
\(E_p = 5.6 \) MeV, \(\Gamma \approx 1 \) MeV (1961HA27, 1962TE04, 1964MA51). Some structure is also reported
near \(E_p = 6.0 \) to 6.5 MeV, and at \(E_p = 9.0 \) MeV (1964MA51). The latter is also reflected in the
behavior of the \(A_2 \) coefficient (1968PL01). The experimental data on yields and on polarization
have been analyzed by (1970KU1H, 1971KU10): the data appear to require including two \(0^+ \) states
[at \(E_x \approx 19.7 \) and 21.8 MeV] with very small \(\alpha \)-particle widths, and four \(2^+ \) states [at \(E_x \approx 15.9,
20.1, 22.2 \) and 25 MeV]. See, however, reaction 4 and (1972BA83). A \(4^+ \) state near 20 MeV was
also introduced in the calculation but its contribution was negligible. The observed discrepancies
are said to be probably due to the assumption of pure \(T = 0 \) for these states (1971KU10).

At \(E_p = 9.1 \) MeV, \(\alpha \)-particle spectra are discussed in terms of the first excited state of \(^4\)He

22. (a) \(^7\)Li(d, n)\(^8\)Be \quad Q_m = 15.031
(b) \(^7\)Li(d, n)\(^4\)He\(^\alpha\) \quad Q_m = 15.1233

At \(E_d = 2 \) MeV, recoil proton spectra show only the ground state and \(^8\)Be*(2.9). No other
groups with \(E_x < 9 \) MeV appear with intensity > 10% of \(n_0 \). The spectrum yields \(E_x = 3.1 \pm 0.1,
\Gamma = 1.75 \pm 0.1 \) MeV (1964JO04) [(1971RO05) report \(E_x = 3.10 \pm 0.09, \Gamma = 1.74 \pm 0.08 \) MeV]. See
Table 8.4. At higher deuteron energies the population of \(^8\)Be*(16.6, 16.9, 17.6, 18.2, 18.9, 19.1,
19.2) is reported and \(l_p = 1 \) is obtained for the transitions to \(^8\)Be*(16.6, 17.6, 18.2): see (1960DI02,
1966DI1B, 1967KE1A, 1967KE1F). Angular distributions of the \(n_0 \) and \(n_1 \) groups to \(^8\)Be*(0, 2.9)
are reported by (1966JU1A: \(E_d = 0.7 \) and 0.8 MeV), (1969NU1C: \(E_d = 0.90 \) to 1.09 MeV),
(1966MI09: \(E_d = 1 \) MeV), and by (1970OSZY: \(E_d = 1.62 \) to 2.97 MeV). See also (1966LA04)

Reaction (b) appears to proceed primarily by sequential decay via \(^8\)Be*(2.9, 16.6, 16.9) and
1973MC13). However, (1969HO11) deduce the involvement of a state with \(E_x = 11.4 \pm 0.05 \) MeV,
\(\Gamma_{c.m.} = 2.8 \pm 0.2 \) MeV. See also (1973KA32). Attempts to observe \(n-\alpha \) rescattering ("proximity
scattering") proceeding via \(^8\)Be*(16.6, 16.9) have been unsuccessful: see (1968VA12, 1971SW10,
1972BR08). See also (1969TH02, 1971TH08) and the discussion in \(^5\)He.

23. (a) 7Li(3He, d)8Be $Q_m = 11.762$
(b) 7Li(3He, pn)8Be $Q_m = 9.538$

Deuteron groups are observed to 8Be*(0, 2.9, 16.6, 16.9, 17.6). The group to 8Be*(2.9) is well fitted by $E_x = 2.82$ MeV, $\Gamma = 1.27$ MeV (1971PI06). See also reaction 13 (1969NU01). The $J^\pi = 1^+$ mixed isospin state have $E_x = 16.627 \pm 0.005$ and 16.901 ± 0.005 MeV and $\Gamma = 113 \pm 3$ and 77 ± 3 keV (1967MA12): see also Table 8.5 and (1971PI06). Angular distributions have been measured at $E(3\text{He}) = 0.90$ and 1.10 MeV (1971ST35; d$_0$, d$_1$), 3 MeV (1972LI31; d$_0$, d$_1$), and at 10 MeV by (1970DI12, 1970DI1F; d$_0$, d$_1$) and by (1968CO07; d to 8Be*(16.6, 16.9)). Spin-dependent effects in the angular distributions of d$_0$ and d$_1$ obtained by (1963WE1B) at 24.3 MeV are discussed by (1967SI1A). The angular distribution to 8Be*(16.6) is forward peaked, that for 8Be*(16.9) is roughly isotropic (1968CO07). See also (1964MA57).

The decay of various 9Be states to 8Be*(0, 2.9) has been studied by (1966CH20, 1968CO08, 1972MC1E): see 9Be and Table 9.5. See also (1968LI1D, 1970LI1Q) and (1967CO1L; theor).

24. (a) 7Li(α, t)8Be $Q_m = -2.559$
(b) 7Li(α, tα)4He $Q_m = -2.4668$

The angular distributions of the t$_0$ group have been measured at many energies up to 48 MeV: see (1966LA04). Recently, measurements have been carried out at $E_{\alpha} = 23.2$ and 25.0 MeV (1973VA1A; t$_0$, t$_1$), 30 MeV (1972ME07; t$_0$, t$_1$; PWBA and DWBA analysis) and at 50 MeV (1970LA14; t$_0$). The ground state of 8Be does decay isotropically in the c.m. system and therefore $J^\pi = 0^+$ (1970LA14). Spin-dependent effects in the angular distributions for t$_0$ and t$_1$ obtained by (1963WE1B: $E_{\alpha} = 28$ MeV) are discussed by (1967SI1A). At $E_{\alpha} = 10$ MeV an anomaly (“ghost”) is observed in the 8Be excitation spectrum at $E_x \approx 0.5$ MeV. It may be due to interference of the 0$^+$ states 8Be*(0, 6.) [see reaction 4] or to thresholds of particle channels (1971BE52).

In reaction (b), sequential decay is observed at $E_{\alpha} = 50$ MeV, via 8Be*(0, 2.9, 11.4, 16.6, 16.9, 19.9) (1970LA14). See also (1968BE1Q, 1968MA25).

25. 7Li(7Li, 6He)8Be $Q_m = 7.278$

At $E(7\text{Li}) = 1.4, 1.7$ and 1.8 MeV, the angular distributions of 6He ions leaving 8Be in its ground and 2.9 MeV states are essentially isotropic (1968ST12). See also (1966LA04).
26. (a) $^7\text{Be}(n, p)^7\text{Li}$
 \[Q_m = 1.64422 \quad E_h = 18.900 \]
(b) $^7\text{Be}(n, \alpha)^4\text{He}$
 \[Q_m = 18.992 \]
(c) $^7\text{Be}(n, \gamma\alpha)^4\text{He}$
 \[Q_m = 18.992 \]

At thermal energies, the (n, p) cross section is $(4.8 \pm 0.9) \times 10^4$ b \((1955\text{HA34}, 1973\text{MU14})\), the (n, α) cross section is ≤ 0.1 mb \((1962\text{BA1B}, 1963\text{BA34})\) and the $(n, \gamma\alpha)$ cross section is 155 mb \((1963\text{BA34})\). These values, and comparison of the (p, n) cross section with that of reaction (a), support the $J^\pi = \frac{3}{2}^-$ assignment for $^7\text{Be}(0)$ \((1957\text{NE1A}, 1963\text{BA34})\). The role of these reactions in astrophysical phenomena is discussed by \((1968\text{FO1A}, 1969\text{BA1N})\). See also \((1959\text{AJ76})\) and reaction 17.

27. $^7\text{Be}(d, p)^8\text{Be}$
 \[Q_m = 16.676 \]

For $E_d = 0.8$ to 1.7 MeV, proton groups are observing corresponding to the ground state and $^8\text{Be}^*(2.9)$: derived parameters for the latter are shown in Table 8.4 \((1959\text{SP1A}, 1960\text{KA17})\). See also \((1969\text{BA43})\) and $^8\text{B}^*(\beta^+)$. Studies of the distribution of recoil momenta and neutrino recoil correlation indicate that the decay is overwhelmingly GT, axial vector [see reaction 1 in ^8Li] and that the ground state of ^8Li has $J^\pi = 2^+$: see \((1966\text{LA04})\).

Angular correlations have been measured for the decays of ^8Li and ^8B as a test of the conserved vector current theory of β-decay. The values of the coefficients are displayed in Table 8.10. See also \((1973\text{TR1J}, 1973\text{TR1K}, 1973\text{TR1L})\). The experimental value of δ \([\delta \equiv B(^8\text{Li}) - B(^8\text{B})]\) is $(5.4 \pm 0.4) W_\beta$, consistent with CVC theory \((1966\text{EI02})\).

A recent asymmetry measurement is reported by \((1971\text{VA19})\). See also \((1971\text{VA1E}, 1973\text{NE10})\). Measurements of the excitation spectra in the decays of ^8Li and ^8B show no evidence for second class currents: $|g_{TT}| < 7 \times 10^{-4}$ \((1971\text{WI05})\). See also \((1966\text{JA1C})\) and \((1960\text{KU05}, 1960\text{WE1A}, 1966\text{BA26}, 1966\text{LI1C}, 1968\text{KR10}, 1969\text{BA43}, 1970\text{DA21}, 1971\text{LI1H}, 1971\text{WI18}, 1971\text{WI1C}, 1972\text{EM02}, 1972\text{HO23}, 1972\text{MI1M}, 1972\text{WI28}, 1972\text{WI1C}, 1973\text{EM1B}, 1973\text{HA49}, 1973\text{TO14}, 1973\text{WI11}, 1974\text{WI1L}; \text{theor.})\).
Table 8.10: α-β angular correlation coefficients in $^8\text{Li}, ^8\text{B}$

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>A/W_β</th>
<th>B/W_β</th>
<th>W_β (MeV)</th>
<th>δ/W_β</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>^8Li</td>
<td>$(-8.7 \pm 0.7) \times 10^{-3}$</td>
<td>$(5.7^{+2.9}_{-1.9}) \times 10^{-3}$</td>
<td>7.0</td>
<td></td>
<td>(1960KR03)</td>
</tr>
<tr>
<td>^8Li</td>
<td>$(-8.3 \pm 1.1) \times 10^{-3}$</td>
<td>$(+3.2 \pm 0.6) \times 10^{-3}$</td>
<td>11</td>
<td>$(7.0 \pm 1.2) \times 10^{-3}$</td>
<td>(1962NO02)</td>
</tr>
<tr>
<td>^8Li</td>
<td>$(-9.7 \pm 0.7) \times 10^{-3}$</td>
<td>$(+3.7 \pm 1.0) \times 10^{-3}$</td>
<td>7.5</td>
<td></td>
<td>(1963GR11)</td>
</tr>
<tr>
<td>^8B</td>
<td>$(-8.7 \pm 0.9) \times 10^{-3}$</td>
<td>$(+3.1 \pm 0.3) \times 10^{-3}$</td>
<td>6.6</td>
<td>$(5.4 \pm 0.4) \times 10^{-3}$</td>
<td>(1966EI02)</td>
</tr>
<tr>
<td>^8B</td>
<td>$(-11.1 \pm 1.3) \times 10^{-3}$</td>
<td>$(-2.3 \pm 0.3) \times 10^{-3}$</td>
<td>7.0</td>
<td></td>
<td>(1966EI02)</td>
</tr>
</tbody>
</table>

$^a W(\theta) = 1 + A \cos \theta + B \cos^2 \theta.$

$^b \delta \equiv B(^8\text{Li}) - B(^8\text{B}).$

29. $^8\text{B}(\beta^+)^9\text{Be}$

$Q_m = 17.981$

The decay proceeds mainly to $^8\text{Be}^*(2.9)$ [see Table 8.4 for its parameters]. Detailed study of the high energy portion of the α-spectrum reveals a maximum near $E_\alpha = 8.3$ MeV, corresponding to transitions to $^8\text{Be}^*(16.63)$, for which parameters $E_x = 16.67$ MeV, $\Gamma = 150$ to 190 keV or $E_x = 16.62$ MeV, $\Gamma = 95$ keV are derived. Using $\tau_{1/2} = 769 \pm 4$ msec, $\log ft = 2.9$. The low ft value supports the identification $J^\pi = 2^+$; $T = 1$ for $^8\text{Be}^*(16.63)$ (1964MA35). See, however, (1965MA1G). The energy distribution of α-particles has also been measured by (1969CL10). Analysis of this data and of data from α-α scattering in a three level R-matrix formalism indicate a 2^+ state of ^8Be at $E_x = 12.0^{+3.0}_{-7.0}$ MeV and of $\Gamma = 14^{+3}_{-4}$ MeV ($a_2 = 6.0 \pm 0.5$ fm) (1969CL10). See also (1969BA43; theor.).

For angular correlation measurements see reaction 28 (1966EI02) and Table 8.10. See also (1973TR1J, 1973TR1K, 1973TR1L).

30. (a) $^9\text{Be}(\gamma, n)^8\text{Be}$

$Q_m = -1.6651$

(b) $^9\text{Be}(n, 2n)^8\text{Be}$

$Q_m = -1.6651$

(c) $^9\text{Be}(p, pn)^8\text{Be}$

$Q_m = -1.6651$

(d) $^9\text{Be}(t, tn)^8\text{Be}$

$Q_m = -1.6651$

(e) $^9\text{Be}(\alpha, \alpha n)^8\text{Be}$

$Q_m = -1.6651$

For reaction (a) see (1966DE07, 1968AD09, 1969GA1M) and (1965BO1B, 1969AU05; theor.). See also ^9Be.

Reaction (b) appears to proceed largely via excited states of ^9Be, with subsequent decay to ^8Be, mainly $^8\text{Be}^*(2.9)$: see (1966LA04), ^9Be and ^{10}Be. At $E_n = 14$ MeV the cross section at

For reaction (c) see (1966NO1A; theor.) and ⁹Be. For reaction (d) see (1967SE11). For reaction (e) see (1971GU15, 1973GE1J) and ⁹Be.

31. (a) ⁸Be(p, d)⁶Be \(Q_m = 0.5595 \)
(b) ⁸Be(p, d)⁴He⁴He \(Q_m = 0.651 \)

\(Q_0 = 559.0 \pm 1.1 \text{ keV (1966RE02, 1967ST30); } \)
\(Q_0 = 559.6 \pm 0.6 \text{ keV (1967OD01); see also (1967SP09).} \)

Angular distributions of deuteron groups have been reported at \(E_p = 0.11 \) to 0.55 MeV (1973SI27; \(d_0 \)), 0.30 to 0.90 MeV (1968BE1N; \(d_0 \)), 5 to 11 MeV (1972HU03; \(d_0 \)) [analysis by DWBA and BHMM (1967BU23); derived spectroscopic factors], 13.0, 14.0, 15.0 and 21.35 MeV (1972VO1H; \(d_0 \)), 17.0, 21.0, 25.0, 29.1 MeV (1973MO01; \(d_0 \), \(d_1 \)), 33.6 MeV (1967KU10; 1970KU1D: deuterons to ⁸Be*(0, 2.9, 16.95, 17.62, 18.18, 19.21); also derived spectroscopic factors) [also saw ⁸Be*(11.4)]; determined \(\Gamma_{e.m.}(16.95) = 103 \pm 15 \text{ keV, } \Gamma_{e.m.}(19.21) = 208 \pm 30 \text{ keV}, \) 40.8 MeV (1966MA22: deuterons to ³Be*(16.63, 16.91)), 46 MeV (1967VE01: deuterons to ³Be*(0, 2.9, 16.9, 17.6, 18.2, 19.1) [also report ³Be*(24.5)], 100 MeV (1968LE01: deuterons to ³Be*(0, 2.9, 16.9, 18.9)) [also saw ³Be*(11.0, 23.0, 26.0)], 155 MeV (1969BA05, 1969TO1A: deuterons to ³Be*(0, 2.9) [\(\Gamma = 2 \pm 0.1 \text{ MeV}, \) 11.5 [\(\Gamma = 8 \pm 1 \text{ MeV}, \) 16.8 \(\pm 0.2, \) 18.9 \(\pm 0.3 \) [also saw ³Be*(17.6 \(\pm 0.4, 21.5 \pm 0.3 \)]] and 185 MeV (1969SU02: deuterons to ³Be*(0, 2.94 \(\pm 0.08, \) 11.3 \(\pm 0.3, \) 16.87 \(\pm 0.06, \) 17.58 \(\pm 0.08, \) 18.10 \(\pm 0.10, \) 19.16 \(\pm 0.07, \) 22.0 \(\pm 0.15, \) 22.9 \(\pm 0.15 \)]] [also report ³Be*(20.0 \(\pm 0.2 \) (?)); \(\Gamma_{e.m.}(2.9) = 1.5 \pm 0.1 \text{ MeV; } \Gamma_{e.m.}(22.0, 22.9) \geq 1 \text{ MeV (the angular distributions for these two states are not clear cut)].} \) (1971SC26) have analyzed the angular distributions obtained by (1967VE01, 1968LE01) using DWBA with a local-energy approximation and have derived spectroscopic factors. With the exception of ³Be*(11.4, 22.0, 22.9) the angular distributions are consistent with \(l = 1 \). The yield of the deuterons corresponding to ³Be*(16.63) is very low: [\(\approx 5\% \) compared to ³Be*(16.91)] as expected by predictions of the cluster model (1966MA22: \(E_p = 40.8 \) MeV). See also (1967KU10) and reaction 21 in ⁹Be in (1966LA04).

Anomalies in the deuteron spectrum between the \(d_0 \) and the \(d_1 \) groups have been reported at various energies [see (1966LA04) and (1967FI1D, 1967HA1K, 1971BE52, 1971MI1C)]. The shape of the deuteron spectrum near ³Be*(2.9) requires \(a_2 \approx 7.1 \text{ fm (1969BA43).} \) See also reaction 4 and (1968BA2D). At \(E_p = 17 \text{ MeV, for the transitions to ³Be*(0, 2.9) the ratios of } \sigma(p,d)/\sigma(p,d) = 11.8 \text{ and } 14.1, \text{ respectively (1967CO09, 1969CO06).} \) See also (1968NA1A; theor.).

Reaction (b) at \(E_p = 9 \text{ MeV is dominated by strong final state interactions through ³Be*(0, 2.9) and ⁴Li*(2.19) with little or no yield from a direct three-body decay (1971EM01).} \) See also (1967FI1D). See also ¹⁰B and (1966CA1E, 1966LA20, 1967OG1A, 1967RO07, 1968TI1A, 1972QU01) and (1967BA1M, 1967JO1D, 1968BO1P, 1970BO1K; theor.).
32. (a) 9Be(d, t)8Be \[Q_m = 4.5925 \]
(b) 9Be(d, t)4He4He \[Q_m = 4.684 \]
\[Q_0 = 4591.7 \pm 3.1 \text{ keV} \] (1967OD01; see also (1967SP09)).

At $E_d = 11.8$ MeV, angular distributions have been obtained for the tritons to 8Be$^*(0, 2.9)$ (1967FI07): $S = 0.51$ and 0.75, respectively (DWBA analysis). At $E_d = 38$ MeV, angular distributions of the tritons to 8Be$^*(16.91, 17.64, 19.0)$ have been compared with those of the 3He to the analog states in 8Li. The cross-section ratios $\sigma_{17.64}/\sigma_{0.98}^{(8\text{Li})} = 0.45 \pm 0.04$ and $\sigma_{16.91}/\sigma_{0}^{(8\text{Li})} = 0.75 \pm 0.04$, consistent with the pure $T = 1$ nature of 8Be$^*(17.64)$ and the mixed T nature of 8Be$^*(16.91)$ [and 8Be$^*(16.63)$] (1966GA21; abstract). Angular distributions have also been measured at $E_d = 0.3$ to 1.0 MeV (1968BE1E; t_0), 0.9 to 3.1 MeV (1973SA1Q; t_0), 15.0 MeV (1969AR11B; t_0) and at many other energies up to $E_d = 20$ MeV; see (1966LA04). The ghost anomaly which is seen near the t_0 group has been studied at $E_d = 2.5$ MeV: it is interpreted as being due to an extreme threshold effect (1971BE52). See also (1967DE1J) and (1970BO1K, 1973HE1J; theor.). A kinematically complete study of reaction (b) at $E_d = 26.3$ MeV indicates the involvement of 8Be$^*(0, 2.9, 11.4, 16.9, 19.9 + 20.1)$. Parameters obtained for 8Be$^*(2.9, 11.4)$ are $E_x = 3.20 \pm 0.03$ and 11.70 ± 0.07 MeV, $\Gamma = 1.72 \pm 0.09$ and 4.41 ± 0.5 MeV (1973SO08).

33. (a) 9Be(3He, α)8Be \[Q_m = 18.9134 \]
(b) 9Be(3He, α)4He4He \[Q_m = 19.005 \]
(c) 9Be(3He, αp)7Li \[Q_m = 1.657 \]

Angular distributions have been measured at $E(^3\text{He}) = 3.0$ MeV (1968MO05; $\alpha_{16.91}$), 3.0 and 4.0 MeV (1963DO08; α_0, $\alpha_{2.9}$, $\alpha_{16.6}$, $\alpha_{16.9}$, $\alpha_{17.6}$), 18.0, 22.7, 26.7, 32.3 MeV (1965AR07; α_0, α_1) and 26.7 MeV (1968AR12; $\alpha_{16.9}$, $\alpha_{17.6}$, $\alpha_{18.1}$, $\alpha_{19.2}$). See also (1959AJ76) and (1967SI1A). The parameters of the observed states are shown in Tables 8.4 and 8.5 (1961ER01, 1963DO08).

Reaction (b) has been studied at $E(^3\text{He}) = 1.6$ MeV (1970EH11A), 3.0 MeV (1966SU04, 1968MO05) and 3.0 and 4.0 MeV (1972TA04). See also (1966LA04) and (1967ST1E). The reaction proceeds by sequential decay via 8Be$^*(0, 2.9, 11.4, 16.6, 16.9, 19.9, 22.5)$ (1972TA04). The angular correlation via 8Be$^*(16.91)$ is consistent with $J^\pi = 2^+$ for that state (1968MO05). $J^\pi = 2^+$ is also indicated for 8Be$^*(16.63)$ (1966SU04). See also (1968TH1G). For reaction (c) see (1967ST1D). See also (1964MA57, 1966CA08, 1966DI1C, 1967OG1A, 1970CA28, 1971TR1B, 1972RO1N), (1967HO1C) and (1970BO1K, 1971OS05, 1972TH04, 1973RO28; theor.).

34. (a) 9Be(6Li, 7Li)8Be \[Q_m = 5.586 \]
(b) 9Be(7Li, 8Li)8Be \[Q_m = 0.368 \]
(c) 9Be(12C, 13C)8Be \[Q_m = 3.281 \]
(d) 9Be(16O, 17O)8Be \[Q_m = 2.477 \]
(e) $^9\text{Be}(^{18}\text{O}, \, ^{19}\text{O})^8\text{Be}$ \quad $Q_m = 2.292$

(f) $^9\text{Be}(^{19}\text{F}, \, ^{20}\text{F})^8\text{Be}$ \quad $Q_m = 4.936$

At $E(^6\text{Li}) = 3.5$ MeV the population of $^8\text{Be}^*(2.9)$ is very small but $^8\text{Be}_{\text{g.s.}}$ is involved (1968JA08). See also (1966LA04). For reaction (b) see (1966LE10) and (1968TO1C; theor.). For reaction (c) see (1970BA1J, 1970BA1Y). For reaction (d) see (1968KN1A, 1970BA1J, 1970BA1Y). Reaction (e) has been studied at $E(^{18}\text{O}) = 16$ and 20 MeV (1971KN05). See also (1968FA04). For reaction (f) see (1968FA04).

35. $^{10}\text{B}(\gamma, \, d)^8\text{Be}$ \quad $Q_m = -6.0258$

See ^{10}B and (1959AJ76).

36. (a) $^{10}\text{B}(n, \, t)^8\text{Be}$ \quad $Q_m = 0.2318$

(b) $^{10}\text{B}(n, \, t)^4\text{He}^4\text{He}$ \quad $Q_m = 0.3237$

Angular distributions have been measured at $E_n = 14.4$ MeV (1964VA14; $t_0, \, t_1$). Reaction (b) has been studied at the same energy by (1967VA12). See also (1971MI1H) and (1967BA1E; theor.). See also ^{11}B in (1975AJ02).

37. (a) $^{10}\text{B}(p, \, ^3\text{He})^8\text{Be}$ \quad $Q_m = -0.5320$

(b) $^{10}\text{B}(p, \, \text{pd})^8\text{Be}$ \quad $Q_m = -6.0258$

At $E_p = 49.5$ MeV angular distribution measurements have been carried out for the ^3He groups to $^8\text{Be}^*(0, \, 2.9, \, 16.6, \, 16.9)$: the ratio $d\sigma(16.63)/d\sigma(16.91)$ has a mean value of 0.65 ± 0.05 for $\theta = 15^\circ$ to 30°, suggesting possibly a preferential excitation of the $T = 1$ components of these two states. The ratio of the differential cross sections $d\sigma(p, \, t)$ [to $^8\text{B}_{\text{g.s.}}$] to $d\sigma(p, \, ^3\text{He})$ [to $^8\text{Be}^*(16.63, \, 16.91)$] ($15^\circ$ to 30°) seems to also suggest this (1971SQ01).

38. (a) $^{10}\text{B}(d, \, \alpha)^8\text{Be}$ \quad $Q_m = 17.822$

(b) $^{10}\text{B}(d, \, \alpha)^4\text{He}^4\text{He}$ \quad $Q_m = 17.9138$

$Q_0 = 17.8186 \pm 0.0041$ (1967OD01).

32
Angular distributions have been reported at $E_d = 0.5$ to 1.0 MeV (1968FR07; α_0, α_1), 0.8 to 2.5 MeV (1968CO31; α_0, α_1), 3.0 to 7.2 MeV (1967LE1C; α_0) and 7.5 MeV (1966BR08; α to $^8\text{Be}^*(16.63, 16.91, 17.64, 18.15)$). At $E_d = 7.5$ MeV the total cross section for formation of $^8\text{Be}^*(16.63)$, $\sigma_t(16.63)$, is about 1.15 $\sigma_t(16.91)$, consistent with the mixed isospin character of these two states. $\sigma_t(18.15)$ is $\approx 0.85 \sigma_t(16.91)$, but the other nearby 1^+ state $^8\text{Be}^*(17.64)$ has $\sigma_t(17.64) \approx 0.07 \sigma_t(16.91)$, consistent with the nearly pure $T = 1$ nature of $^8\text{Be}^*(17.64)$ (1966BR08). These four states [$^8\text{Be}^*(16.63, 16.91, 17.64, 18.15)$] have been studied for $E_d = 4.0$ to 12.0 MeV. Interference between the 2^+ states [$^8\text{Be}^*(16.63, 16.91)$] varies as a function of energy. The cross section ratios for formation of $^8\text{Be}^*(17.64, 18.15)$ vary in a way consistent with a change in the population of the $T = 1$ part of the wave function over the energy range: at the higher energies, there is very little isospin violation. At higher E_x only the 3^+ state at $E_x = 19.2$ MeV is observed, the neighboring 3^+ state at $E_x = 19.06$ MeV is not seen. The $J^\pi = 1^+$; $T = 0$ state is found to have $E_x = 18.146 \pm 0.005$ MeV (based on 17.638 for the $J^\pi = 1^+$; $T = 1$ state) and $\Gamma = 138 \pm 6$ keV (1970CA12). There is some question as to whether a two-level fit can be made for the α groups to $^8\text{Be}^*(16.63, 16.91)$. ((1970CA12 and W.D. Callender, private communication) are dubious about this, feeling that other 2^+ states have to be brought into the calculation. Based on a two-level fit they find the following average values: $\Gamma_{16.6} = 113$ keV, $\Gamma_{16.9} = 80$ keV, $\Delta Q = 302$ keV. However, (1971IN004) state that the two-level fit is appropriate if the spectra are properly corrected for effects of final state Coulomb interactions: $\Gamma_{16.6} = 90 \pm 5$ keV, $\Gamma_{16.9} = 70 \pm 5$ keV, $\Delta Q = 290 \pm 7$ keV. See also (1966BR22) and (1970KI1D; theor.). For a listing of the parameters of observed states see Tables 8.4 and 8.5 (1961ER01, 1969NU01, 1970CA12).

Angular correlation studies [$E_d \leq 3$ MeV] indicate that reaction (b) takes place mainly by a sequential process involving $^8\text{Be}^*(0, 2.9, 11.4, 16.6, 16.9)$: see (1968LO01, 1970ST02, 1971LA14) and (1967CA13, 1968AS01). (1968LO01) report $E_x = 2.7 \pm 0.2$ MeV, $\Gamma = 1.0 \pm 0.1$ MeV, and $\Gamma = 3.0 \pm 0.5$ MeV for $^8\text{Be}^*(11.4)$. See also (1967CA13, 1970ST02). For a study of rescattering effects see (1972VA1L).

39. $^{10}\text{B}(^3\text{He}, p\alpha)^8\text{Be}$

At $E(^3\text{He}) = 2.45$ and 6.00 MeV this reaction proceeds primarily by sequential decay via $^8\text{Be}^*(0, 2.9)$ and via ^5Li, ^9B and ^{12}C states [see also the latter nuclei] (1966WA16). See also (1966WI08, 1968KR02, 1970BE1F), (1966LA04, 1967HO1C) and (1967PR1B; theor.).

40. $^{10}\text{B}(\alpha, ^6\text{Li})^8\text{Be}$

At $E_\alpha = 46$ MeV angular distributions obtained for the transitions to $^8\text{Be}^*(0, 2.9)$ are consistent with a direct interaction mechanism (1970ZE03).

33
41. (a) $^{11}\text{B}(\gamma, t)^{8}\text{Be}$
\[Q_{m} = -11.2242 \]
(b) $^{11}\text{B}(\gamma, t)^{4}\text{He}^{4}\text{He}$
\[Q_{m} = -11.1323 \]

See ^{11}B in (1975AJ02).

42. (a) $^{11}\text{B}(p, \alpha)^{8}\text{Be}$
\[Q_{m} = 8.591 \]
(b) $^{11}\text{B}(p, \alpha)^{4}\text{He}^{4}\text{He}$
\[Q_{m} = 8.6824 \]
\[Q_{0} = 8.575 \pm 0.011 \] (1967SP09).

Angular distributions have been measured at $E_{p} = 0.78$ to 12.00 MeV (1963SY01, 1968WA1G; α_{0}), 1.4, 2.0 and 2.6 MeV (1972GE19; α_{0}, α_{1} (not at 2.0)), 12, 20, 24 and 30 MeV (1971CA16; α_{0}), 26.7 and 38 MeV (1969GA03, 1970GU06; α_{0}), 40 MeV (1971KA21; α_{0}, α_{1} and α to $^{8}\text{Be}^{*}(12.5)$ [\(\Gamma = 4.0 \pm 0.5\) MeV] and to $^{8}\text{Be}^{*}(16.6 + 16.9, 17.6, 18.1, 19.0)$) and at $E_{p} = 45$ MeV (1971DE2B, 1972DE01, 1972DE02; α_{0}, α_{1}). At $E_{p} = 45$ MeV the angular distributions are typical of a direct reaction mechanism, with a rise in the backward direction indicative of heavy particle stripping (1972DE01, 1972DE02). Observed parameters for $^{8}\text{Be}^{*}(2.9)$ are shown in Table 8.4 (1969NU01, 1971KA21). At $E_{p} = 40$ MeV, $\theta = 20^\circ$, $d\sigma_{16.6}/d\sigma_{16.9} = 2.3 \pm 0.4$ (1971KA21).

Reaction (b) has been studied for $E_{p} = 0.15$ to 9.5 MeV. The reaction proceeds predominantly by sequential two-body decay via $^{8}\text{Be}^{*}(0, 2.9)$: see, e.g., (1965BR18, 1968CH01, 1972HU04). See also (1967KA09, 1967MA11, 1968GI03, 1969QU01, 1970CO03, 1971KO22, 1972MI1J). Some papers report very narrow widths in this reaction for $^{8}\text{Be}^{*}(2.9)$. However, (1972HU04) find a good fit to the data with $E_{x} = 2.99$ MeV, $\Gamma = 1.45$ MeV when an interference term is included. The interference effect is attributable to the identity of the three α-particles and to the ambiguity in their order of emission (1965BR18).

43. $^{11}\text{B}(d, n\alpha)^{8}\text{Be}$
\[Q_{m} = 6.3658 \]

See (1971RE19) and ^{9}Be.

44. $^{11}\text{B}(^{3}\text{He}, ^{6}\text{Li})^{8}\text{Be}$
\[Q_{m} = 4.570 \]

This reaction has been studied for $E(^{3}\text{He}) = 1.4$ to 5.8 MeV. Angular distributions have been measured at $E(^{3}\text{He}) = 5.2$ MeV involving $^{8}\text{Be}_{g.s.} + ^{6}\text{Li}_{g.s.}$, $^{8}\text{Be}_{g.s.} + ^{6}\text{Li}_{3.56}^{*}$, and $^{8}\text{Be}_{2.9}^{*} + ^{6}\text{Li}_{g.s.}$ (1967YO02, 1967YO1C, 1968ME13).
45. (a) \(^{11}\text{B}(\alpha, ^7\text{Li})^8\text{Be} \) \(Q_m = -8.758 \)
(b) \(^{11}\text{B}(\alpha, ^7\text{Li})^4\text{He}^4\text{He} \) \(Q_m = -8.666 \)

Angular distributions have been reported at \(E_\alpha = 28.4 \) and \(29.0 \) MeV for \(^8\text{Be}_{g.s.} + ^7\text{Li}_{g.s.} \), \(^8\text{Be}_{g.s.} + ^7\text{Li}_{*_{0.48}} \) and \(^8\text{Be}_{*_{2.9}} + ^7\text{Li} \) (29 MeV only) by (1968KA24) and at 42 MeV for \(^8\text{Be}_{g.s.} + ^7\text{Li}_{g.s.} \) and \(^8\text{Be}_{g.s.} + ^7\text{Li}_{*_{0.48}} \) by (1968MI05). At \(E_\alpha = 65 \) MeV \(^8\text{Be}^*_{(16.6 + 16.9, 20.0)} \) are apparently also excited (1973WO06). See also (1966GE12) and \(^7\text{Li} \). For reaction (b) see (1969FU09).

46. (a) \(^{12}\text{C}(\gamma, \alpha)^8\text{Be} \) \(Q_m = -7.367 \)
(b) \(^{12}\text{C}(e, e\alpha)^8\text{Be} \) \(Q_m = -7.367 \)

For reaction (a) see (1966LA04), (1973CL1E) and (1965DZ1A; theor.). For reaction (b) see (1970EN1A).

47. \(^{12}\text{C}(n, n\alpha)^8\text{Be} \) \(Q_m = -7.367 \)

This reaction proceeds via \(^8\text{Be}^*_{(0, 2.9)} \) at \(E_n = 13 \) to \(18 \) MeV, and via states in \(^5\text{He}, ^9\text{Be} \) and \(^{12}\text{C} \) (1966MO05). See also (1966LA04) and (1971DO1K).

48. \(^{12}\text{C}(p, p\alpha)^8\text{Be} \) \(Q_m = -7.367 \)

This reaction has been studied for \(13 \leq E_p \leq 160 \) MeV. At low energies it involves \(^8\text{Be}(0) \); at higher energies \(^8\text{Be}^*_{(0, 2.9)} \) (1966RO1D, 1967GA01, 1969LU1B, 1970GO12, 1970KE1B, 1972MA62). It is not clear whether higher states are also involved: see (1970KE1B). See also (1966LA04) and (1966JA1B, 1968YA1C, 1972YA1B).

49. \(^{12}\text{C}(d, ^6\text{Li})^8\text{Be} \) \(Q_m = -5.893 \)

Angular distributions have been determined at \(E_d = 19.5 \) MeV (1971GU07), 28 MeV (1972BE1T, 1972BE29: \(^8\text{Be}(0) \)) and 51.8 MeV (1970EI05; both \(^8\text{Be}^*_{(0, 2.9)} \)). At \(E_d = 28 \) MeV a structure is observed which is attributed to the process \(^{12}\text{C}(d, \alpha)^{10}\text{B} \rightarrow \alpha + ^6\text{Li} \) (1972CO23). At \(E_d = 55 \) MeV the population of \(^8\text{Be}^*_{(11.4, 16.6 + 16.9)} \) is also reported (1971MC04). See also (1966DA1C, 1970AN1E), (1967OG1A, 1972GA1E) and (1968RO1D, 1970EL1F, 1971DR02, 1973HE1J; theor.). See also \(^{12}\text{C} \) and (1966LA04).
50. 12C(3He, 7Be)8Be \[Q_m = -5.780 \]

Angular distributions have been measured for the transitions to 7Be$_{g.s.} + ^8$Be$_{g.s.}$ and 7Be$^*_0.43 + ^8$Be$_{g.s.}$ at $E(^3$He) = 25.5 to 29 MeV (1972PI$1A$, 1973PI$1B$, 1973PI$1D$), 28 MeV (1970DE12, 1973KL$1B$) and at 35.7 MeV (1969ZE$1A$, 1970FO$1D$). The transitions to 7Be$_{g.s.} + 0.43 + ^8$Be$^*_2.9$ have also been studied by (1970DE12). See also (1967ZA$1B$, 1973ST$1N$) and (1969NE$1D$; theor.).

51. (a) 12C(α, 2α)8Be \[Q_m = -7.367 \]
(b) 12C(α, 8Be)8Be \[Q_m = -7.4587 \]

This reaction has been studied up to $E_\alpha = 104$ MeV. At $E_\alpha = 25$ MeV it involves 8Be(0) (1966BO28); at $E_\alpha = 28.0, 37.4, 70, 90$ and 104 MeV, the reaction goes via 8Be$^*(0, 2.9)$ (1965YA02, 1967TA$1C$, 1968YA02, 1971BR$1G$, 1972SH$1J$) and at 90 MeV it may, in addition, involve the broad 4$^+$ state at 11.4 MeV (1970JA06). See also (1966LA04) and (1965KU$1B$, 1967ME$1C$; theor.).

Reaction (b) has been studied for $11.9 \leq E_\alpha \leq 19.4$ MeV and angular distributions are reported for $E_\alpha = 12.70$ to 16.25 MeV (1967CH21) and 65 MeV (1973WO06: 8Be$^*(0, 2.9)$). See 16O in (1971AJ02).

52. 12C(12C, 16O)8Be \[Q_m = -0.2051 \]

Angular distributions have been measured for $E(^{12}$C) = 11.6 to 13.4 MeV (1972CO$1H$). At $E(^{12}$C) = 50 to 65 MeV the population of 8Be$^*(0, 2.9)$ is reported by (1972FL$1C$). See also (1968JA$1F$, 1970JA$1B$, 1972GR$1T$, 1973CR$1A$, 1973SC$1J$).

53. 12C(14N, 18F)8Be \[Q_m = -2.951 \]

See (1965WI$1A$).

54. 12C(16O, 20Ne)8Be \[Q_m = -2.637 \]

See (1972GR$1Q$).

55. 13C(p, 6Li)8Be \[Q_m = -8.615 \]
Angular distributions have been measured at $E_p = 45$ MeV for the transitions to $^8\text{Be}^*(0, 2.9)$ (1971BR07).

56. $^{13}\text{C}(d, ^7\text{Li})^8\text{Be}$ \hspace{1cm} $Q_m = -3.589$

Angular distributions are reported at $E_d = 14.6$ MeV for the transitions to $^8\text{Be}_{g.s.} + ^7\text{Li}_{g.s.}$ and $^8\text{Be}_{g.s.} + ^7\text{Li}^*_{0.48}$ (1967DE03).

57. $^{13}\text{C}(^3\text{He}, ^8\text{Be})^8\text{Be}$ \hspace{1cm} $Q_m = 8.173$

Angular distributions have been obtained at $E(\text{He}) = 3.3, 5.0$ and 5.8 MeV for the transition to $^8\text{Be}_{g.s.} + ^8\text{Be}_{g.s.}$ (1968JA07, 1969JA1L). See also ^{16}O in (1971AJ02) and (1967SA1E).

58. (a) $^{14}\text{N}(n, ^7\text{Li})^4\text{He}^4\text{He}$ \hspace{1cm} $Q_m = -8.823$
(b) $^{14}\text{N}(n, t)^4\text{He}^4\text{He}^4\text{He}$ \hspace{1cm} $Q_m = -11.290$

See (1967MO21, 1971SC16) and ^7Li.

59. $^{14}\text{N}(^{10}\text{B}, 6\alpha)$ \hspace{1cm} $Q_m = 0.366$

60. $^{16}\text{O}(\gamma, 2\alpha)^8\text{Be}$ \hspace{1cm} $Q_m = -14.528$

See (1966LA04) and ^{12}C in (1968AJ02).

61. $^{16}\text{O}(p, p)^4\text{He}^4\text{He}^4\text{He}^4\text{He}$ \hspace{1cm} $Q_m = -14.436$

See (1961KO02, 1962VA1A) and ^{16}O in (1971AJ02).

62. $^{16}\text{O}(\alpha, ^{12}\text{C})^8\text{Be}$ \hspace{1cm} $Q_m = -7.2535$
Angular distributions have been measured at $E_\alpha = 65$ MeV involving $^8\text{Be}_{g.s.}$ and $^{12}\text{C}^*(0, 4.4)$ (1973WO06). See also (1968PA12) and ^{16}O in (1971AJ02) and ^{20}Ne in (1972AJ02).

63. $^{16}\text{O}(^{10}\text{B}, 6\alpha)$ $Q_m = 7.234$

See (1965SH11).

64. $^{19}\text{F}(p, ^{12}\text{C})^8\text{Be}$ $Q_m = 0.861$

See (1969GO1B, 1971GO1U) and ^{20}Ne in (1972AJ02).

65. $^{20}\text{Ne}(\alpha, ^{16}\text{O})^8\text{Be}$ $Q_m = -4.822$

This reaction has not been observed: see (1962LA15).
8B
(Figs. 13 and 14)

GENERAL: (See also (1966LA04).)

Special levels: (1966BA26).

\[\mu = 1.0355 \pm 0.003 \text{ nm} \ (1973MIYZ). \]

1. \(^{8}\text{B}(\beta^{+})^{8}\text{Be} \quad Q_{m} = 17.981\]

The \(\beta^{+}\) decay leads mainly to \(^{8}\text{Be}^{*}(2.9)\). The half-life is \(774 \pm 5 \text{ msec} \ (1964MA35)\), \(762 \pm 5 \text{ msec} \ (1971WI05)\), \(772 \pm 4 \text{ msec} \ (1973MCZW)\): the mean is \(770 \pm 3 \text{ msec} \). See also Table 8.19 in (1966LA04): \(\log ft = 5.64 \ (1966BA1A)\) \(^{\dagger}\). There is also a branch to a \(^{8}\text{Be}\) state at \(\approx 16.6 \text{ MeV; } \log ft = 2.9 \ (1964MA35)\). See, however, (1969BA43): \(\log ft = 3.33\). Measurements of the excitation spectra in the decays of \(^{8}\text{Li}\) and \(^{8}\text{B}\) show no evidence for second-class currents: \(|g_{IT}| < 7 \times 10^{-4} \ (1971WI05)\). See also (1964FO1A, 1969BA1X, 1969BA1M, 1972BA2M, 1972KO1A, 1973BA2C) for astrophysical applications, (1967BA1M, 1970DA21, 1971LI1H, 1971WI1C, 1971WI18, 1972EM02, 1972HO23, 1972WI28, 1972WI1C, 1973EM1B, 1973HA49, 1973TO14, 1974WI1L; theor.).

2. \(^{6}\text{Li}(^{3}\text{He}, n)^{8}\text{B} \quad Q_{m} = -1.975\]

At \(E(^{3}\text{He}) = 3.5\) to \(5.7 \text{ MeV}\), time-of-flight spectra locate the first excited state at \(0.767 \pm 0.012 \ (1965FA03, 1966FA1A)\), \(0.783 \pm 0.010 \text{ MeV} \ (1965MC06; \Gamma = 40 \pm 10 \text{ keV})\). Angular distributions for the \(n_{0}\) group have been reported at \(E(^{3}\text{He}) = 4.8\) to \(5.7 \text{ MeV}\). The appearance of a forward peak indicates an \(L = 0\) transfer and hence a knockout mechanism (\(L = 0\) is forbidden for simple diproton stripping) (1967VA24). See also (1963DI02). A state at \(E_{x} = 2.17 \pm 0.05 \text{ MeV}\) is reported by (1963DI02; abstract). For threshold measurements see (1966LA04). See also \(^{9}\text{B}\).

\(^{\dagger}\) and B. Zimmerman, private communication.
Table 8.11: Energy levels of 8B

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>$\tau_{1/2}$ or $\Gamma_{\text{c.m.}}$ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>2$^+$; 1</td>
<td>$\tau_{1/2} = 769 \pm 4$ msec</td>
<td>β^+</td>
<td>1, 2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>0.778 ± 7</td>
<td>3$^+$; 1</td>
<td>$\Gamma = 40 \pm 10$</td>
<td>γ, p</td>
<td>2, 3, 4, 5</td>
</tr>
<tr>
<td>2.32 ± 30</td>
<td></td>
<td>350 ± 40</td>
<td></td>
<td>2, 4, 5</td>
</tr>
</tbody>
</table>

3. 7Be(p, γ)8B

Absolute cross sections have been measured for $E_p = 0.165$ to 10.0 MeV (1969KA1K, 1972KA1B), 0.48 to 1.93 MeV (1966PA16) and 0.95 to 3.28 MeV (1970VA26). In the data of (1966PA16, 1972KA1B) a resonance at $E_p = 724$ keV reflects 8B*(0.77) with $\Gamma_{\text{lab}} \approx 46$ keV: the peak cross section is $2.20 \pm 0.22 \mu$b, $\Gamma_\gamma = 50 \pm 25$ meV. See also (1969KA1K).

The low-energy cross-section factor, evaluated at the Gamow peak ($E_p \approx 20$ keV), $S(0.02) = 0.031$ keV · b (1973RO08). Other values are $S(0) = 0.0335 \pm 0.003$ keV · b, $dS/dE = -3 \times 10^{-5}$ b (1972KA1B), 0.035 ± 0.004 keV · b, $dS/dE = -3 \times 10^{-5}$ b (1968PA1M) and $0.0430 \leq S(0) \leq 0.0453$ keV · b (1970AU1B). See also (1969KA1K, 1970VA26). The relevance of this reaction to astrophysics is discussed by (1965TO02, 1966PA16, 1967FO1B, 1967TO1B, 1968BA1W, 1968BA2E, 1968PA1M, 1969BA1U, 1969BA1M, 1970AU1B, 1970VA26, 1971BA2X, 1972BA2M, 1972KA1B, 1972PA1C, 1972TO1D, 1973BA2C, 1973RO08, 1973TR1E).

4. 10B(p, t)8B

$Q_m = -18.531$

At $E_p = 49.5$ MeV angular distributions have been measured for the tritons to 8B*(0, 2.32) (1970SQ01): $L = 2$ and $L = 0 + 2$, leading to $J^\pi = 2^+$ and 3^+, respectively. See also 10B(p, 3He)6Be. The energy of the excited state is 2.29 ± 0.05 MeV (1970SQ01), 2.34 ± 0.04 MeV (1968BR23): $\Gamma_{\text{lab}} = 390 \pm 40$ keV (1967MC14). 8B*(0.78) is also observed. See also (1971KA04; theor.).

5. 11B(3He, 6He)8B

$Q_m = -16.920$

At $E(^3$He) = 50 MeV, 6He groups are observed to the first three states of 8B (1967MC14).

6. 12C(3He, 7Li)8B

$Q_m = -22.899$

This reaction has been studied at $E(^3$He) = 40.7 MeV (1971DE37).
7. $^{12}\text{C}(\alpha, {}^8\text{Li})^8\text{B}$ \hspace{1cm} $Q_m = -41.445$

See (1968MC02).

^8C

(Not illustrated)

^8C has been observed in the $^{12}\text{C}(\alpha, {}^8\text{He})^8\text{C}$ reaction at $E_\alpha = 156$ MeV; $M - A = 35.30 \pm 0.20$ MeV, $\Gamma_{\text{c.m.}} = 220^{+80}_{-140}$ keV [the differential cross section at 2° (lab) is $\approx 20 \text{ nb/sr}$] (R.G.H. Robertson, S. Martin, W.R. Falk, D. Ingham and A. Djalois, private communication). ^8C is then unstable with respect to $^7\text{B} + p (Q = 0.1), ^6\text{Be} + 2p (Q = 2.3), ^5\text{Li} + 3p (Q = 1.8), ^4\text{He} + 4p (Q = 3.7)$. See also (1960GO1B, 1966KE16, 1970WA1G).
References

(Closed December 31, 1973)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author’s name and then by two additional characters. Most of the references appear in the National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form 1A, 1B, etc. In response to many requests for more informative citations, we have, when possible, included up to ten authors per paper and added the authors’ initials.

1948HE1A Heydenburg, Hudson, Inglis and Whitehead, Phys. Rev. 74 (1948) 405
1949FO18 W.A. Fowler and C.C. Lauritsen, Phys. Rev. 76 (1949) 314
1951BR10 A.B. Brown, C.W. Snyder, W.A. Fowler and C.C. Lauritsen, Phys. Rev. 82 (1951) 159
1952BA1A Baggett and Bame, Phys. Rev. 85 (1952) 434
1953CH1A Christy, Phys. Rev. 89 (1953) 839
1953SA1A Sawyer and Phillips, Los Alamos Rept.1578 (1953)
1953WA27 W.D. Warters, W.A. Fowler and C.C. Lauritsen, Phys. Rev. 91 (1953) 917
1955HA34 R.C. Hanna, Phil. Mag. 46 (1955) 381
1955LI1B Liberman, Thesis, CalTech (1955)
1957NE1A Newson et al., Phys. Rev. 108 (1957) 1294
1957WI24 D.H. Wilkinson, Phil. Mag. 2 (1957) 83
1962NO02 M.E. Nordberg, Jr., F.B. Morinigo and C.A. Barnes, Phys. Rev. 125 (1962) 321
1963RI09 V. Riech, Phys. Lett. 6 (1963) 267
1963SY01 G.D. Symons and P.B. Treacy, Nucl. Phys. 46 (1963) 93
1963TO02 T.A. Tombrello and L.S. Senhouse, Phys. Rev. 129 (1963) 2252
1963WE1B Wegner, Hall and Miller, Padua (1963) 1104
1964AN1A Antcufiev et al., Uaraee 5A (1964)
1964BU08 S.G. Buccino, C.E. Hollandsworth and P.R. Bevington, Nucl. Phys. 53 (1964) 375
1964FO1A Fowler and Vogl, Lectures in Theor. Phys., Vol. VI (Univ. of Colorado Press, 1964) 379
1964MA35 E. Matt, H. Pfander, H. Rieseberg and V. Soergel, Phys. Lett. 9 (1964) 174
1964MA51 G.S. Mani, R. Freeman, F. Picard, A. Sadeghi and D. Redon, Nucl. Phys. 60 (1964) 588
1964PA06 P. Paul and K.P. Lieb, Nucl. Phys. 53 (1964) 465
1964VA14 V. Valkovic, Nucl. Phys. 54 (1964) 465
1965AF1A Afanaseva, Lozhkin, Maltsev and Jakovlev, Yad. Fiz. 1 (1965) 76; Sov. J. Nucl. Phys. 1 (1965) 51
1965BO1B Boffi, Sawicki and Scacciatelli, Nuovo Cim. B40 (1965) 1
1965CO1E Cortellessa, Suppl. Nuovo Cim. 3 (1965) 820
1965DA1A Darriulat, Igo, Pugh and Holmgren, Phys. Rev. 137 (1965) B315
1965DE1G Degtyarev, Atomnaya Energiya 19 (1965) 456
1965GO1C Goloskie, Niiler and Wooten, Bull. Amer. Phys. Soc. 10 (1965) 1135
1965GO1E Gondrand, CEA 2734 (1965)
1965IN1A Inopin, Kresnin and Tishchenko, Yad. Fiz. 2 (1965) 802
1965IN1A Inopin, Kresnin and Tishchenko, Yad. Fiz. 2 (1965) 802
1965KU1B Kudo, Prog. Theor. Phys. 34 (1965) 942
1965MA1G Marion, Phys. Lett. 14 (1965) 315
1965MC06 W.R. McMurray, P. Van Der Merwe and I.J. Van Heerden, Phys. Lett. 18 (1965) 319
1965NE1B Neudachin and Smirnov, At. Energy Rev. 3 (1965) 157
1965PA1E Parker and Donovan, Bull. Amer. Phys. Soc. 10 (1965) 1135
1965PR1A Preist, Nuovo Cim. 37 (1965) 166
1965SL1A Slobodrian et al., Bull. Amer. Phys. Soc. 10 (1965) 693
1965SW03 W.E. Sweeney, Jr. and J.B. Marion, Phys. Lett. 19 (1965) 243
1965TA1D Tamagaki and Tanaka, Prog. Theor. Phys. 34 (1965) 191
1965TO02 T.A. Tombrello, Nucl. Phys. 71 (1965) 459
1965TY1A Tyren, Kullander, Sundberg, Ramachandran, Isacsson and Berggren (1965), to be published
1965VO1A Volkov, Nucl. Phys. 74 (1965) 33
1965WI1A Williams, Gaedke and Toth, Bull. Amer. Phys. Soc. 10 (1965) 443
1966AB1A Abe and Tamagaki, Prog. Theor. Phys. 35 (1966) 569
1966AG1A Agee and Rosen, LA-3538-MS (1966)
1966AL1G Ali and Bodmer, Nucl. Phys. 80 (1966) 99
1966AU1A Austin et al., Bull. Amer. Phys. Soc. 11 (1966) 10
1966BA1A Bahcall, Nucl. Phys. 75 (1966) 10
1966BA1Q Bardolle, Cabe, Chretien and Laurat, J. Phys. C1-96 (1966)
1966BA1R Baumann et al., Nucl. Phys. 78 (1966) 650
1966DI1C Didier et al., J. Phys. C1-100 (1966)
1966EL1A M. El-Nadi, T.H. Rihan and O. Zohni, Nucl. Phys. 82 (1966) 417
1966EN1A Endo, Prog. Theor. Phys. 35 (1966) 571
1966FA1A Fasoli, Toniolo and Zago, Antwerp 1965 Neutron Conf. (North-Holland, 1966) 496
1966FE1C Ferguson, Antwerp 1965 Neutron Conf. (North-Holland, 1966) 63
1966JE1B Jessen, Bormann, Dreyer and Neuert, Nucl. Data 1 (1966) 103
1966LA02 J.P. Laugier, L. Marquez, N. Saunier and J. Rey, Nucl. Phys. 75 (1966) 418
1966LA04 T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1
<table>
<thead>
<tr>
<th>Year 1966</th>
<th>Author(s)</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966LI1C</td>
<td>R. Lipperheide</td>
<td>Nucl. Phys.</td>
<td>77</td>
<td></td>
<td>527</td>
</tr>
<tr>
<td>1966LO1G</td>
<td>Longequeue et al.</td>
<td>Comp. Rend.</td>
<td>262</td>
<td></td>
<td>1162B</td>
</tr>
<tr>
<td>1966MA03</td>
<td>J.B. Marion and M. Wilson</td>
<td>Nucl. Phys.</td>
<td>77</td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>1966MA1J</td>
<td>Maluszynska</td>
<td>Acta Phys. Pol.</td>
<td>29</td>
<td></td>
<td>907</td>
</tr>
<tr>
<td>1966MA22</td>
<td>J.B. Marion, C.A. Ludemann and P.G. Roos</td>
<td>Phys. Lett.</td>
<td>22</td>
<td></td>
<td>172</td>
</tr>
<tr>
<td>1966MA40</td>
<td>M.D. Mancusi and E. Norbeck</td>
<td>Phys. Rev.</td>
<td>151</td>
<td></td>
<td>830</td>
</tr>
<tr>
<td>1966MI09</td>
<td>C. Milone and R. Potenza</td>
<td>Nucl. Phys.</td>
<td>84</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>1966MO05</td>
<td>J. Mosner, G. Schmidt and J. SchintMeister</td>
<td>Nucl. Phys.</td>
<td>75</td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>1966NO1A</td>
<td>Nomoto</td>
<td>Nucl. Phys.</td>
<td>81</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>1966OK1A</td>
<td>S. Okai and S.C. Park</td>
<td>Phys. Rev.</td>
<td>145</td>
<td></td>
<td>787;</td>
</tr>
<tr>
<td>1966PA16</td>
<td>P.D. Parker</td>
<td>Phys. Rev.</td>
<td>150</td>
<td></td>
<td>851</td>
</tr>
<tr>
<td>1966PE1D</td>
<td>A.A. Peyman, W. Scholz and G. Sepp</td>
<td>Nucl. Phys.</td>
<td>88</td>
<td></td>
<td>417</td>
</tr>
<tr>
<td>1966RO1C</td>
<td>Rolland et al.</td>
<td>J. Phys. C1-126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966RO1E</td>
<td>Rotter and Zhusupov</td>
<td>Ann. Phys.</td>
<td>17</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>1966RO1G</td>
<td>Roturier, Irigaray and Petit</td>
<td>Compt. Rend. B262</td>
<td></td>
<td></td>
<td>1735</td>
</tr>
</tbody>
</table>

1966SH1E Shumilov, Klyucharev and Rutkevich, Yad. Fiz. 3 (1966) 667

1966TO04 T.A. Tombrello, Phys. Lett. 23 (1966) 134

1966TO1B T.A. Tombrello, Phys. Lett. 23 (1966) 106

1966WE1C J.C. Webber, Nucl. Phys. 77 (1966) 332

1966YO1B Yoccoz, J. Phys. C1-3 (1966)

1967AB1A Abe, Endo and Tamagaki, Prog. Theor. Phys. 37 (1967) 1116

1967BA1J Bahcall, Cooper and Demarque, Astrophys. J. 150 (1967) 723

1967CH34 V.I. Chuev, V.V. Davidov, A.A. Ogloblin and S.B. Sakuta, Ark. Fys. 36 (1967) 263
1967CO29 P.M. Cockburn and I.S. Grant, Nucl. Sci. App. 3 (1967) 10

51
<table>
<thead>
<tr>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967EN1A</td>
<td>Engelhardt and Fontenille, France, Commissariat A L’Energie Atomique, Rept. CEA 3270 (1967)</td>
</tr>
<tr>
<td>1967KO1B</td>
<td>Kolybasov and Smorodinskaya, Yad. Fiz. 5 (1967) 777</td>
</tr>
</tbody>
</table>
1967SH14 V.S. Shirley, UCRL-17990 (1967)
1967SV1A Svenne, Lect. on Nucl. Many Body Problems, Herceg Novi (1967)
1967TS1A Tsan, France, Comm. A L’Energie Atomique Rept. CEA 3174 (1967)
1967YO02 F.C. Young, P.D. Forsyth and J.B. Marion, Nucl. Phys. A91 (1967) 209
1968AJ02 F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. A114 (1968) 1
1968BA1H V.V. Balashov and D.V. Meboniya, Nucl. Phys. A107 (1968) 369
1968BA1M Batusov, Bunyatov, Sidorov and Yarba, Sov. J. Nucl. Phys. 6 (1968) 836
1968BA1W Bahcall and Shaviv, Astrophys. J. 153 (1968) 113
1968BE1E Bertrand, Grenier and Pornet, Comm. A L’énergie Atomique, Rept. CEA 3504 (1968)
1968BE1N Bertrand, Grenier and Pornet, Comm. A L’énergie Atomique, Rept. CEA 3575 (1968)
1968BE1P Bertrand, Grenier and Pornet, France, Comm. A L’énergie Atomique, Rept. CEA 3428 (1968)
1968BL1E Black et al., Tokyo (1968) 375
<table>
<thead>
<tr>
<th>Year</th>
<th>Ref.</th>
<th>Authors</th>
<th>Journal/Conference Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968</td>
<td>CO08</td>
<td>C.L. Cocke and P.R. Christensen</td>
<td>Nucl. Phys. A111 (1968) 623</td>
</tr>
<tr>
<td>1968</td>
<td>CO1L</td>
<td>Conzett</td>
<td>Tokyo (1968) 106</td>
</tr>
<tr>
<td>1968</td>
<td>DA20</td>
<td>V.V. Davydov, A.A. Ogloblin, S.B. Sakuta and V.I. Chuev</td>
<td>Yad. Fiz. 7 (1968) 758; Sov. J. Nucl. Phys. 7 (1968) 463</td>
</tr>
<tr>
<td>1968</td>
<td>EN1A</td>
<td>J. Engler, K. Horn, J. Konig, F. Monnig, P. Schludecker, H. Schopper,</td>
<td>Yad. Fiz. 7 (1968) 758; Sov. J. Nucl. Phys. 7 (1968) 463</td>
</tr>
<tr>
<td>1968</td>
<td>FA1B</td>
<td>Faessler, Sauer and Stingl</td>
<td>Z. Phys. 212 (1968) 1</td>
</tr>
<tr>
<td>1968</td>
<td>FI1F</td>
<td>Fisher et al.</td>
<td>Tokyo (1968) 138</td>
</tr>
<tr>
<td>1968</td>
<td>FO1A</td>
<td>Fowler</td>
<td>Neutron Cross Sections Tech., NBS Special Publ. 299 (1968) 1</td>
</tr>
<tr>
<td>1968</td>
<td>FR07</td>
<td>E. Friedland and H. Verleger</td>
<td>Z. Phys. 211 (1968) 373</td>
</tr>
</tbody>
</table>
1968GR1E Grigoryev, Lozhkin,Perfilov and Yakovlev, Tokyo (1968) 336
1968HA1G Hackenbroich, Wildermuth and Wittern, Tokyo (1968) 44
1968HI1E Hibdon and Mooring, Neutron Cross Sections Tech., NBS Special Pub. 299 (1968) 159
1968JA1F Jacmart et al., Tokyo (1968) 209
1968KN1B Knitter and Coppcla, Neutron Cross Sections Tech., NBS Special Pub. 299 (1968) 827
1968KO1G Kohler and Fick, Z. Phys. 215 (1968) 408
1968LA1C Laugier, Cadeua, Mouilhayrat and Marquez, J. Phys. 29 (1968) 829
1968LO01 J.P. Longequeue, J.F. Cavaignac, A. Giorni and R. Bouchez, Nucl. Phys. A107 (1968) 467
1968MI05 P.F. Mizera and J.B. Gerhart, Phys. Rev. 170 (1968) 839
1968MO05 C. Moazed and H.D. Holmgren, Phys. Rev. 166 (1968) 977
1968NA1B Nalda, Casanova and Marquez, An. Fisica 64 (1968) 159
1968NE1C Nemirovskii, Sov. J. Nucl. Phys. 6 (1968) 29
1968NO03 E. Norbeck and F.D. Ingram, Phys. Rev. Lett. 20 (1968) 1178
1968PA1L G. Payne, Phys. Rev. 168 (1968) 1181
1968SA1F Saito, Prog. Theor. Phys. 40 (1968) 893
1968TH1G Thouvenin, Comm. A L’Energie Atomique Rept. CEA 3314 (1968)
1968VI03 B. Vignon, J.-F. Cavaignac and J.-P. Longequeue, Compt. Rend. B266 (1968) 878
1968YA1C Yanabu et al., Tokyo (1968) 261
1969AB1D Abe, Bochum Conf. STI/PUB/232 IAEA (1969) 303
1969AR1B Armstrong, Beery, Keaton and Veeser, LA 4177 (1969)
1969BA1L Batusov et al., Yad. Fiz. 10 (1969) 354
1969BA1X Bahcall and Frautschi, Private Communication (1969)

59
1969GO1B Gorodetzky, Rudolf, Scheibling and Chevallier, Contrib., Montreal (1969) 302
1969IK1A Ikeda, Bochum Conf. STI/PUB/232 IAEA (1969) 277
<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume/Issue/Publication Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969</td>
<td>LU1B</td>
<td>Ludemann et al., Bochum Conf. STI/PUB/232 IAEA</td>
<td>1969 213</td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>NA1L</td>
<td>Nash, Bochum Conf. STI/Pub/232 IAEA</td>
<td>1969 294</td>
<td></td>
</tr>
<tr>
<td>1969</td>
<td>PH1B</td>
<td>Phillips, Bochum Conf. STI/PUB/232 IAEA</td>
<td>1969 73</td>
<td></td>
</tr>
</tbody>
</table>
1969TO1A I.S. Towner, Nucl. Phys. A126 (1969) 97
1970CA1M Catala et al., An. Fis. 66 (1970) 351
1970KU1H Kumar, NP 18717 (1970)
<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Authors</th>
<th>Details</th>
</tr>
</thead>
</table>
1971GO1U Gorodetzky, Rudolf, Scheibling and Chevallier, Symp., Saclay (1971)
1971HA1U Hausser, Private Communication (1971)
1971HU1H Hudomalj, Valkovic and Tomas, Fizika (Yugoslavia) 4 (1971) 36

67
1971PO1D Pornet and Ulpat, CEAR 4252 (1971)
1971TR1B Treado et al., Bull. Amer. Phys. Soc. 16 (1971) 1186
1971VA1E Varfolomeev, JETP Lett. 13 (1971) 17
<table>
<thead>
<tr>
<th>Year</th>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972AB19</td>
<td>Y. Abe and N. Takigawa</td>
<td>Prog. Theor. Phys. Suppl. 52 (1972) 228</td>
</tr>
<tr>
<td>1972AB1C</td>
<td>Abgrall and Caurier</td>
<td>Private Communication (1972)</td>
</tr>
<tr>
<td>1972AJ02</td>
<td>F. Ajzenberg-Selove</td>
<td>Nucl. Phys. A190 (1972) 1</td>
</tr>
<tr>
<td>1972BA2M</td>
<td>Bahcall</td>
<td>Comments on Nucl. Part. Phys. 5 (1972) 59</td>
</tr>
<tr>
<td>1972BE1T</td>
<td>Bedjidian</td>
<td>Univ. Claude Bernard De Lyon, Rept. No. LYCEN 7239 (1972)</td>
</tr>
<tr>
<td>1972BO38</td>
<td>M. Bouten and M.C. Bouten</td>
<td>Nucl. Phys. A193 (1972) 49</td>
</tr>
<tr>
<td>1972CO1H</td>
<td>Cooper, Reisdorf and Lau</td>
<td>Bull. Amer. Phys. Soc. 17 (1972) 920</td>
</tr>
<tr>
<td>1972CO1K</td>
<td>Conlon</td>
<td>Rept. AERE-R 7166, Ukaea, England (1972); Phys. Abs. 74095 (1972)</td>
</tr>
<tr>
<td>Year</td>
<td>Author(s)</td>
<td>Journal/Conference</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>1972</td>
<td>Dzhanobilov, V.V. Komarov, S. El Tahavi Morsi, H.R. Saad and I.V. Sizov</td>
<td>JINR-P15-6771</td>
</tr>
<tr>
<td>1972</td>
<td>Eman, B.</td>
<td>Phys. Rev. C6</td>
</tr>
<tr>
<td>1972</td>
<td>Fick</td>
<td>MPI H-1972-V17</td>
</tr>
<tr>
<td>1972</td>
<td>Frisbee, Thesi, Univ. Maryland</td>
<td>(1972)</td>
</tr>
<tr>
<td>1972</td>
<td>Garrett</td>
<td>Symp. on Two-Nucleon Transfer and Pairing Excitations, Argonne (1972) 232; (CONF-720309)</td>
</tr>
</tbody>
</table>
1972HA2F Harney and Wozniak, LBL 1214 (1972)
1972IK1A Ikeda, Marumori, Tamagaki and Tanaka, Suppl. Prog. Theor. Phys. 52 (1972) 1
1972KA1B Kavanagh, Cosmology, Fusion and Other Matters, Ed. F. Reines, G. Gamow Memorial Vol. (Colorad Assoc. Univ. Press, 1972) 169
1972LA1F Lane, COO-1717-3 (1972)
1972LI31 Y.C. Liu, Chin. J. Phys. (Taiwan) 10 (1972) 76
1972MC1E McDonald et al., Bull. Amer. Phys. Soc. 17 (1972) 464
1972MI1M Mikaelyan and Fayans, Yad. Fiz. 15 (1972) 975
1972NA05 P.T. Nang, Nucl. Phys. A185 (1972) 413
1972PA1C Parker, Astrophys. J. 175 (1972) 261
1972PI1A Pisano, Cober and Parker, Bull. Amer. Phys. Soc. 17 (1972) 914
1972PN1A Pniewski, Few Particle Problems, UCLA, 1972 (North-Holland, 1972) 145
1972RO1N Roy et al., Few Particle Problems, UCLA, 1972 (North-Holland, 1972) 998
1972RU1C Rucker et al., Bull. Amer. Phys. Soc. 17 (1972) 111
1972TO1D Tombrello, Few Particle Problems, UCLA, 1972 (North-Holland, 1972) 928
1972YA1B Yamashita et al., Few Particle Problems, UCLA, 1972 (North-Holland, 1972) 1006
1973BA1J Balestra et al., in Munich 1 (1973) 645
1973BA2C Bahcall, Nucl. Instrum. Meth. 110 (1973) 381
1973CL1E Clayton and Woosley, in Munich 2 (1973) 718
1973DU1D Duck, Phillips and Valkovic, in Munich 1 (1973) 423
1973FE1J Federsel, Schranner, Teufel and Wildermuth, in Munich 1 (1973) 499
1973FI1C Fick, MPI H-1973-V27 (1973)
1973GE1J Geiger, van der Zwan and Werle, Phys. in Canada 29 (1973) 4
1973GR1M Green, Muller and Peyer, Nucl. Phys. A203 (1973) 42
1973HA05 M. Harvey, Nucl. Phys. A202 (1973) 191
1973HA1Q Hanna, in Asilomar (1973) 417
1973HA77 J.C. Hardy, Nucl. Data Tables A11 (1973) 327
1973HE1J Hermans et al., in Munich 1 (1973) 411
1973JO07 G.G. Jonsson and K. Lindgren, Phys. Scr. 7 (1973) 49
1973JO1L Jones and Bartle, Bull. Amer. Phys. Soc. 18 (1973) 1403
1973KA32 D. Kamke, Z. Phys. 263 (1973) 251
1973KL1B Klages and Duhm, in Munich 1 (1973) 478
1973KO1F Kohler and Bethgz, in Munich 1 (1973) 134
1973KU13 N. Kumar, Lett. Nuovo Cim. 6 (1973) 224
1973YU1A T. Yukawa, Phys. Rev. C8 (1973) 1593