Energy Levels of Light Nuclei

\[A = 9 \]

F. Ajzenberg-Selove a and T. Lauritsen b

a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396
b California Institute of Technology, Pasadena, California

\textbf{Abstract:} An evaluation of \(A = 5 \text{--} 24 \) was published in \textit{Nuclear Physics} 11 (1959), p. 1. This version of \(A = 9 \) differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC format.

(References closed December 01, 1958)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-FG02-86ER40279]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).
Table of Contents for $A = 9$

Below is a list of links for items found within the PDF document. Figures from this evaluation have been scanned in and are available on this website or via the link below.

A. Nuclides: ^9Li, ^9Be, ^9B, ^9C

B. Tables of Recommended Level Energies:

Table 9.1: Energy levels of ^9Be

Table 9.4: Energy levels of ^9B

C. References

D. Figures: ^9Be, ^9B

E. Erratum to the Publication: PS or PDF
Mass of ^9Li: From the threshold for $^9\text{Be}(d, 2p)^9\text{Li}$, $E_d = 19 \pm 1 \text{ MeV}$ (1951GA30), the mass excess of ^9Li is determined as $M - A = 28.1 \pm 1 \text{ MeV}$.

1. $^9\text{Li}(\beta^-)^9\text{Be}^* \rightarrow ^8\text{Be} + n \quad Q_m = 12.4$

^9Li decays to excited states of ^9Be which decay by neutron emission. The mean of the reported half-lives is $0.169 \pm 0.003 \text{ sec}$ (1951GA30, 1952HO25). See also (1952SH44, 1953FR03, 1955BE1E, 1956FL1A, 1958TA04).

2. $^9\text{Be}(d, 2p)^9\text{Li} \quad Q_m = -15.5$

The threshold is $19 \pm 1 \text{ MeV}$ (1951GA30).

3. $^{11}\text{B}(\gamma, 2p)^9\text{Li} \quad Q_m = -31.4$

See (1952SH44, 1958TA04).

4. $^{12}\text{C}(\gamma, 3p)^9\text{Li} \quad Q_m = -47.3$

See (1953RE19, 1958TA04).

The following reactions are not reported: $^7\text{Li}(t, p)^9\text{Li} \ (Q_m = -2.9)$, $^9\text{Be}(n, p)^9\text{Li} \ (Q_m = -13.3)$, $^9\text{Be}(t, ^3\text{He})^9\text{Li} \ (Q_m = -14.1)$ and $^{11}\text{B}(n, ^3\text{He})^9\text{Li} \ (Q_m = -23.6)$.

^9Be

(Fig. 10)

GENERAL:

Table 9.1: Energy levels of 9Be

<table>
<thead>
<tr>
<th>E_x in 9Be (MeV)</th>
<th>$J^g; T$</th>
<th>Γ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{3}{2}$</td>
<td>stable</td>
<td>2, 7, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27</td>
<td></td>
</tr>
<tr>
<td>1.75 ± 0.02</td>
<td>$\frac{1}{2}^+$</td>
<td>150</td>
<td>n, γ</td>
<td>7, 10, 14, 15, 16, 17, 25</td>
</tr>
<tr>
<td>2.430 ± 0.002</td>
<td>$\frac{5}{2}^-$</td>
<td>< 1</td>
<td>(n), α</td>
<td>7, 13, 14, 15, 16, 17, 20, 22, 25, 26</td>
</tr>
<tr>
<td>3.04 ± 0.016 (4.74 ± 0.08)</td>
<td>$\leq \frac{3}{2}$</td>
<td>161 ± 15</td>
<td>7, 15, 16, 17, 22, 25</td>
<td></td>
</tr>
<tr>
<td>6.76 ± 0.06 (7.94 ± 0.08)</td>
<td>1250</td>
<td>7, 15, 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1 ± 0.2 (11.3 ± 0.2)</td>
<td>1200</td>
<td>13, 15, 16, 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13.3)</td>
<td>n, γ</td>
<td>10, 15, 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14.5)</td>
<td>n, γ</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.28</td>
<td>200</td>
<td>(d, p, n)</td>
<td>3, 4</td>
<td></td>
</tr>
<tr>
<td>17.48</td>
<td>50</td>
<td>(d, p, n)</td>
<td>3, 4, 15</td>
<td></td>
</tr>
<tr>
<td>(18.1)</td>
<td>(300)</td>
<td>(d, p, n)</td>
<td>3, 4</td>
<td></td>
</tr>
<tr>
<td>(18.6)</td>
<td></td>
<td>(d, p)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>19.6</td>
<td></td>
<td>(d, p)</td>
<td>3, 15</td>
<td></td>
</tr>
<tr>
<td>(21.7 ± 0.1)</td>
<td></td>
<td>p, γ, n</td>
<td>11, 15</td>
<td></td>
</tr>
</tbody>
</table>
1. (a) $^6\text{Li}(t, d)^7\text{Li}$
 $Q_m = 0.994$ $E_b = 17.687$

 (b) $^6\text{Li}(t, p)^7\text{Li}$
 $Q_m = 0.803$

 (c) $^6\text{Li}(t, n)^8\text{Be}$
 $Q_m = 16.021$

 (d) $^6\text{Li}(t, \alpha)^7\text{He}$
 $Q_m = 15.158$

 (e) $^6\text{Li}(t, n)^4\text{He} + ^4\text{He}$
 $Q_m = 16.115$

The differential cross section at 90° for reaction (a) rises steeply from 8.8 mb/sr at $E_t = 0.72$ MeV to 19 mb at 0.90 MeV, and then more slowly to 21 mb at $E_t = 1.15$ MeV. For reaction (d), the differential cross section at 90° rises from 0.75 mb/sr at 0.62 MeV to 5.7 mb/sr at 1.8 MeV and then decreases slowly to 5.3 mb/sr at 2.2 MeV (R.W. Crews, quoted in (1957JA37)).

See also (1952PE02), ^5He, ^7Li, ^8Li and ^8Be.

2. $^6\text{Li}(\alpha, p)^9\text{Be}$
 $Q_m = -2.125$

 See (1956WA29).

3. $^7\text{Li}(d, p)^8\text{Li}$
 $Q_m = -0.192$ $E_b = 16.693$

Cross sections have been measured for $E_d = 0.4$ to 1.8 MeV by (1952BA1A), and for $E_d = 0.7$ to 3.3 MeV by (1954BA46); see (1957JA37). The yield for $E_d = 1.1$ to 4.0 MeV has been measured by (1956BE1A). Resonances are observed at 0.80 and 1.04 MeV (1952BA1A, 1954BA46), 1.4 MeV (1952BA1A: see, however, (1954BA46)), 2.0, 2.5 and 3.7 MeV (1956BE1A: see, however, (1954BA46)). See also (1955AJ61).

4. (a) $^7\text{Li}(d, n)^8\text{Be}$
 $Q_m = 15.026$ $E_b = 16.693$

 (b) $^7\text{Li}(d, \alpha)^5\text{He}$
 $Q_m = 14.163$

 (c) $^7\text{Li}(d, n)^4\text{He} + ^4\text{He}$
 $Q_m = 15.121$

The cross section for (a) has been measured for $E_d = 70$ to 110 keV by (1955RA14) and that for (b) has been measured for $E_d = 30$ to 250 keV by (1953SA1A). Resonances for neutron production occur, in the range $E_d = 0.2$ to 4.8 MeV, at $E_d = 0.68$ ($\Gamma = 250$ keV), 0.98 ($\Gamma = 60$ keV) and 1.8 MeV ($\Gamma = 400$ keV) (1952BA1A, 1957SL01). At $E_d = 0.90$ MeV, the α-particles in reaction (b) are isotropic to within 2%, consistent with formation by s-wave deuterons. No evidence is found for direct interaction effects at this energy (1957RI39). The angular correlation of ground-state α-particles with those resulting from breakup of ^5He indicate $J = \frac{5}{2}^-$ (1956RI37), $J = \frac{3}{2}^-$ (1957FA10), for the ^9Be level mainly responsible for this reaction at $E_d = 0.9$ MeV.
Reactions (a) and (c) account for less than 10% of the disintegrations at this energy \((1956RI37)\). See also \(^5\)He, \(^8\)Be and \((1956CA1B)\).

5. (a) \(^7\)Li(d, d)\(^7\)Li \[E_b = 16.693\]
 \(Q_m = -0.994\)
 \(Q_m = -4.512\)

The cross section for reaction (b) rises steeply from threshold to \(95\) mb at \(E_d = 2.4\) MeV, and then more slowly to about \(165\) mb at \(E_d = 4.1\) MeV \((1955MA20)\). See also \(^6\)He and \(^7\)Li.

6. \(^7\)Li(t, n)\(^9\)Be \[Q_m = 10.435\]
Not observed.

7. \(^7\)Li(\(3\)He, p)\(^9\)Be \[Q_m = 11.200\]

At \(E_d = 0.7\) and 1 MeV, proton groups are observed corresponding to excited states of \(^9\)Be at \(1.83 \pm 0.04\) MeV \((\Gamma < 0.4\) MeV\), \(2.39 \pm 0.08\) MeV \((\Gamma < 0.2\) MeV\), \(3.10 \pm 0.04\) MeV \((\Gamma < 0.3\) MeV\), \(4.74 \pm 0.08\) MeV \((\Gamma = 1.25 \pm 0.25\) MeV\) and \(9.1 \pm 0.2\) MeV \((\Gamma = 1.2\) MeV\) \((1954MO92, 1955AL57, 1958MO99)\). The 1.8-MeV level admits a description in terms of an s-wave n-\(^8\)Be interaction with a scattering length \(a = 23 \times 10^{-13}\) cm \((1958MO99)\); see \(^{11}\)B(\(d, \alpha\))\(^9\)Be.

8. \(^7\)Li(\(\alpha\), d)\(^9\)Be \[Q_m = -7.151\]
Not observed.

9. \(^9\)Li(\(\beta^-\))\(^9\)Be* \(\rightarrow \) \(^8\)Be + n \[Q_m = 12.4\]
See \(^9\)Li.

10. (a) \(^9\)Be(\(\gamma\), n)\(^8\)Be \[Q_m = -1.667\]
 \(Q_m = -2.529\)
 \(Q_m = -1.572\)
 \(Q_m = -20.565\)
The photo-neutron cross section has been studied from threshold \((E_\gamma = 1.664 \pm 0.004 \text{ MeV})\) to 320 MeV: see Table 9.2. A sharp peak, \(\Gamma < 50 \text{ keV}, \sigma \approx 100 \text{ mb}\), occurs at \(E_\gamma = 1.70 \text{ MeV}\) \((1956\text{CO56})\). A further broad maximum appears at \(E_\gamma \approx 10 \text{ MeV}\), followed by the giant resonance at \(20 - 22 \text{ MeV}\) \((1953\text{JO1B}, 1953\text{NA1A}; \text{ see } 1956\text{CO59})\). Measurements from 6 to 18 MeV show pronounced peaks at 11.3 and 13.3 MeV and a broad, low peak at 16 MeV, immediately preceding the giant resonance \((1959\text{SP1B})\). At \(E_\gamma = 6.1 \text{ MeV}\) the main processes appear to involve \(^9\text{Be}(\gamma, n)^8\text{Be}^*(2.9)\) and \(^9\text{Be}(\gamma, \alpha)^5\text{He}\) \((1954\text{CA1A})\). Angular distributions for \(E_\gamma = 6.1\) MeV show pronounced peaks at 11.3 and 13.3 MeV and a broad, low peak at 16 MeV, immediately preceding the giant resonance \((1959\text{SP1B})\). At \(E_\gamma = 6.1\) MeV the main processes appear to involve \(^9\text{Be}(\gamma, n)^8\text{Be}^*(2.9)\) and \(^9\text{Be}(\gamma, \alpha)^5\text{He}\) \((1954\text{CA1A})\). Angular distributions for \(E_\gamma = 1.70\) and 1.8 MeV are spherically symmetric; at \(E_\gamma = 2.76 \text{ MeV}\), \(W(\theta) = 1.2 + \sin^2 \theta\) \((1949\text{HA1A}; \text{ see also } 1954\text{NI1B}, 1956\text{FA1B})\).

Calculations of \((1949\text{GU1A})\) and \((1956\text{MA1M})\) envisage E1 transitions to p\(^4\)s and p\(^4\)d configurations, with levels at \(\approx 1.8\) and \(\approx 5 \text{ MeV}\) (assuming a fixed well depth). The angular distributions and general trend of the cross section are well accounted for, as is the ratio of \(\sigma(\gamma, n)/\sigma(e, e'\text{n})\) \((1958\text{BA60}: 6 \text{ to } 17 \text{ MeV})\). \((1956\text{CO56})\) state, on the other hand, that the 1.70-MeV peak is to be attributed to an M1 transition. See also \((1954\text{ER1B}, 1955\text{JO1B}, 1958\text{BA60}, 1958\text{CH31})\) and \((1956\text{CZ1B}, 1956\text{CZ1C}, 1956\text{DE1C}, 1957\text{KO1B}; \text{ theor.})\).

The cross section for reaction (c) is < 1 mb at \(E_\gamma = 1.63 \text{ MeV}\) \((1952\text{AL26}, 1952\text{AL30})\). For reaction (d) see \((1957\text{LO1A})\).

11. (a) \(^9\text{Be}(\gamma, p)^8\text{Li} \quad Q_m = -16.885\)
(b) \(^9\text{Be}(\gamma, np)^7\text{Li} \quad Q_m = -18.919\)

The yield has a broad maximum, \(\Gamma = 4.7 \text{ MeV}\), at \(E_\gamma = 22.2 \text{ MeV}\) where \(\sigma = 2.72 \text{ mb}\) \((1953\text{HA1A})\). The angular and energy distributions of photoprotons produced by bremsstrahlung with \(E_{\text{max}} = 25 \text{ to } 80 \text{ MeV}\) has been studied by \((1956\text{CO59}, 1956\text{KL19})\). The angular distributions can be accounted for by the direct interaction of \(\gamma\)-rays with individual nucleons \((1956\text{KL19})\). The energy distributions indicate that transitions to levels in the residual nucleus play an important part in the direct photo effect \((1956\text{KL19})\). \((1956\text{CO59})\) suggest, on the other hand, that the relatively large proportion of low-energy protons indicates predominance of a \((\gamma, \text{n})\) process, followed by proton emission from \(^8\text{Be}\) levels at high excitation. See also \((1953\text{HE1B}, 1953\text{NA1A}, 1957\text{CH24}, 1958\text{CH31}, 1958\text{PA1B}, 1958\text{ST1A}, 1958\text{WH1A})\).

12. (a) \(^9\text{Be}(\gamma, d)^7\text{Li} \quad Q_m = -16.693\)
(b) \(^9\text{Be}(\gamma, t)^6\text{Li} \quad Q_m = -17.687\)
(c) \(^9\text{Be}(\gamma, \alpha)^5\text{He} \quad Q_m = -2.529\)

See \((1955\text{AJ61}), (1956\text{CO59}, 1958\text{WH1A})\) and \(^9\text{Be}(\gamma, \text{n})^8\text{Be}\).
Table 9.2: Photoneutron cross section of 9Be

<table>
<thead>
<tr>
<th>E_{γ} (MeV)</th>
<th>σ (mb)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.69 (124Sb)</td>
<td>1.262 ± 0.069</td>
<td>(1959GI48)</td>
</tr>
<tr>
<td>1.70 (brems.) a</td>
<td>100</td>
<td>(1956CO56)</td>
</tr>
<tr>
<td>1.77 (56Mn)</td>
<td>0.6</td>
<td>(1948RU1A: see (1953HA1B, 1956ED1B))</td>
</tr>
<tr>
<td>1.85 (88Y)</td>
<td>0.654 ± 0.031</td>
<td>(1959GI48)</td>
</tr>
<tr>
<td>2.185 (144Pr)</td>
<td>0.39</td>
<td>(1953HA1B)</td>
</tr>
<tr>
<td>2.5 (140La)</td>
<td>0.5</td>
<td>(1948RU1A: see (1953HA1B))</td>
</tr>
<tr>
<td>2.61 (ThC$^\gamma$)</td>
<td>0.39 ± 0.02</td>
<td>(1956ED1B)</td>
</tr>
<tr>
<td>2.76 (24Na)</td>
<td>0.7</td>
<td>(1948RU1A: see (1953HA1B))</td>
</tr>
<tr>
<td></td>
<td>0.674 ± 0.05</td>
<td>(1950SN67)</td>
</tr>
<tr>
<td>4.4 (15N(p, α)12C)</td>
<td>0.186 ± 0.32</td>
<td>(1956ED1B)</td>
</tr>
<tr>
<td>6.2 (19F(p, α)16O)</td>
<td>1.13 ± 0.16</td>
<td>(1956ED1B)</td>
</tr>
<tr>
<td>8.1 (13C(p, γ)14N)</td>
<td>1.38 ± 1.16</td>
<td>(1956ED1B)</td>
</tr>
<tr>
<td>10 (brems.) b</td>
<td>1.6</td>
<td>(1953NA1A)</td>
</tr>
<tr>
<td>11.3 (brems.)</td>
<td>4.2</td>
<td>(1959SP1B)</td>
</tr>
<tr>
<td>12 (brems.)</td>
<td>0.1</td>
<td>(1959SP1B)</td>
</tr>
<tr>
<td>13.3 (brems.)</td>
<td>3.0</td>
<td>(1959SP1B)</td>
</tr>
<tr>
<td>14.2 (brems.)</td>
<td>0.1</td>
<td>(1959SP1B)</td>
</tr>
<tr>
<td>15 (brems.)</td>
<td>0.9</td>
<td>(1959SP1B)</td>
</tr>
<tr>
<td>17 (brems.)</td>
<td>0.8</td>
<td>(1953NA1A)</td>
</tr>
<tr>
<td>22 (brems.) c</td>
<td>3.0</td>
<td>(1953NA1A)</td>
</tr>
<tr>
<td>25 – 320 (brems.)</td>
<td>3 – 2</td>
<td>(1953JO1B)</td>
</tr>
</tbody>
</table>

a Resonance width < 50 keV.

b Broad resonance: $\Gamma \approx 8$ MeV.

c Giant resonance.
13. $^9\text{Be}(e, e')^9\text{Be}^*$

Elastic scattering has been studied at $E_e = 125, 150$ and 190 MeV (1953HO79, 1954MC45). An r.m.s. radius of $(2.2 \pm 0.2) \times 10^{-13}$ cm is obtained (1957HO1E; see also (1956HO93)). Inelastic peaks corresponding to levels at 2.54 and 6.96 MeV are reported by (1954MC45). Comparison of $\sigma(\gamma, n)$ and $\sigma(e, e'n)$ for $E_e = 6$ to 17 MeV indicates that the transitions are mainly E1 (1958BA60). See also (1957EH1A, 1958EH1A).

14. (a) $^9\text{Be}(n, n)^9\text{Be}$
(b) $^9\text{Be}(n, 2n)^8\text{Be}$

$$Q_m = -1.667$$

The neutron spectrum observed when ^9Be is bombarded with 3.7-MeV neutrons exhibits a structure which is consistent with the excitation of the known states at 0, 1.5, 2.4 and 3.1 MeV, with subsequent neutron emission from the latter two. It is concluded that the (n, 2n) process at this energy proceeds mainly via discrete states of ^9Be (1957HU14, 1958WA05). At the same bombarding energy (1955FO1B) observe two discrete groups in coincidence, suggesting the process $^9\text{Be}(n, n')^9\text{Be}^*(2.43) \rightarrow n + ^8\text{Be}$; see, however, (1957BO83: $^9\text{Be}(\alpha, \alpha')^9\text{Be}^*$). Using monochromatic neutrons with $E_n = 2.6$ to 3.25 MeV, (1957FI1B) finds a sharp threshold for (n, 2n) at $E_n = 2.7$ MeV, corresponding to excitation of $^9\text{Be}^*(2.43)$. On the other hand, (1958MA22) find evidence for (n, 2n) at $E_n = 2.6$ MeV, below the threshold for (n, n'); at $E_n = 5$ to 6 MeV, the spectra show neutrons from the direct (n, 2n) process. At $E_n = 14$ MeV, the cross section for production of $^9\text{Be}^*$ is 170 ± 30 mb; comparison with $\sigma(n, 2n) = 530 \pm 40$ mb indicates that about $\frac{1}{3}$ of the (n, 2n) processes proceed via $^9\text{Be}^*(2.4)$ (1958AN32). See also (1957RO1D) and (1958BE1E; theor.).

A search for γ-transitions from the 1.8 and 2.4-MeV levels yields upper limits of 0.3 and 0.2 mb, respectively, for $E_n = 2.56$ MeV and 1.8 and 0.3 mb for $E_n = 2.74$ MeV (1956DA23).

Elastic and inelastic neutron angular distributions show forward peaking at $E_n = 14$ MeV (1958AN32, 1958NA09); see ^{10}Be, (1958RE1A, 1958TO1A).

15. $^9\text{Be}(p, p)^9\text{Be}$

Elastic scattering has been studied at $E_p = 14.5, 20$ and 31.5 MeV by (1956KI54), at 10 MeV by (1956RA32), at 12 MeV by (1958SU14), at 17 MeV by (1956DA03), at 31 MeV by (1953WR1A, 1954FI1A, 1956BE14); see also ^{10}Be. All angular distributions show pronounced diffraction maxima characteristic of the optical model. Analysis in terms of the diffuse-surface optical model is discussed by (1957ME21). See also (1956KL55, 1956SH1C).

Inelastic scattering is observed corresponding to levels at (1.8), 2.43, 3.1, 5.0, 6.8, 7.9, 11.3, (14.5), (17.5), (19.9) and (21.7) MeV; see Table 9.3. It is not clear whether the structure observed near 1.8 MeV is properly to be attributed to a level at this energy or to a three-body breakup,
Table 9.3: Levels of 9Be from 9Be(p, p$'$), (d, d$'$) and (α, α')

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>Γ (keV)</th>
<th>J^π</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>150</td>
<td>$(\frac{1}{2}^+)^a$</td>
</tr>
<tr>
<td>(1.8)</td>
<td>≤ 1 a</td>
<td>$\frac{1}{2}^-$, $\frac{5}{2}^-$</td>
</tr>
<tr>
<td>2.433 ± 0.003</td>
<td>> 280 e</td>
<td>$\leq \frac{3}{2}^-$</td>
</tr>
<tr>
<td>3.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 ± 0.3 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.76 ± 0.06 c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.94 ± 0.08 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3 ± 0.2 d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14.5) b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(17.5) b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.9 ± 0.1 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.7 ± 0.1 b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b (1956BE14).

c This level may be double: see (1952BR52, 1956BE14, 1956ST30, 1958SU14, 1958TY46).

e See 11B(d, α)9Be (1958KA31).

modified by the proximity of the neutron threshold. If the former is correct, the level width is 0.15 MeV and $J = \frac{1}{2}^+$ (1955GO48, 1958SU14). If a three-body breakup is involved, some interaction between the neutron and the 8Be must be involved: (1956BO18) find a satisfactory fit to the observed shape with an s-wave scattering length of 20×10^{-13} cm; see also (1958MI1C) and 11B(d, α)9Be. It is suggested by (1956SU67, 1958SU14) that the observed structure is to be understood in terms of a heavy particle stripping process and it is conjectured that the 4.8-MeV level may reflect the same effect, involving 8Be*(2.9); see, however, (1958MI1C).

A continuous distribution of neutrons, observed for $E_p > 4.5$ MeV is attributed to formation of 9Be*(2.4) with subsequent breakup into n + 8Be*(2.9) (1959MA20). Breakup into (8Be + n) occurs in 12 ± 5 % of transitions (J.B. Marion, private communication).

The energy of the 2.4-MeV level is given as 2433 ± 5 (1951BR72), 2434 ± 5 (1956BO18), 2432 ± 4 keV (1955GO48); the width is ≤ 1 keV (1955GO48). Analysis of angular distributions at $E_p = 12$ MeV in terms of direct interaction plus compound nucleus formation indicate $J = \frac{1}{2}^-$ or $\frac{5}{2}^-$ (1958SU14). At $E_p = 31$ MeV, analysis indicates $J = \frac{1}{2}^+$, $\frac{3}{2}^+$ or $\frac{5}{2}^+$ (1956BE14: see, however, (1958SU14)). Results at $E_p = 10$ MeV are consistent with odd parity (1956RA32). See
also 10B(n, d)9Be and (1952DA1B).

The 3.03 ± 0.03 MeV level has a width > 0.28 MeV; the Wigner limit then restricts l_n to 0 or 1, $J \leq \frac{3}{2}$ (1956BO18; see, however, 11B(d, α)9Be). Angular distributions for the higher levels have been studied by (1956BE14); the resulting spin assignments are given in Table 9.3. See also (1954FI1A, 1955GR12, 1958TY46) and (1956BL1B; theor.).

16. 9Be(d, d)9Be*

Elastic scattering angular distributions have been studied at $E_d = 24$ MeV by (1958SU14). See also (1947GU1A, 1952EL01) and 11B.

Inelastic groups are reported corresponding to levels at (1.7), 2.4, 3.01 ± 0.1 (\(\Gamma \approx 0.3\)), 4.8 and 6.8 MeV (1955RA41, 1956GR37, 1958MI1C, 1958SU14). The structure at $Q = -1.7$ MeV may be accounted for as a three-body breakup with an s-wave (n-8Be) interaction characterized by a scattering length of 20 × 10$^{-13}$ cm, or by a resonance of about single-particle width. In either case a $J = \frac{1}{2}^+$ level of 9Be is indicated near the binding energy (1955RA41, 1958MI1C; see also 11B(d, α)9Be). The angular distribution of the $Q = -2.43$ MeV group has been studied at $E_d = 15$ MeV (1956HA90) and $E_d = 24$ MeV (1958SU14). Analysis by direct interaction theory yields $l = 2$, $J = \frac{1}{2}^-$, $\frac{5}{2}^-$ or $\frac{7}{2}^-$ (1958SU14; see, however, (1956HA90)). See also (1956SU1A).

17. 9Be(α, α')9Be*

Elastic scattering has been studied at $E_\alpha = 48$ MeV by (1958SU14).

Inelastic groups are observed corresponding to 9Be* = (1.8), 2.4, (3.1), 6.8 and 11.3 MeV (1955RA41, 1956FA02, 1958SU14). The group corresponding to the 1.8-MeV “level” has a peak at $Q = -1.83 \pm 0.03$ MeV, $\Gamma \approx 200$ keV. It is suggested, however, that just such a structure would be expected from a heavy particle stripping process in which the proton also escapes, preferentially with the maximum possible energy. In this case, the 4.8-MeV “level” might arise from a similar process, in which the final nucleus is now 8Be*(2.9). The angular distribution of the $Q = -2.4$ MeV group at $E_\alpha = 48$ MeV indicates $l = 2$, $J = \frac{1}{2}^-$, $\frac{5}{2}^-$ or $\frac{7}{2}^-$ (1958SU14). Measurement of the momentum and angular distributions of α-particles from the breakup of 9Be*(2.4) indicate that the decay proceeds mainly via 4He + 5He, or by direct three-body breakup. Gamma decay is < 1%, neutron emission to 8Be(0) is < 10% (1957BO83). See also (1956BL1B, 1958PI1B; theor.).

18. (a) 9Be(p, d)8Be

(b) 9Be(d, t)8Be

At $E_p = 95$ MeV, two groups of deuterons are observed from reaction (a), corresponding to 8Be$_{g.s.}$ and to states near 17 MeV. It is suggested that these reflect the “snatching” of the loosely
bound neutron or of one of the tightly bound “alpha-particle” neutrons, respectively. Angular distributions lend some support to the α-particle model of 9Be; the occurrence of high momenta for the tightly bound neutrons indicates the operation of strong short-range two-body forces (1956SE1A).

Angular distributions at $E_p = 6.5$ and 22 MeV, and at $E_d = 7.7$ MeV are analyzed in terms of pickup theory, using a square-well (n-8Be) interaction to represent the ground state of 9Be (1955DA1D, 1955DA1E). See also 8Be and 10B.

19. (a) 10B(γ, p)9Be $Q_m = -6.585$
(b) 10B(γ, p)8Be + n $Q_m = -8.251$

For reaction (a) see (1956GO1F, 1956GO1G). For reaction (b) see 8Be and 10B.

20. 10B(n, d)9Be $Q_m = -4.358$

At $E_n = 14$ MeV, the ground state and the level at 2.43 MeV are observed. No other deuteron groups were detected below $E_x \approx 5.5$ MeV. The angular distribution of the deuterons, analyzed by pickup theory, indicate odd parity, $\frac{1}{2} < J \leq \frac{9}{2}$ for both states (1954RI15). See also (1956FR18), (1955FR1F; theor.) and 11B.

21. 10B(d, 3He)9Be $Q_m = -1.091$

Not observed.

22. 10B(t, α)9Be $Q_m = 13.228$

At $E_t = 1$ MeV, α-groups are observed corresponding to 9Be levels at 2.39 and 3.06 MeV (1955AL57).

23. 11B(n, t)9Be $Q_m = -9.564$

Not observed.

24. 11B(p, 3He)9Be $Q_m = -10.329$
25. $^{11}\text{B}(d, \alpha)^9\text{Be}$

\[Q_m = 8.022 \]
\[Q_0 = 8.015 \pm 0.010 \text{ MeV} (1956BO18). \]

Alpha-particle groups are reported to states at (1.75), 2.4 and 3.0 MeV. The structure corresponding to the 1.75-MeV state can be explained in terms of an (n-^8Be) interaction with a scattering length a of 20×10^{-13} cm or in terms of a resonance near threshold, with $\theta^2 \approx 1$ (1956BO18, 1958MI1C). (1958KA31) find, on the other hand, that a value of $a \geq 80 \times 10^{-13}$ cm is required to fit their distribution and suggest that the (n-^8Be) interaction must be very near resonance on this model. The energy of the 2.4-MeV state is given as 2422 ± 5 keV by (1951VA08), 2431 ± 6 keV (1954EL10), 2424 ± 5 keV (1956BO18). The next state is located at 3.02 ± 0.03 (1955LE36), 3.05 ± 0.03 MeV (1956BO18). The width is ≈ 0.3 MeV (1956BO18), $\Gamma_{c.m.} = 161 \pm 15$ keV (1958KA31). See also (1955HO48).

26. $^{12}\text{C}(n, \alpha)^9\text{Be}$

\[Q_m = -5.709 \]

At $E_n = 14$ MeV, the cross section to the ground state of ^9Be is 80 ± 20 mb; that to the 2.43-MeV level, $\sigma_{2.43}$, is $10 \leq \sigma_{2.43} \leq 210$ mb (1955GR21).

27. $^{13}\text{C}(\gamma, \alpha)^9\text{Be}$

\[Q_m = -10.654 \]

See (1953MI31).
The excitation functions for protons leading to the ground and 2.9-MeV excited states of ^8Be have been measured for $E(3\text{He}) = 0.9$ to 5.1 MeV ($\theta = 0^\circ$ and 150°, lab.). Resonances are observed at $E(3\text{He}) = 1.6$ MeV ($\Gamma = 0.25$ MeV, $^9\text{B}^*$ = 17.6 MeV) and 3.0 MeV ($\Gamma = 1.5$ MeV, $^9\text{B}^*$ = 18.6 MeV) (1956SC01). However, J.W. Butler (private communication) suggests that the decrease in the yield for $E(3\text{He}) \gtrsim 3$ MeV can be accounted for by competition from the $^6\text{Li}(3\text{He}, n)^8\text{B}$ reaction with a threshold at 2.966 MeV. Angular distributions, taken at 6 energies, are isotropic at ≈ 1 MeV and become increasingly asymmetric at higher energies. In particular, the ground state protons exhibit strong backward peaking for $E(3\text{He}) \gtrsim 3$ MeV (1956SC01).

The excitation functions for protons leading to the ground and 2.9-MeV excited states of ^8Be have been measured for $E(3\text{He}) = 0.9$ to 5.1 MeV ($\theta = 0^\circ$ and 150°, lab.). Resonances are observed at $E(3\text{He}) = 1.6$ MeV ($\Gamma = 0.25$ MeV, $^9\text{B}^*$ = 17.6 MeV) and 3.0 MeV ($\Gamma = 1.5$ MeV, $^9\text{B}^*$ = 18.6 MeV) (1956SC01). However, J.W. Butler (private communication) suggests that the decrease in the yield for $E(3\text{He}) \gtrsim 3$ MeV can be accounted for by competition from the $^6\text{Li}(3\text{He}, n)^8\text{B}$ reaction with a threshold at 2.966 MeV. Angular distributions, taken at 6 energies, are isotropic at ≈ 1 MeV and become increasingly asymmetric at higher energies. In particular, the ground state protons exhibit strong backward peaking for $E(3\text{He}) \gtrsim 3$ MeV (1956SC01).

1. $^6\text{Li}(3\text{He}, p)^8\text{Be}$ \hspace{1cm} $Q_m = 16.786$ \hspace{1cm} $E_b = 16.598$

The excitation functions for protons leading to the ground and 2.9-MeV excited states of ^8Be have been measured for $E(3\text{He}) = 0.9$ to 5.1 MeV ($\theta = 0^\circ$ and 150°, lab.). Resonances are observed at $E(3\text{He}) = 1.6$ MeV ($\Gamma = 0.25$ MeV, $^9\text{B}^*$ = 17.6 MeV) and 3.0 MeV ($\Gamma = 1.5$ MeV, $^9\text{B}^*$ = 18.6 MeV) (1956SC01). However, J.W. Butler (private communication) suggests that the decrease in the yield for $E(3\text{He}) \gtrsim 3$ MeV can be accounted for by competition from the $^6\text{Li}(3\text{He}, n)^8\text{B}$ reaction with a threshold at 2.966 MeV. Angular distributions, taken at 6 energies, are isotropic at ≈ 1 MeV and become increasingly asymmetric at higher energies. In particular, the ground state protons exhibit strong backward peaking for $E(3\text{He}) \gtrsim 3$ MeV (1956SC01).

2. $^6\text{Li}(\alpha, n)^9\text{B}$ \hspace{1cm} $Q_m = -3.979$

See (1956RO06).

3. $^7\text{Li}(3\text{He}, n)^9\text{B}$ \hspace{1cm} $Q_m = 9.346$

Not reported.

4. $^9\text{Be}(p, n)^9\text{B}$ \hspace{1cm} $Q_m = -1.854$

The width of the ground state is < 2 keV (1951ST76). At $E_p = 6.59$ MeV, a neutron group is observed corresponding to a level at 2.37 ± 0.04 MeV. A continuous distribution of neutrons, attributed to the (p, p'n) reaction, is also observed (1953AJ09, 1959MA20; see also (1950JO1B) and ^9Be). For $E_p = 2$ to 5.8 MeV, two neutron thresholds have been observed at $E_p = 2.060 \pm 0.003$ and 4.645 ± 0.005 MeV ($^9\text{B}^* = 2.326 \pm 0.006$ MeV + $\frac{1}{2}\Gamma$). The continued slow neutron yield above threshold suggests $l = 1$ neutron emission (1955MA84). A broad threshold reported at $E_p = 3.6$ MeV appears to have been due to variation in counter sensitivity. It is possible, however, that part of the continuum neutron spectrum arises from a ^9B level expected near 1.4 MeV (1959MA20). See also (1957KI1B, 1958BO63).
Table 9.4: Energy levels of ^9B

<table>
<thead>
<tr>
<th>E_x in ^9B (MeV)</th>
<th>J^π</th>
<th>Γ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$>\frac{1}{2}^-$</td>
<td>< 2</td>
<td>(p, α)</td>
<td>4, 5, 6, 7, 8, 9, 11</td>
</tr>
<tr>
<td>2.37 ± 0.02</td>
<td>$>\frac{1}{2}^-$</td>
<td>80</td>
<td>(p, α)</td>
<td>4, 7, 9, 11</td>
</tr>
<tr>
<td>2.83 ± 0.03</td>
<td></td>
<td>300</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>(7.0)</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>17.6</td>
<td></td>
<td>170</td>
<td>$p, ^3\text{He}, \alpha$</td>
<td>1</td>
</tr>
<tr>
<td>(18.6)</td>
<td></td>
<td>1000</td>
<td>$p, ^3\text{He}, \alpha$</td>
<td>1</td>
</tr>
</tbody>
</table>

5. $^9\text{Be}(^3\text{He}, t)^9\text{B}$ \[Q_m = -1.089\]

The ground state angular distributions are peaked in the forward direction at $E(^3\text{He}) = 5.7$ MeV (S. Hinds and R. Middleton) and 21 MeV (1958WE1E).

6. $^{10}\text{B}(\gamma, n)^9\text{B}$ \[Q_m = -8.439\]

See (1951SH63).

7. $^{10}\text{B}(p, d)^9\text{B}$ \[Q_m = -6.212\]

At $E_p = 18.9$ MeV, deuteron groups are observed corresponding to the ground state of ^9B and to an excited state at 2.40 ± 0.15 MeV. The angular distributions to both states, analyzed by pickup theory, show an $l = 1$ transfer, indicating odd parity, $\frac{1}{2} < J \leq \frac{9}{2}$, for these states (1956RE04). The ratio of cross sections is in good agreement with an intermediate-coupling calculation (1955FR1F).

8. $^{10}\text{B}(d, t)^9\text{B}$ \[Q_m = -2.180\]

At $E_d = 18.9$ MeV, deuteron groups are observed corresponding to the ground state of ^9B and to an excited state at 2.40 ± 0.15 MeV. The angular distributions to both states, analyzed by pickup theory, show an $l = 1$ transfer, indicating odd parity, $\frac{1}{2} < J \leq \frac{9}{2}$, for these states (1956RE04). The ratio of cross sections is in good agreement with an intermediate-coupling calculation (1955FR1F).

9. $^{10}\text{B}(^3\text{He}, \alpha)^9\text{B}$ \[Q_m = 12.139\]

15
At $E(^3\text{He}) = 1$ MeV, alpha-particle groups have been observed corresponding to the ground state of ^9B and to an excited state at 2.58 ± 0.13 MeV (1955AL57). At $E(^3\text{He}) = 2$ to 3 MeV, groups are observed corresponding to the ground state and to levels at $E_x = 2.37 \pm 0.02$ MeV and 2.83 ± 0.03 MeV. The widths are 80 keV and 300 keV for $^9\text{B*}(2.37)$ and $^9\text{B*}(2.83)$, respectively. There is no evidence of a well-defined state corresponding to $^9\text{Be*}(1.75)$ (1958PO61, 1959PO61). See also (1959SP17).

10. $^{11}\text{B}(p, t)^9\text{B}$

$q_m = -11.418$

Not observed.

11. $^{12}\text{C}(p, \alpha)^9\text{B}$

$q_m = -7.563$
$q_0 = -7.58 \pm 0.1$ (1955RE16).

At $E_p = 18.8$ MeV, alpha-particle groups have been observed to the ground state of ^9B and to an excited state at 2.39 ± 0.08 MeV. The two α-groups are superimposed on a background possibly due to $^{12}\text{C}(p, p')^{12}\text{C*} \rightarrow 3\alpha$. The average differential cross section for the ground state group at $E_p \approx 18$ MeV is 3 ± 1 mb/sr. No other groups were observed up to $E_x \approx 7.9$ MeV (1955RE16). The angular distribution of the ground state group at $E_p = 15.6$ to 18.6 MeV is consistent with triton pickup or knock-on theories, except for discrepancies at low angles (1958MA40). At $E_p = 29$ MeV, the reaction appears to go to the ground state and to a level at 3.2 ± 1.0 MeV (1955NE18: stars in a cloud chamber; $^{12}\text{C} + p \rightarrow \alpha + ^9\text{B} \rightarrow 3\alpha + p$). At $E_p = 32$ MeV, groups corresponding to $^9\text{B}(0)$, $^9\text{B*}(2.4)$ and a new level at 7.0 MeV are observed (1958KN52).

^9C

(Not illustrated)

Comparison with the mass of ^9Li leads to an estimated mass excess of 32.3 ± 2 MeV (1955AJ61). Analysis of a single star attributed to β-decay of ^9C and subsequent breakup into $p + 2\alpha$ yields $Q > 15.4$ MeV, mass excess > 30.2 MeV (1956SW77). Stability against $^8\text{B} + p$ requires a mass excess < 32.9 MeV. Two reactions leading to ^9C which have not been reported are $^7\text{Be}(^3\text{He}, n)^9\text{C}$ ($q_m = -7$) and $^{12}\text{C}(\gamma, 3n)^9\text{C}$ ($q_m = -54$).
References

(Closed December 01, 1958)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author’s name and then by two additional characters. Most of the references appear in the National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form 1A, 1B, etc. In response to many requests for more informative citations, we have, when possible, included up to ten authors per paper and added the authors’ initials.

1948RU1A Russell, Sachs, Wattenberg and Fields, Phys. Rev. 73 (1948) 545
1949GU1A Guth and Mullin, Phys. Rev. 76 (1949) 234
1949HA1A Hamermesh, Hamermesh and Wattenberg, Phys. Rev. 76 (1949) 611
1950JO1B Johnson, Ajzenberg and Laubenstein, Phys. Rev. 79 (1950) 187
1951BR72 C.P. Browne, R.M. Williamson, D.S. Craig and D.J. Donahue, Phys. Rev. 83 (1951) 179
1951GA30 W.L. Gardner, N. Knable and B.J. Moyer, Phys. Rev. 83 (1951) 1054
1951SH63 R. Sher, J. Halpern and A.K. Mann, Phys. Rev. 84 (1951) 387
1951ST76 P.H. Stelson and W.M. Preston, Phys. Rev. 83 (1951) 469
1952AL26 D.E. Alburger, Phys. Rev. 88 (1952) 1257
1952AL30 D.E. Alburger, Physica 18 (1952) 1034
1952BA1A Baggett and Bame, Phys. Rev. 85 (1952) 434
1952BR52 R. Britten, Phys. Rev. 88 (1952) 283
1952DA1B Davis, Phys. Rev. 86 (1952) 976
1952SH44 R.K. Sheline, Phys. Rev. 87 (1952) 557
1953FR03 W.F. Fry, Phys. Rev. 89 (1953) 325
1953HA1A Haslam, Katz, Crosby, Summers-Gill and Cameron, Can. J. Phys. 31 (1953) 210
1953HA1B Hamermesh and Kimball, Phys. Rev. 90 (1953) 1063
1953HE1B Hendel, Z. F. Phys. 135 (1953) 168
1953HO79 R. Hofstadter, H.R. Fechter and J.A. McIntyre, Phys. Rev. 92 (1953) 978
1953JO1B Jones and Terwilliger, Phys. Rev. 91 (1953) 699
1953NA1A Nathans and Halpern, Phys. Rev. 92 (1953) 940
1953RE19 D. Reagan, Phys. Rev. 92 (1953) 651
1953SA1A Sawyer and Phillips, Los Alamos Rept. 1578 (1953)
1953WR1A Wright, UCRL 2422 (1953)
1954BA46 S. Bashkin, Phys. Rev. 95 (1954) 1012
1954CA1A Carver, Knodiah and McDaniel, Phil. Mag. 45 (1954) 948
1954ER1B Erikson and Zaleski, J. Rad. Phys. 15 (1954) 492
1954FI1A Finke, UCRL 2789 (1954)
1954MC45 J.A. McIntyre, B. Hahn and R. Hofstadter, Phys. Rev. 94 (1954) 1084
1954RI15 F.L. Ribe and J.D. Seagrave, Phys. Rev. 94 (1954) 934
1955AJ61 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 27 (1955) 77
1955BE1E Bendt and Scott, Phys. Rev. 97 (1955) 744
1955FO1B Fowler, Hanna and Owen, Phys. Rev. 98 (1955) 249A
1955JO1B Johansson, Phys. Rev. 97 (1955) 434
1955MA84 J.B. Marion, T.W. Bonner and C.F. Cook, Phys. Rev. 100 (1955) 91
1955NE18 J.L. Need, Phys. Rev. 99 (1955) 1356
1955RA14 D.C. Ralph and F.E. Dunnam, Phys. Rev. 98 (1955) 249A
1955RE16 J.B. Reynolds, Phys. Rev. 98 (1955) 1289
1956BL1B Blair and Henley, Bull. Amer. Phys. Soc. 1 (1956) 20; Physica 22 (1956) 1126A
1956CZ1B Czyz, Phys. Rev. 102 (1956) 1185
1956CZ1C Czyz and Sawicki, Nuovo Cim. 3 (1956) 864; Physica 22 (1956) 1182A
1956ED1B Edge, Nucl. Phys. 2 (1956) 485
1956FA1B Fabricand, Allison and Halpern, Phys. Rev. 103 (1956) 1755
1956FL1A Flynn, Glendenin and Steinberg, Phys. Rev. 101 (1956) 1492
1956GO1F Goldanskii, Physica 22 (1956) 1143A
1956HA90 J.W. Haffner, Phys. Rev. 103 (1956) 1398
1956HO93 R. Hofstadter, Rev. Mod. Phys. 28 (1956) 214
1956KL19 G.K. Kliger, V.I. Riabinkin, I.V. Chuvilo and V.S. Shevchenko, Physica 22 (1956) 1142A
1956KU1A Kurath, Phys. Rev. 101 (1956) 216
1956RA32 S.W. Rasmussen, Phys. Rev. 103 (1956) 186
1956RI37 A.C. Riviere, Nucl. Phys. 2 (1956) 81
1956SE1A Selove, Phys. Rev. 101 (1956) 231
1956SU1A Summers-Gill, UCRL 3388 (1956)
1956SW77 M.S. Swami, J. Schneps and W.F. Fry, Phys. Rev. 103 (1956) 1134
1956WA29 H.J. Watters, Phys. Rev. 103 (1956) 1763
1957BA1H Barker, Phil. Mag. 2 (1957) 780
1957EH1A Ehrenberg, Meyer-Berkhout, Hofstadter, Ravenhall and Sobottka, Bull. Amer. Phys. Soc. 2 (1957) 390
1957FI1B Fischer, Phys. Rev. 108 (1957) 99
1957JA37 N. Jarmie, J.D. Seagrave et al., LA-2014 (1957)
1957KO1B Kopaleishvili, Zh. Eksp. Teor. Fiz. 32 (1957) 1249; JETP (Sov. Phys.) 5 (1958) 1018
1957PA1A Pal and Mukherjee, Phys. Rev. 106 (1957) 811
1957RO1D Rosen and Stewart, Phys. Rev. 107 (1957) 824
1958BA60 W.C. Barber, Phys. Rev. 111 (1958) 1642
1958BE1E Berlin and Owen, Nucl. Phys. 5 (1958) 669
1958EH1A Ehrenberg and Hofstadter, HEPL 129 (1958)
1958KU1B Kunz and Henley, Bull. Amer. Phys. Soc. 3 (1958) 323
1958MI1C Miller, Phys. Rev. 109 (1958) 1669
1958PA1B Palfrey and Tautfest, Bull. Amer. Phys. Soc. 3 (1958) 173
1958RE1A Remy and Winter, Nuovo Cim. 9 (1958) 664
1958ST1A Stewart, Conf. on Photonucl. Reactions, National Bureau of Standards (1958)
1958TO1A Torki, Winter and Remy, Compt. Rend. 246 (1958) 3047
1958WH1A Whitehead, Murray, Aitken, Middlemas and Collie, Phys. Rev. 110 (1958) 941
1959MA20 J.B. Marion and J.S. Levin, Phys. Rev. 115 (1959) 144
1959PO61 B. Povh, Phys. Rev. 114 (1959) 1114
1959SP1B Spicer, (1959)