Energy Levels of Light Nuclei

$A = 10$

F. Ajzenberg-Selove

University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396

Abstract: An evaluation of $A = 5–10$ was published in Nuclear Physics A490 (1988), p. 1. This version of $A = 10$ differs from the published version in that we have corrected some errors discovered after the article went to press. The introduction and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

(References closed June 1, 1988)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-FG02-86ER40279]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).
Table of Contents for $A = 10$

Below is a list of links for items found within the PDF document. The introductory Table 2 is available on this website via the link.

A. Nuclides: ^{10}n, ^{10}He, ^{10}Li, ^{10}Be, ^{10}B, ^{10}C, ^{10}N, ^{10}O, ^{10}F, ^{10}Ne

B. Tables of Recommended Level Energies:

- **Table 10.1**: Energy levels of ^{10}Be
- **Table 10.5**: Energy levels of ^{10}B
- **Table 10.18**: Energy levels of ^{10}C

C. References

D. Figures: ^{10}Be, ^{10}B, ^{10}C, Isobar diagram

E. Erratum to the Publication: PS or PDF
\(^{10}\text{n}\)
(Not illustrated)

\(^{10}\text{n}\) has not been observed: see (1979AJ01). See also (1986AB10; theor.).

\(^{10}\text{He}\)
(Not illustrated)

\(^{10}\text{He}\) has not been observed. It has been searched for in the spontaneous fission of \(^{252}\text{Cf}\) (1982AL33), in the fragmentation of 0.79 GeV/A \(^{11}\text{Li}\) ions (1987KO1Y) and in the fragmentation of a 30 MeV/A \(^{18}\text{O}\) beam (1988ST06). The production rate in the latter experiment is \(<3 \times 10^{-5}\) of the measured production probability of \(^{8}\text{He}\) (1988ST06). See also (1984AJ01). The calculated value of the atomic mass excess of \(^{10}\text{He}\) is 48.92 ± 0.14 MeV; \(^{10}\text{He}\) is then unstable with respect to breakup into \(^{9}\text{He} + \text{n}\) and \(^{8}\text{He} + 2\text{n}\) by 0.04 and 1.18 MeV, respectively (1988BRZZ). See also (1984BE1C), (1979AJ01, 1984AJ01, 1987FL1A, 1987HA1R, 1987PE1C, 1987SE05) and (1983ANZQ, 1983PO1A, 1984VA06, 1985PO10, 1985SA32, 1986SA30, 1987BL18, 1987SA15; theor.).

\(^{10}\text{Li}\)
(Fig. 4)

At \(E(\text{Be}) = 121\) MeV, \(^{10}\text{Li}\) has been observed in the \(^{9}\text{Be}(\text{Be}, \alpha)^{10}\text{Li}\) reaction with a differential cross section (c.m.) of \(\approx 30\) nb/sr at \(\theta = 14^\circ\) (lab): \(Q_0 = -34.06 \pm 0.25\) MeV, and the atomic mass excess of \(^{10}\text{Li}\) is 33.83 ± 0.25 MeV if the group observed (\(\Gamma \approx 1.2 \pm 0.3\) MeV) corresponds to the ground state. \(^{10}\text{Li}_{g.s.}\) would then be unbound with respect to breakup into \(^{9}\text{Li} + \text{n}\) by 0.80 ± 0.25 MeV: see (1979AJ01). See also (1986GI10, 1987AB15), (1984AJ01, 1985AL1G, 1987PE1C) and (1982KA1D, 1983ANZQ, 1983FE07, 1984VA06, 1985PO10, 1986AB10, 1988POZS; theor.).

\(^{10}\text{Be}\)
(Figs. 1 and 4)

GENERAL: See also (1984AJ01).

Muon and neutrino capture and reactions: (1984KO24).

Other topics: (1984PO11, 1985AN28, 1985WI1B).

Fig. 1: Energy levels of 10Be. In these diagrams, energy values are plotted vertically in MeV, based on the ground state as zero. Uncertain levels or transitions are indicated by dashed lines; levels which are known to be particularly broad are cross-hatched. Values of total angular momentum J, parity, and isobaric spin T which appear to be reasonably well established are indicated on the levels; less certain assignments are enclosed in parentheses. For reactions in which 10Be is the compound nucleus, some typical thin-target excitation functions are shown schematically, with the yield plotted horizontally and the bombarding energy vertically. Bombarding energies are indicated in laboratory coordinates and plotted to scale in cm coordinates. Excited states of the residual nuclei involved in these reactions have generally not been shown; where transitions to such excited states are known to occur, a brace is sometimes used to suggest reference to another diagram. For reactions in which the present nucleus occurs as a residual product, excitation functions have not been shown; a vertical arrow with a number indicating some bombarding energy, usually the highest, at which the reaction has been studied, is used instead. Further information on the levels illustrated, including a listing of the reactions in which each has been observed, is contained in the master table, entitled “Energy levels of 10Be.”

The interaction nuclear radius of 10Be is 2.46 ± 0.03 fm [(1985TA18), $E = 790$ MeV/A; see also for derived nuclear matter, charge and neutron matter r.m.s. radii].

$B(E2)^\uparrow$ for 10Be*(3.37) = $(5.2 \pm 0.6) \times 10^{-3} \, e^2 \cdot b^2 \leq Q_0 = 0.229 \pm 0.013$ b] (1987RA01).

1. 10Be($\beta^-)^{10}$B $Q_m = 0.5561$

The half-life of 10Be is $(1.51 \pm 0.06) \times 10^6$ y (1987HO1P). Log $ft = 13.397 \pm 0.017$ (M.J. Martin, private communication). For the earlier work see (1974AJ01).

2. (a) 7Li(t, γ)10Be $Q_m = 17.2498$
 (b) 7Li(t, n)9Be $Q_m = 10.4378$ $E_b = 17.2498$
 (c) 7Li(t, p)6Li $Q_m = -2.386$
 (d) 7Li(t, t)7Li $Q_m = 9.839$

The yield of γ_0 and γ_1 has been studied for $E_t = 0.4$ to 1.1 MeV [10Be*(17.79) is said to be involved]: see (1984AJ01). The neutron yield exhibits a weak structure at $E_t = 0.24$ MeV and broad resonances at $E_t \approx 0.77$ MeV [$\Gamma = 160 \pm 50$ keV] and 1.74 MeV: see (1966LA04) [10Be*(17.79, 18.47)]. The total cross section for reaction (c), the yield of neutrons (reaction (b) to 9Be*(14.39)), and the yield of γ-rays from 7Li*(0.48)(reaction (d)) all show a sharp anomaly at $E_t = 5.685$ MeV; $J^m = 2^-$; $T = 2$ is suggested for a state at $E_x = 21.22$ MeV. The total cross section for α_0 (reaction (e)) and the all-neutrons yield do not show this structure: see (1983AB1A), (1984AJ01) and (1985DE19; theor.). An additional anomaly in the proton yield is also reported at $E_t = 8.5$ MeV [10Be*(23.2)][see (1987AB15)]. Differential cross sections and S-factors are reported by (1983CE1A) for $E_t = 70$ to 110 keV for 6He*(0, 1.80). The zero-energy S-factor for 6He*(1.80) is 14 ± 2.5 MeV·b. The relevance to an Li-seeded tritium plasma is discussed by (1983CE1A). See also (1987AB09), (1985CA41; astrophys.) and (1986AB10; theor.).

3. 7Li(3He, π^+)10Be $Q_m = -122.337$

Cross sections have been measured to 10Be*(3.37, 6.2[u], 7.4[u] [u=unresolved]) at $E(^3$He) = 235 MeV. The ground-state group is not seen: its intensity at $\theta_{lab} = 20^\circ$ is ≤ 0.1 that to 10Be*(3.37) (1984BI08).
Table 10.1: Energy levels of 10Be a

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>τ or $\Gamma_{c.m.}$ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0$^+$; 1</td>
<td>$\tau_{1/2} = (1.51 \pm 0.06) \times 10^6$ y</td>
<td>β^-</td>
<td>1, 2, 4, 5, 6, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26</td>
</tr>
<tr>
<td>3.36803 ± 0.03</td>
<td>2$^+$; 1</td>
<td>$\tau_m = 180 \pm 17$ fsec</td>
<td>γ</td>
<td>2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26</td>
</tr>
<tr>
<td>5.95839 ± 0.05</td>
<td>2$^+$; 1</td>
<td>$\tau_m < 80$ fsec</td>
<td>γ</td>
<td>4, 6, 11, 12, 16, 18, 19, 22, 24</td>
</tr>
<tr>
<td>5.9599 ± 0.6</td>
<td>1$^-$; 1</td>
<td></td>
<td>γ</td>
<td>4, 11, 12, 18, 19, 22, 24</td>
</tr>
<tr>
<td>6.1793 ± 0.7</td>
<td>0$^+$; 1</td>
<td>$\tau_m = 1.1^{+0.4}_{-0.3}$ psec</td>
<td>π, γ</td>
<td>11, 19</td>
</tr>
<tr>
<td>6.2633 ± 5</td>
<td>2$^-$; 1</td>
<td></td>
<td>γ</td>
<td>11, 12</td>
</tr>
<tr>
<td>7.371 ± 1</td>
<td>3$^-$; 1</td>
<td>$\Gamma = 15.7 \pm 0.5$ keV</td>
<td>n</td>
<td>5, 7, 11, 12</td>
</tr>
<tr>
<td>7.542 ± 1</td>
<td>2$^+$; 1</td>
<td>6.3 ± 0.8</td>
<td>n</td>
<td>4, 5, 7, 11, 12, 24</td>
</tr>
<tr>
<td>9.27</td>
<td>(4$^-$); 1</td>
<td>150 ± 20</td>
<td>n</td>
<td>5, 7, 11, 12</td>
</tr>
<tr>
<td>9.4</td>
<td>(2)$^+$; 1</td>
<td>291 ± 20</td>
<td>n</td>
<td>5, 7, 11, 12, 18, 24</td>
</tr>
<tr>
<td>10.57 ± 30</td>
<td>≥ 1; 1</td>
<td></td>
<td>n</td>
<td>4, 5, 7, 11</td>
</tr>
<tr>
<td>11.76 ± 20</td>
<td></td>
<td>121 ± 10</td>
<td>γ, n, t</td>
<td>2, 4, 5</td>
</tr>
<tr>
<td>17.79</td>
<td></td>
<td>110 ± 35</td>
<td>n, t</td>
<td>2, 4, 5</td>
</tr>
<tr>
<td>18.55</td>
<td></td>
<td>≈ 350</td>
<td>n, p, t</td>
<td>2</td>
</tr>
<tr>
<td>(21.22)</td>
<td>(2$^-$; 2)</td>
<td>sharp</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>(24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a See also Table 10.4.
Table 10.2: Neutron-capture γ-rays in \(^{10}\text{Be}\) \(^{\text{a}}\)

<table>
<thead>
<tr>
<th>(E_\gamma) (keV) (^{\text{b}})</th>
<th>Transition</th>
<th>(E_x) (keV) (^{\text{b}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6809.585 (33)</td>
<td>capt. → g.s.</td>
<td>6812.038 (29)</td>
</tr>
<tr>
<td>5955.9 (5) (^{\text{a}})</td>
<td>5.96 (^{\text{c}}) → g.s.</td>
<td>5958.387 (51)</td>
</tr>
<tr>
<td>3443.374 (30)</td>
<td>capt. → 3.37</td>
<td></td>
</tr>
<tr>
<td>3367.415 (30)</td>
<td>3.37 → g.s.</td>
<td>3368.029 (29)</td>
</tr>
<tr>
<td>2589.999 (60)</td>
<td>5.96 (^{\text{c}}) → 3.37</td>
<td></td>
</tr>
<tr>
<td>853.605 (60)</td>
<td>capt. → 5.96 (^{\text{c}})</td>
<td></td>
</tr>
</tbody>
</table>

\(^{\text{a}}\) See also Tables 10.2 in (1974AJ01, 1979AJ01).

\(^{\text{b}}\) (1983KE11). 12 eV has been added in quadrature to the uncertainties. I am very grateful to T.J. Kennett for his comments. Some of the work displayed in Table 10.2 of (1984AJ01) is not shown here because it has not been published. However, those particular transitions are shown in Fig. 1 since it is clear that they have been observed although the lack of published uncertainties make their inclusion in this table inadvisable.

\(^{\text{c}}\) This is the \(2^+\) member of the doublet at \(E_x = 5.96\) MeV.

4. \(^{7}\text{Li}(\alpha, p)^{10}\text{Be}\)

\[Q_m = -2.5642 \]

See (1987BI1C) and (1979AJ01).

5. \(^{7}\text{Li}(^{7}\text{Li}, \alpha)^{10}\text{Be}\)

\[Q_m = 14.782 \]

6. \(^{9}\text{Be}(n, \gamma)^{10}\text{Be}\)

\[Q_m = 6.8120 \]

The thermal capture cross section is \(8.49\pm0.34\) mb (1986CO14). Reported γ-ray transitions are displayed in Table 10.2 (1983KE11). Partial cross sections involving \(^{10}\text{Be}^*\)(0, 3.37, 5.96) are listed in (1987LY01). See also (1984SH1P, 1984SH1R) and (1985MU03, 1986MU1B, 1986RA1B, 1987LY01, 1988MU05; theor.).
Table 10.3: Resonances in 9Be(n, n)9Bea

<table>
<thead>
<tr>
<th>E_{res} (MeV ± keV)</th>
<th>$^{10}\text{Be}^*$ (MeV)</th>
<th>$\Gamma_{\text{c.m.}}$ (keV)</th>
<th>J^π</th>
<th>l</th>
<th>θ^2 (%) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6220 ± 0.8</td>
<td>7.371</td>
<td>15.7 ± 0.5</td>
<td>3$^-$</td>
<td>2</td>
<td>7.5</td>
</tr>
<tr>
<td>0.8118 ± 0.7</td>
<td>7.542</td>
<td>6.3 ± 0.8</td>
<td>2$^+$</td>
<td>1</td>
<td>0.28</td>
</tr>
<tr>
<td>2.73</td>
<td>9.27</td>
<td>≈ 100</td>
<td>(4$^-$)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>(2.85)</td>
<td>9.4</td>
<td>≈ 400</td>
<td>(2$^+$)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>10.7</td>
<td>≥ 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a For references see Table 10.3 in (1979AJ01).

b $R = 5.6$ fm.

7. (a) 9Be(n, n)9Be

(b) 9Be(n, 2n)8Be

$Q_m = -1.6654$

$E_b = 6.8120$

The scattering amplitude (bound) $a = 7.778 ± 0.003$ fm, $\sigma_{\text{free}} = 6.151 ± 0.005$ b (1981MUZQ). The difference in the spin-dependent scattering lengths, $b^+ - b^-$ is $+0.24 ± 0.07$ (1987GL06). See also (1987LY01). Total cross section measurements have been reported for $E_n = 2 \times 10^{-3}$ eV to 2.6 GeV/c [see (1979AJ01, 1984AJ01)] and at 24 keV (1983AI01), 7 to 15 MeV (1983DA22; also reaction cross sections) and 10.96, 13.89 and 16.89 MeV (1985TE01; for n_0 and n_2).

Observed resonances are displayed in Table 10.3. Analysis of polarization and differential cross section data leads to the 3^-, 2^+ assignments for $^{10}\text{Be}^*(7.37, 7.55)$. Below $E_n = 0.5$ MeV the scattering cross section reflects the effect of bound 1^- and 2^- states, presumably $^{10}\text{Be}^*(5.960, 6.26)$. There is also indication of interference with s-wave background and with a broad $l = 1$, $J^\pi = 3^+$ state. The structure at $E_n = 2.73$ MeV is ascribed to two levels: a broad state at about 2.85 MeV with $J^\pi = 2^+$, and a narrow one, $\Gamma \approx 100$ keV, at $E_n = 2.73$ MeV with a probable assignment of $J^\pi = 4^-$.

The 4^- assignment results from a study of the polarization of the n_0 group at $E_n = 2.60$ to 2.77 MeV. A rapid variation of the polarization over this interval is observed, and the data are consistent with 4^- ($l = 2$) for $^{10}\text{Be}^*(9.27)$. A weak dip at $E_n \approx 4.3$ MeV is ascribed to a level with $J \geq 1$. See (1974AJ01) for references. The analyzing power has been measured for $E_n = 1.6$ to 15 MeV [see (1984AJ01)] and at $E_{\gamma} = 9$ to 17 MeV (1984BY03; n_0, n_2).

The non-elastic and the (n, 2n) cross sections rise rapidly to ≈ 0.6 b (≈ 0.5 b for (n, 2n)) at $E_n \approx 3.5$ MeV and then stay approximately constant to $E_n = 15$ MeV; see (1979AJ01, 1984AJ01). For total γ-ray production cross sections for $E_n = 2$ to 25 MeV, see (1986GO1L). See also (1983GO1H, 1984SH1P, 1984SH1R, 1986MU07), (1985PE06; applications) and (1986DU1G, 1987HAZS; theor.).

8. (a) 9Be(n, p)9Li

$Q_m = -12.824$

$E_b = 6.8120$
Cross sections have been measured at $E_n = 14.1 - 14.9$ MeV for reaction (a), 16.3 to 18.7 MeV for (b) and 13.3 to 15.0 (t_1) and 22.5 MeV (reaction (c)): see (1979AJ01). A recent measurement (reaction (c)) has been reported at $E_n = 14.6$ MeV (1987ZA01). See (1983BO1C) and (1984SH1P, 1984SH1R, 1985BO1D).

9. 9Be(n, α)6He

$$Q_m = -0.598 \quad E_b = 6.8120$$

The cross section for production of 6He shows a smooth rise to a broad maximum of 104 ± 7 mb at 3.0 MeV, followed by a gradual decrease to 70 mb at 4.4 MeV. From $E_n = 3.9$ to 8.6 MeV, the cross section decreases smoothly from 100 mb to 32 mb. Excitation functions have been measured for α_0 and α_1 for $E_n = 12.2$ to 18.0 MeV: see (1979AJ01) for references. See also (1983SH1J) and (1984SH1P, 1984SH1R).

10. 9Be(p, π^+)10Be

$$Q_m = -133.539$$

Angular distributions have been studied at $E_p = 185$ to 800 MeV [see (1984AJ01)] and at $E_\beta = 650$ MeV (1986HO23; to 10Be*(0, 3.37)). States at $E_x = 6.07\pm0.13, 7.39\pm0.13, 9.31\pm0.24, 11.76$ MeV have also been populated. A_y measurements involving 10Be*(0, 3.37) are reported at $E_\beta = 200$ to 250 MeV [see (1984AJ01)] and at 650 MeV (1986HO23).

11. 9Be(d, p)10Be

$$Q_m = 4.5874$$

Angular distributions of proton groups have been studied at many energies in the range $E_d = 0.15$ to 17.3 MeV and at 698 MeV [see (1979AJ01, 1984AJ01)], as well as at $E_d = 2.0$ to 2.8 MeV (1984DE46, 1984AN16; p_0, p_1; also VAP) and $E_d = 12.5$ MeV (1987VA13; p_0, p_1). At $E_d = 15$ MeV $S = 2.1, 0.23 (j_n = \frac{3}{2})$ and 0.12 ($j_n = \frac{1}{2}$), $\leq 1.0, 0.065 (j_n = \frac{3}{2})$ and 0.132 ($j_n = \frac{1}{2}$), for 10Be*(0, 3.37, 5.96, 6.26). The angular distributions show $l_n = 1$ transfer for 10Be*(0, 3.37, 5.958, 7.54), $l_n = 0$ transfer for 10Be*(5.960, 6.26), $l_n = 2$ transfer for 10Be*(7.37). 10Be*(6.18, 9.27, 9.4) are also populated, as are two states at $E_x = 10.57\pm0.03$ and 11.76 ± 0.02 MeV. 10Be*(9.27, 9.4, 11.76) have $\Gamma_{c.m.} = 150\pm20, 291\pm20$ and 121 ± 10 keV. See (1979AJ01) for references.

Attempts to understand the γ-decay of 10Be*(5.96) and its population in 9Be(n, γ)10Be lead to the discovery that it consisted of two states separated by 1.6 ± 0.5 keV. The lower of the two has $J^\pi = 2^+$ and decays primarily by a cascade transition via 10Be*(3.37) [it is the state fed directly in the 9Be(n, γ) decay]; the higher state has $J^\pi = 1^-$ and goes mainly by a crossover to
Table 10.4: Radiative transitions in 9Be(d, p)10Be a

<table>
<thead>
<tr>
<th>E_x (keV)</th>
<th>Transition</th>
<th>ΔJ^π</th>
<th>Mtpl.</th>
<th>Branch (%)</th>
<th>τ_m (psec)</th>
<th>Γ_γ (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3368.0 ± 0.2</td>
<td>3.37 → g.s.</td>
<td>$2^+ \rightarrow 0^+$</td>
<td>E2</td>
<td>100</td>
<td>0.189 ± 0.020</td>
<td>3.48 ± 0.37</td>
</tr>
<tr>
<td>5958.3 ± 0.3</td>
<td>5.96 → 3.37</td>
<td>$2^+ \rightarrow 2^+$</td>
<td>M1</td>
<td>> 90</td>
<td>< 0.08</td>
<td>4.11 ± 0.78</td>
</tr>
<tr>
<td>5959.9 ± 0.6</td>
<td>5.96 → g.s.</td>
<td>$2^+ \rightarrow 0^+$</td>
<td>E2</td>
<td>< 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6179.3 ± 0.7</td>
<td>6.18 → 5.96</td>
<td>$0^+ \rightarrow 1^-$</td>
<td>E1</td>
<td>24 ± 2</td>
<td>1.1$^{+0.4}_{-0.3}$</td>
<td>0.14 ± 0.05</td>
</tr>
<tr>
<td>6179.3 ± 0.7</td>
<td>6.18 → 3.37</td>
<td>$0^+ \rightarrow 2^+$</td>
<td>E2</td>
<td>76 ± 2</td>
<td></td>
<td>0.46 ± 0.28</td>
</tr>
<tr>
<td>6263.3 ± 5</td>
<td>6.26 → 5.96</td>
<td>$2^- \rightarrow$</td>
<td>M1</td>
<td>≤ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6263.3 ± 5</td>
<td>6.26 → 3.37</td>
<td>$2^- \rightarrow 2^+$</td>
<td>E1</td>
<td>99$^{+1}_{-2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6263.3 ± 5</td>
<td>6.26 → g.s.</td>
<td>$2^- \rightarrow 0^+$</td>
<td>M2</td>
<td>1 ± 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a See Table 10.4 in (1979AJ01) for references. However, note that there are several typographical errors in the 10Be*(6.18) decay.

10Be(g.s.). Angular correlations measured with the γ-ray detector located normal to the reaction plane (≡ angular distributions) lead to l_n values consistent with the assignments of 2^+ and 1^- for 10Be*(5.9584, 5.9599) obtained from the character of the γ-decay. 10Be*(6.18) decays primarily to 10Be*(3.37): $E_\gamma = 219.4 \pm 0.3$ keV for the 6.18 → 5.96 transition. See Table 10.4 for a listing of the information on radiative transitions obtained in this reaction and lifetime measurements. For (p, γ) correlations through 10Be*(3.37) see (1987VA13) and references in (1974AJ01). For polarization measurements see 11B in (1990AJ01).

12. 9Be(α, 3He)10Be

Angular distributions have been studied at $E_\alpha = 65$ MeV to 10Be*(0, 3.37, 5.96, 6.26, 7.37, 7.54, 9.33, 11.88). DWBA analyses of these lead to spectroscopic factors which are in poor agreement with those reported in other reactions: see (1984AJ01).

13. (a) 9Be(7Li, 6Li)10Be

$Q_m = -0.438$
Angular distributions have been measured at $E(\^7\text{Li}) = 34$ MeV (reaction (a)) to $^{10}\text{Be}^*(0, 3.4)$: $S = 2.07$ and 0.42 ($p_{1/2}$), 0.38 ($p_{3/2}$). See (1979AJ01). At $E(^6\text{Be}) = 20$ MeV an angular distribution involving $^8\text{Be}_{g.s.} + ^{10}\text{Be}_{g.s.}$ has been measured: transitions to excited states of ^{10}Be are very weak (1985JA09).

14. (a) $^{10}\text{Be}(p, p)^{10}\text{Be}$
(b) $^{10}\text{Be}(d, d)^{10}\text{Be}$

Angular distributions of the p_0 and p_1 groups have been measured at $E_p = 12.0$ to 16.0 MeV. The elastically scattered deuterons have been studied at $E_d = 12.0$ and 15.0 MeV: see (1974AJ01).

15. (a) $^{10}\text{B}(\gamma, \pi^+)^{10}\text{Be}$
(b) $^{10}\text{B}(e, e'\pi^+)^{10}\text{Be}$

Differential cross sections have been measured to $^{10}\text{Be}^*(0, 3.37)$ at $E_{\gamma} = 230$ to 340 MeV [see (1984AJ01)] and at $E_e = 185$ MeV (1986YA07) and 200 MeV (1984BLZY). See also (1984AJ01).

16. $^{10}\text{B}(\mu^-, \nu)^{10}\text{Be}$

Partial capture rates leading to the 2^+ states $^{10}\text{Be}^*(3.37, 5.96)$ have been reported: see (1984AJ01).

17. $^{10}\text{B}(\pi^-, \gamma)^{10}\text{Be}$

The photon spectrum from stopped pions is dominated by peaks corresponding to $^{10}\text{Be}^*(0, 3.4, 6.0, 7.5, 9.4)$, and branching ratios have been obtained. Those to $^{10}\text{Be}^*(0, 3.4)$ are $(2.02 \pm 0.17)\%$ and $(4.65 \pm 0.30)\%$, respectively [absolute branching ratio per stopped pion] (1986PE05). See (1979AJ01) for the earlier work.

18. (a) $^{10}\text{B}(n, p)^{10}\text{Be}$
(b) $^{10}\text{B}(d, 2p)^{10}\text{Be}$
Angular distributions [reaction (b)] are reported at $E_d = 55$ MeV to 10Be*($0, 3.37, 5.96, 9.4$): see (1984AJ01). See also (1987KW01; theor.). For reaction (a) see (1974AJ01) and (1987LA16) in 11B (1990AJ01).

19. 11Li(β^-)11Be\rightarrow^{10}Be + n $Q_m = 20.22$

11Li populates several states of 10Be, via delayed neutron emission. Gamma rays have been observed for the transitions 6.18 \rightarrow 5.96, 6.18 \rightarrow 3.37, 5.96 (unres.) \rightarrow 3.37 and 3.37 \rightarrow g.s. with $I_\gamma = (0.95 \pm 0.35), (1.65 \pm 0.70), (3.5 \pm 1.0)$ and (21 \pm 6)$\%$, respectively: see Table 11.2 in (1985AJ01).

20. 11B(γ, p)10Be $Q_m = -11.2279$

See (1984AL22) and 11B in (1990AJ01). See also (1979AJ01).

21. 11B(p, 2p)10Be $Q_m = -11.2279$

Structure is observed in the summed proton spectrum corresponding to $Q = -10.9 \pm 0.35, -14.7 \pm 0.4, -21.1 \pm 0.4, -35 \pm 1$ MeV: see (1974AJ01). See also (1985BE30, 1985DO16; prelim.).

22. 11B(d,3He)10Be $Q_m = -5.7343$

Angular distributions have been measured at $E_d = 11.8$ and 22 MeV to 10Be$_{g.s.}$ [see (1974AJ01)] and at 52 MeV to 10Be*($0, 3.37, 5.96, 9.60$): $S' = 0.65, 2.03, 0.13, 1.19$ (normalized to the theoretical value for the ground state); $\pi = +$ for 10Be*(9.6): see (1979AJ01).

23. 11B(11B,12C)10Be $Q_m = 4.7293$

See (1985PO02).

24. 12C(6Li,8B)10Be $Q_m = -21.442$

13
At $E(^{6}\text{Li}) = 80$ MeV, $^{10}\text{Be}^*(0, 3.37, 5.96, 7.54, (9.4), 11.8)$ are populated and the angular distribution to $^{10}\text{Be}_{g.s.}$ has been measured: see (1979AJ01). See also (1982AL08, 1983AL20, 1985AL1G).

25. $^{13}\text{C}(p, d2p)^{10}\text{Be}$

$Q_m = -29.9069$

See (1987GI1F) and ^{12}C in (1990AJ01).

26. $^{14}\text{C}(^{14}\text{C}, ^{18}\text{O})^{10}\text{Be}$

$Q_m = -5.785$

See (1985KO04).
GENERAL: See also (1984AJ01).

Fig. 2: Energy levels of ^{10}B. For notation see Fig. 1.
Table 10.5: Energy levels of 10B

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>τ_m or $\Gamma_{\text{c.m.}}$ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>$3^+; 0$</td>
<td>stable</td>
<td></td>
<td>1, 4, 5, 10, 11, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54, 56, 57</td>
</tr>
<tr>
<td>0.71835 ± 0.04</td>
<td>$1^+; 0$</td>
<td>$\tau_m = 1.020 ± 0.005$ nsec</td>
<td>γ</td>
<td>1, 4, 5, 10, 11, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 34, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56</td>
</tr>
<tr>
<td>1.74015 ± 0.17</td>
<td>$0^+; 1$</td>
<td>$7 ± 3$ fsec</td>
<td>γ</td>
<td>1, 4, 10, 11, 16, 17, 18, 19, 23, 24, 25, 28, 40, 41, 42, 43, 44, 45, 49, 50, 54</td>
</tr>
<tr>
<td>2.1543 ± 0.5</td>
<td>$1^+; 0$</td>
<td>$2.13 ± 0.20$ psec</td>
<td>γ</td>
<td>1, 4, 11, 16, 17, 18, 19, 24, 25, 26, 28, 29, 34, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53</td>
</tr>
<tr>
<td>3.5871 ± 0.5</td>
<td>$2^+; 0$</td>
<td>$153 ± 12$ fsec</td>
<td>γ</td>
<td>1, 4, 5, 11, 16, 17, 18, 24, 25, 26, 28, 29, 41, 42, 44, 49, 50, 51, 53, 56</td>
</tr>
<tr>
<td>4.7740 ± 0.5</td>
<td>$3^+; 0$</td>
<td>$\Gamma = 8.4 ± 1.8$ eV</td>
<td>γ, α</td>
<td>1, 4, 5, 16, 17, 18, 24, 25, 26, 29, 44, 49, 50, 51, 56</td>
</tr>
<tr>
<td>5.1103 ± 0.6</td>
<td>$2^-; 0$</td>
<td>$0.98 ± 0.07$ keV</td>
<td>γ, α</td>
<td>1, 11, 16, 17, 25, 29, 44, 50</td>
</tr>
<tr>
<td>5.1639 ± 0.6</td>
<td>$2^+; 1$</td>
<td>$\tau_m < 6$ fsec</td>
<td>γ, α</td>
<td>1, 11, 16, 17, 23, 25, 26, 41, 44, 49</td>
</tr>
<tr>
<td>5.180 ± 10</td>
<td>$1^+; 0$</td>
<td>$\Gamma = 110 ± 10$</td>
<td>γ, α</td>
<td>1, 3, 11, 16, 17, 26, 29, 44</td>
</tr>
<tr>
<td>5.9195 ± 0.6</td>
<td>$2^+; 0$</td>
<td>$6 ± 1$</td>
<td>γ, α</td>
<td>1, 3, 11, 16, 17, 18, 25, 26, 28, 29, 44, 49, 50, 51</td>
</tr>
</tbody>
</table>
Table 10.5: Energy levels of 10B a (continued)

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>τ_m or $\Gamma_{c.m.}$ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0250 ± 0.6</td>
<td>4^+</td>
<td>0.05 ± 0.03</td>
<td>γ, α</td>
<td>1, 3, 16, 17, 18, 23, 24, 25, 26, 28, 29, 42, 44, 50, 51, 54, 56</td>
</tr>
<tr>
<td>6.1272 ± 0.7</td>
<td>3^-</td>
<td>2.36 ± 0.03</td>
<td>α</td>
<td>3, 16, 17, 18, 25, 26, 28, 42, 44, 50</td>
</tr>
<tr>
<td>6.560 ± 1.9</td>
<td>(4)$^-$</td>
<td>25.1 ± 1.1</td>
<td>α</td>
<td>3, 16, 17, 18, 25, 26, 28, 42, 44, 49, 50</td>
</tr>
<tr>
<td>6.873 ± 5</td>
<td>$1^-; 0 + 1$</td>
<td>120 ± 5</td>
<td>γ, p, d, α</td>
<td>1, 11, 13, 15, 16</td>
</tr>
<tr>
<td>7.002 ± 6</td>
<td>(1, 2)$^+$; (0)</td>
<td>100 ± 10</td>
<td>p, d, α</td>
<td>3, 15, 16, 18, 25, 26, 28, 44, 50, 56</td>
</tr>
<tr>
<td>7.430 ± 10</td>
<td>$2^(-)$; 0 + 1</td>
<td>100 ± 10</td>
<td>γ, p, d, α</td>
<td>1, 11, 15</td>
</tr>
<tr>
<td>7.467 ± 10</td>
<td>1^+</td>
<td>65 ± 10</td>
<td>p</td>
<td>13, 44</td>
</tr>
<tr>
<td>7.478 ± 2</td>
<td>$2^+; 1$</td>
<td>74 ± 11</td>
<td>γ, p</td>
<td>11, 13, 23, 44</td>
</tr>
<tr>
<td>7.5599 ± 0.6</td>
<td>$0^+; 1$</td>
<td>2.65 ± 0.03</td>
<td>γ, p</td>
<td>11, 13, 16, 44</td>
</tr>
<tr>
<td>(7.67 ± 30)</td>
<td>(1$^+$; 0)</td>
<td>250 ± 20</td>
<td>p, d</td>
<td>13, 15</td>
</tr>
<tr>
<td>7.819 ± 20</td>
<td>1^-</td>
<td>260 ± 30</td>
<td>p</td>
<td>13, 16, 18, 44</td>
</tr>
<tr>
<td>8.07</td>
<td>2^+</td>
<td>800 ± 200</td>
<td>γ, p, d</td>
<td>15, 16, 23</td>
</tr>
<tr>
<td>(8.7)</td>
<td>(1$^+$, 2$^+$)</td>
<td>(≈ 200)</td>
<td>p</td>
<td>13, 15, 56</td>
</tr>
<tr>
<td>8.889 ± 6</td>
<td>$3^-; 1$</td>
<td>84 ± 7</td>
<td>γ, n, p, α</td>
<td>12, 13, 15, 18, 23, 49</td>
</tr>
<tr>
<td>8.894 ± 2</td>
<td>$2^+; 1$</td>
<td>40 ± 1</td>
<td>γ, p, α</td>
<td>11, 13, 15, 18, 23, 49</td>
</tr>
<tr>
<td>(9.7)</td>
<td>(T = 1)</td>
<td>(≈ 700)</td>
<td>n, p, α</td>
<td>12, 15</td>
</tr>
<tr>
<td>10.84 ± 10</td>
<td>(2$^+$, 3$^+$, 4$^+$)</td>
<td>300 ± 100</td>
<td>γ, n, p</td>
<td>11, 12, 13, 23, 44</td>
</tr>
<tr>
<td>11.52 ± 35</td>
<td></td>
<td>500 ± 100</td>
<td>(γ)</td>
<td>23, 42, 44</td>
</tr>
<tr>
<td>12.56 ± 30</td>
<td>(0$^+$, 1$^+$, 2$^+$)</td>
<td>100 ± 30</td>
<td>γ, p</td>
<td>11, 23, 44</td>
</tr>
<tr>
<td>13.49 ± 5</td>
<td>(0$^+$, 1$^+$, 2$^+$)</td>
<td>300 ± 50</td>
<td>γ, p</td>
<td>11, 23, 44</td>
</tr>
<tr>
<td>14.4 ± 100</td>
<td></td>
<td>800 ± 200</td>
<td>γ, p, α</td>
<td>3, 11, 42, 44</td>
</tr>
<tr>
<td>(18.2 ± 200)</td>
<td></td>
<td>(1500 ± 300)</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>18.43</td>
<td>$2^-; 1$</td>
<td>340</td>
<td>$\gamma, ^3$He</td>
<td>5, 7</td>
</tr>
<tr>
<td>18.80</td>
<td>$2^+, 1^+$</td>
<td>< 600</td>
<td>$\gamma, ^3$He, α</td>
<td>5, 9</td>
</tr>
<tr>
<td>19.29</td>
<td>$2^-; 1$</td>
<td>190 ± 20</td>
<td>$\gamma, n, p, ^3$He, α</td>
<td>5, 6, 7, 9</td>
</tr>
<tr>
<td>20.1 ± 100</td>
<td>$1^-; 1$</td>
<td>broad</td>
<td>$\gamma, n, p, ^3$He, α</td>
<td>5, 6, 7, 8, 9, 22</td>
</tr>
<tr>
<td>(21.1)</td>
<td></td>
<td></td>
<td>$\gamma, ^3$He</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 10.5: Energy levels of 10B a (continued)

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>τ_m or $\Gamma_{c.m.}$ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1 ± 100</td>
<td>broad</td>
<td>γ, n</td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

a See also Tables 10.6, 10.7 and 10.11.

$$\mu = +1.80065 \pm 0.00001 \text{ nm}: \text{ see } (1978\text{LEZA})$$

$$Q = +84.72 \pm 0.56 \text{ mb}: \text{ see } (1978\text{LEZA}).$$

Mass of 10B: (1988WA18) have re-evaluated the evidence on the mass of 10B: the mass excess is $12050.99 \pm 0.27 \text{ keV.}$ This readjustment includes the value obtained by (1984EL05): $12937.32 \pm 0.57 \mu u$ [mass spectrometer]. I am indebted to A.H. Wapstra for his comments.

Isotopic abundance: $(19.9 \pm 0.2)\%$ (1984DE53).

10B*(0.72): $\mu = +0.63 \pm 0.12 \text{ nm}: \text{ see } (1978\text{LEZA})$.

$$B(E2)\downarrow = 4.18 \pm 0.02 \text{ e}^2 \cdot \text{fm}^4 \ (1983\text{VE03}).$$

1. $^6\text{Li}(\alpha, \gamma)^{10}\text{B}$

 $$Q_m = 4.4596$$

 Observed resonances are displayed in Table 10.8. For a discussion of isovector parity mixing between $^{10}\text{B}*$(5.16, 5.11) $[2^+; T = 1 \text{ and } 2^-; T = 0]$ see (1984NA07). For a preliminary report involving a target of laser-polarized ^6Li atoms see (1987MU13). See also (1984YA1A, 1985CA41; astrophys.).

2. (a) $^6\text{Li}(\alpha, n)^9\text{B}$

 $$Q_m = -3.977$$

 $$E_b = 4.4596$$

 (b) $^6\text{Li}(\alpha, p)^9\text{Be}$

 $$Q_m = -2.1261$$

 (c) $^6\text{Li}(\alpha, d)^8\text{Be}$

 $$Q_m = -1.5669$$

 The excitation functions for neutrons [from threshold to $E_\alpha = 15.5 \text{ MeV}$] and for deuterons [$E_\alpha = 9.5 \text{ to } 25 \text{ MeV}; d_0, d_1$ over most of range] do not show resonance structure: see (1974AJ01, 1979AJ01). See also (1985GU1J; theor.).

3. (a) $^6\text{Li}(\alpha, \alpha)^6\text{Li}$

 $$E_b = 4.4596$$

 (b) $^6\text{Li}(\alpha, 2\alpha)^2\text{H}$

 $$Q_m = -1.4750$$
Table 10.6: Electromagnetic transitions in 10B \(^a\)

<table>
<thead>
<tr>
<th>Initial state</th>
<th>$J^\pi; T$</th>
<th>Γ_γ (total) (eV)</th>
<th>Branching ratios (%) to final states at:</th>
<th>Γ_γ/Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>g.s.</td>
<td>0.72</td>
</tr>
<tr>
<td>0.72</td>
<td>$1^+; 0$</td>
<td>6.5×10^{-7}</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1.74</td>
<td>$0^+; 1$</td>
<td>0.09 ± 0.04(^b)</td>
<td>< 0.2</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>$1^+; 0$</td>
<td>$(3.1 \pm 0.3) \times 10^{-4}$</td>
<td>21.1</td>
<td>27.3</td>
</tr>
<tr>
<td>3.59</td>
<td>$2^+; 0$</td>
<td>$(4.31 \pm 0.34) \times 10^{-3}$</td>
<td>19</td>
<td>67</td>
</tr>
<tr>
<td>4.77</td>
<td>$3^+; 0$</td>
<td>0.020 ± 0.004</td>
<td>0.5</td>
<td>> 99</td>
</tr>
<tr>
<td>5.11</td>
<td>$2^-; 0$</td>
<td></td>
<td>64</td>
<td>31</td>
</tr>
<tr>
<td>5.16</td>
<td>$2^+; 1$</td>
<td>1.5 ± 0.1(^c)</td>
<td>4.4</td>
<td>22.4</td>
</tr>
<tr>
<td>5.18</td>
<td>$1^+; 0$</td>
<td>0.06 ± 0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.92</td>
<td>$2^+; 0$</td>
<td>0.15 ± 0.04</td>
<td>82</td>
<td>18</td>
</tr>
<tr>
<td>6.03</td>
<td>4^+</td>
<td>0.11 ± 0.02</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>6.13</td>
<td>3^-</td>
<td>≤ 21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) For references see Table 10.6 in (1979AJ01).
\(^b\) From Table 10.7.
\(^c\) See also Table 10.8 here. Branching ratios and Γ_γ/Γ from (1979KE08). The mixing ratios $\delta = 0.12 \pm 0.05, 0.03 \pm 0.03, 0.02 \pm 0.03$ and 0.00 ± 0.02 for the transitions to 10B*(0, 0.72, 2.15, 3.59), respectively (1979KE08).

\(^d\) Other branches < 3%.
\(^e\) For γ-decay of higher 10B states see Tables 10.8, 10.10 and 10.11. See also Table 10.15.
Excitation functions of α_0 and α_1 have been reported for $E_{\alpha} \leq 18.0$ MeV and 9.5 to 12.5 MeV, respectively: see (1974AJ01). Reported anomalies are displayed in Table 10.9. Elastic scattering and VAP measurements are reported for $E(6\bar{Li}) = 15.1$ to 22.7 MeV [see (1984AJ01)] and at $E(6\bar{Li}) = 19.8$ MeV (1986CAZT; also TAP; prelim.). Small anomalies have been reported in reaction (b) corresponding to $^{10}\text{B}^*(8.67, 9.65, 10.32, 11.65)$: see (1984AJ01). See, however, Table 10.5. See also ^6Li, (1987BU27), (1986ST1E; applications) and (1986GA1F, 1986YA15, 1988LE06; theor.).

4. $^6\text{Li}(^6\text{Li}, d)^{10}\text{B}$

Angular distributions of deuteron groups have been determined at $E(6\bar{Li}) = 2.4$ to 9.0 MeV (d_0, d_1, d_3) and 7.35 and 9.0 MeV (d_4, d_5). The d_2 group is also observed but its intensity is weak: see (1974AJ01) and ^{12}C in (1980AJ01).

5. $^7\text{Li}(^3\text{He}, \gamma)^{10}\text{B}$

Table 10.7: Lifetime of ^{10}B states

<table>
<thead>
<tr>
<th>^{10}B* (MeV)</th>
<th>τ_m</th>
<th>Reactions</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.72</td>
<td>1.020 ± 0.005 nsec</td>
<td>$^{10}\text{B}(p, p')$</td>
<td>(1983VE03) a</td>
</tr>
<tr>
<td>1.74</td>
<td>7 ± 3 fsec</td>
<td>$^6\text{Li}(\alpha, \gamma)$</td>
<td>(1979KE08)</td>
</tr>
<tr>
<td>2.15</td>
<td>2.30 ± 0.26 psec</td>
<td>mean</td>
<td>(1979AJ01) b</td>
</tr>
<tr>
<td></td>
<td>1.9 ± 0.3 psec</td>
<td>$^6\text{Li}(\alpha, \gamma)$</td>
<td>(1979KE08)</td>
</tr>
<tr>
<td>3.59</td>
<td>2.13 ± 0.20 psec</td>
<td>mean</td>
<td>all values</td>
</tr>
<tr>
<td></td>
<td>153 ± 13 fsec</td>
<td>mean</td>
<td>(1979AJ01)</td>
</tr>
<tr>
<td></td>
<td>150 ± 30 fsec</td>
<td>$^6\text{Li}(\alpha, \gamma)$</td>
<td>(1979KE08)</td>
</tr>
<tr>
<td>5.16</td>
<td>< 6 fsec</td>
<td>mean</td>
<td>all values</td>
</tr>
</tbody>
</table>

a See also Table 10.20 of (1966LA04).

b Table 10.9 in (1979AJ01).
Table 10.8: Levels of 10B from $^6\text{Li}(\alpha, \gamma)^{10}\text{B} ^a$

<table>
<thead>
<tr>
<th>E_{res} (keV)</th>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>Γ_{lab} (keV)</th>
<th>Decay to E_t</th>
<th>Branch (%)</th>
<th>ω_γ (eV)</th>
<th>Γ_γ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 ± 25</td>
<td>4.760</td>
<td>$3^+; 0$</td>
<td>$(1.4 \pm 0.3) \times 10^{-2}$</td>
<td>0</td>
<td>0.5 ± 0.1</td>
<td>$(4.1 \pm 0.4) \times 10^{-2}$</td>
<td>0.018 ± 0.002</td>
</tr>
<tr>
<td>1085</td>
<td>5.112</td>
<td>$2^-; 0$</td>
<td>$1.63 \pm 0.11 ^b$</td>
<td>0</td>
<td>> 99</td>
<td>0.059 ± 0.012 d</td>
<td>0.068 ± 0.007</td>
</tr>
<tr>
<td>1175 e</td>
<td>5.166</td>
<td>$2^+; 1$</td>
<td>$(2.8 \pm 0.3) \times 10^{-3}$</td>
<td>0</td>
<td>4.4 ± 0.4</td>
<td>0.018 ± 0.002</td>
<td>0.33 ± 0.03</td>
</tr>
<tr>
<td>1210 ± 35</td>
<td>5.186</td>
<td>$1^+; 0$</td>
<td>340 ± 50</td>
<td>1.74</td>
<td>≈ 100</td>
<td>0.19 ± 0.04</td>
<td>0.13 ± 0.03</td>
</tr>
<tr>
<td>2435</td>
<td>5.922</td>
<td>2^+</td>
<td>10 ± 1</td>
<td>0</td>
<td>82 ± 5</td>
<td>0.04 ± 0.01</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>2605 f</td>
<td>6.024</td>
<td>4^+</td>
<td>0.08 ± 0.05</td>
<td>0</td>
<td>≈ 100</td>
<td>0.34 ± 0.05</td>
<td>0.11 ± 0.02</td>
</tr>
<tr>
<td>4019 g</td>
<td>6.873 ± 5</td>
<td>$1^-; 0 + 1$</td>
<td>200 ± 10</td>
<td>0</td>
<td>6 ± 2</td>
<td>< 0.02</td>
<td>< 0.02</td>
</tr>
<tr>
<td>4964 h</td>
<td>7.440 ± 20</td>
<td>$2^-(0 + 1)$</td>
<td>150 ± 15</td>
<td>0</td>
<td>6 ± 2</td>
<td>21 ± 4</td>
<td>59 ± 3</td>
</tr>
</tbody>
</table>

Notes:

a. $^6\text{Li}(\alpha, \gamma)^{10}\text{B}$

b. 1.43 ± 0.11

c. 4.15 ± 0.4

d. 0.059 ± 0.012

e. 5.17 ± 0.2

h. 2.15 ± 0.7
For earlier references see Table 10.7 in (1979AJ01).

\[\Gamma_\alpha = \Gamma_{\text{c.m.}} = 0.98 \pm 0.07 \text{ keV} \] (1984NA07).

\(\Gamma_\gamma / \Gamma = (2.3 \pm 0.3) \times 10^{-3}; \Gamma_\alpha = 8.4 \pm 1.8 \text{ eV} \) (E. K. Warburton and D. E. Alburger, private communication).

Absolute error only.

Branching ratios of (1979KE08); \(\omega_\gamma_{\text{c.m.}} = 0.40 \pm 0.04 \text{ eV} \) (1979SP01). Therefore \(\Gamma_\alpha \Gamma_\gamma / \Gamma_{\text{tot}} = 0.24 \pm 0.02 \text{ eV} \) and since \(\Gamma_\gamma / \Gamma_{\text{tot}} = 0.87 \pm 0.04, \Gamma_\alpha = 0.28 \pm 0.03 \text{ eV} \) (1984NA07).

Values of \(\omega_\gamma \) (1966FO05) have been multiplied by 0.6 to convert them to the c.m. system.

Branching ratios calculated from 0° relative intensities; \(\Gamma_\alpha / \Gamma_p = 1.25 \pm 0.12 \).

At 0° the branches to \(^{10}\text{B}*(0, 0.72)\) are equally strong (50 ± 12%).
Table 10.9: 10B levels from 6Li(α, α)6Li

<table>
<thead>
<tr>
<th>E_α (MeV ± keV)</th>
<th>E_x (MeV)</th>
<th>Γ_{lab} (keV)</th>
<th>J^π; T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.210 ± 30</td>
<td>5.19</td>
<td>175</td>
<td>1$^+$; 0</td>
</tr>
<tr>
<td>2.440 b</td>
<td>5.92</td>
<td>\approx 30</td>
<td>2$^+$; 0</td>
</tr>
<tr>
<td>2.6060 ± 1.5</td>
<td>6.024</td>
<td>0.09 ± 0.04</td>
<td>4$^+$</td>
</tr>
<tr>
<td>2.7855 ± 1.5 c</td>
<td>6.132</td>
<td>3.93 ± 0.05</td>
<td>3$^-$</td>
</tr>
<tr>
<td>3.4985 ± 1.6 d</td>
<td>6.560</td>
<td>41.8 ± 1.9</td>
<td>4$^-$, 2$^-$</td>
</tr>
<tr>
<td>4.250 ± 15 d</td>
<td>7.011</td>
<td>183 ± 25</td>
<td>(2)$^+$; (0)</td>
</tr>
<tr>
<td>16.000</td>
<td>14.1</td>
<td>broad</td>
<td></td>
</tr>
</tbody>
</table>

a For references see Tables 10.8 in (1979AJ01) and 10.9 in (1984AJ01).

b $\Gamma_\alpha = 9.7 \pm 0.1$ keV.

c $\Gamma_\alpha = 2.45 \pm 0.12$ keV and $\Gamma_d = 0.08 \pm 0.05$ keV.

d There is evidence of broad structure near these states.

Capture γ-rays have been observed for $E(^3\text{He}) = 0.8$ to 6.0 MeV. The γ_0 and γ_5 yields [to $^{10}\text{B}^*(0, 4.77)$] show resonances at $E(^3\text{He}) = 1.1$ and 2.2 MeV [$E_{res} = 0.92$ and 2.1 MeV], the γ_1 and γ_4 yields [to $^{10}\text{B}^*(0.72, 3.59)$] at 1.4 MeV and the γ_4 yield at 3.4 MeV; see Table 10.10 in (1979AJ01). Both the 1.1 and 2.2 MeV resonances [$^{10}\text{B}^*(18.4, 19.3)$] appear to result from s-wave capture; the subsequent decay is to two 3^+ states [$^{10}\text{B}^*(0, 4.77)$]. Therefore the most likely assignment is 2^-, $T = 1$ for both [there appears to be no decay of these states via α_2 to $^{6}\text{Li}^*(3.56)$ which has $J^\pi = 0^+$, $T = 1$: see reaction 9]. The assignment for $^{10}\text{B}^*(18.8)$ [1.4 MeV resonance] is 1^+ or 2^+ but there appears to be α_2 decay and therefore $J^\pi = 2^+$. $^{10}\text{B}^*(20.2)$ [3.4 MeV resonance] has an isotropic angular distribution of γ_4 and therefore $J^\pi = 0^+$, 1^-, 2^-. The γ_2 group resonates at this energy which eliminates 2^-, and 0^+ is eliminated on the basis of the strength of the transition which is too large for E2. See (1974AJ01) for references.

6. $^{7}\text{Li}(^3\text{He}, n)^9\text{B}$

$Q_m = 9.351$

$E_b = 17.7873$

The excitation curve is smooth up to $E(^3\text{He}) = 1.8$ MeV and the n_0 yield shows resonance behavior at $E(^3\text{He}) = 2.2$ and 3.25 MeV, $\Gamma_{lab} = 270 \pm 30$ and 500 \pm 100 keV. No other resonances are observed up to $E(^3\text{He}) = 5.5$ MeV. See Table 10.10 in (1979AJ01), (1986AB10; theor.) and (1974AJ01).

7. $^{7}\text{Li}(^3\text{He}, p)^9\text{Be}$

$Q_m = 11.2016$

$E_b = 17.7873$

24
Table 10.10: Resonances in \(^{9}\text{Be}(p, \gamma)^{10}\text{B}\)

<table>
<thead>
<tr>
<th>(E_p) (MeV ± keV)</th>
<th>(E_x) (MeV ± keV)</th>
<th>(\Gamma_{\text{c.m.}}) (keV)</th>
<th>(J^\pi; T)</th>
<th>(\Gamma_p/\Gamma)</th>
<th>(\Gamma_\gamma) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.319</td>
<td>6.873 ± 5</td>
<td>120 ± 5</td>
<td>1(^-); 0 + 1</td>
<td>0.30</td>
<td>4.8</td>
</tr>
<tr>
<td>0.938 ± 10</td>
<td>7.430</td>
<td>140 ± 30</td>
<td>2(^-); 0 + 1</td>
<td>0.7</td>
<td>2.4</td>
</tr>
<tr>
<td>(0.98)</td>
<td>(7.47)</td>
<td></td>
<td>(2(^+))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.992 ± 2</td>
<td>7.478</td>
<td>72 ± 4</td>
<td>2(^-); 1(^c)</td>
<td>≈ 0.65</td>
<td>25.8</td>
</tr>
<tr>
<td>1.0832 ± 0.4</td>
<td>7.5599</td>
<td>2.65 ± 0.18</td>
<td>0(^+); 1</td>
<td>1.0</td>
<td>8.5</td>
</tr>
<tr>
<td>1.29</td>
<td>7.75</td>
<td>210 ± 60</td>
<td>2(^-); 1(^c)</td>
<td>≈ 0.65</td>
<td>8.5</td>
</tr>
<tr>
<td>2.567 ± 2</td>
<td>8.894</td>
<td>36 ± 2</td>
<td>2(^+); 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.72(^b)</td>
<td>10.83</td>
<td>≈ 500</td>
<td>2(^+), 3(^+), 4(^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.7(^b)</td>
<td>12.6</td>
<td>< 200</td>
<td>0(^+), 1(^+), 2(^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7.0)(^b)</td>
<td>(12.9)</td>
<td>(≈ 100)</td>
<td>((\pi = +))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5(^b)</td>
<td>13.3</td>
<td>≈ 300</td>
<td>0(^+), 1(^+), 2(^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4(^b)</td>
<td>14.1</td>
<td>≈ 250</td>
<td>0(^+), 1(^+), 2(^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.9(^b)</td>
<td>14.6</td>
<td>≈ 150</td>
<td>2(^+), 3(^+), 4(^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0(^b)</td>
<td>15.6</td>
<td>≈ 400</td>
<td>2(^+), 3(^+), 4(^+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.6(^b)</td>
<td>19.7</td>
<td>≈ 500</td>
<td>2(^-), 3(^-), 4(^-)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\) For references and for additional comments see Table 10.11 in (1979AJ01). See Table 10.11 for decay schemes.

\(^{c}\) See (1974AJ01). This state is assigned \(J^\pi = 2\(^+\)\) on the basis of the \((e, e')\) work (see Table 10.15). I am indebted to Dr. D. Kurath for his comments.

The yield of protons has been measured for \(E(\text{^3He}) = 0.60\) to 4.8 MeV: there is some indication of weak maxima at 1.1, 2.3 and 3.3 MeV. Measurements of \(A_y\) for the ground-state group at \(E(\text{^3He}) = 14\) MeV (1983LE17, 1983RO22) and 33 MeV (1983LE17) and of the polarization at \(E(\text{^3He}) = 14\) MeV (1984ME11, 1984TR03) have been reported. \(P = A\) in this and in the inverse reaction [see reaction 4 in \(^{12}\text{C}\) (1985AJ01) for some additional comments]. For earlier references see (1984AJ01). See also (1986AB10; theor.).

8. (a) \(^7\text{Li}(\text{^3He}, d)^8\text{Be}\) \(Q_m = 11.7606\) \(E_b = 17.7873\)

(b) \(^7\text{Li}(\text{^3He}, t)^7\text{Be}\) \(Q_m = -0.880\)

(c) \(^7\text{Li}(\text{^3He}, \text{^3He})^7\text{Li}\)
Table 10.11: Radiative transitions in 9Be(p, γ)10B a

<table>
<thead>
<tr>
<th>Initial state (MeV)</th>
<th>$J^\pi; T$</th>
<th>Γ_γ (tot) (eV)</th>
<th>Relative intensities to final states</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ground 0.72</td>
<td>1.74</td>
</tr>
<tr>
<td>$E_p = 0.32$</td>
<td>1$^-$; 0 + 1</td>
<td>4.8</td>
<td>< 0.05</td>
</tr>
<tr>
<td>$E_p = 0.94$</td>
<td>2$^-$; 0 + 1</td>
<td>[2.4]</td>
<td>< 2</td>
</tr>
<tr>
<td>$E_p = 0.99$</td>
<td>2$^+$; 1</td>
<td>[25.8]</td>
<td>25</td>
</tr>
<tr>
<td>$E_p = 1.08$</td>
<td>0$^+$; 1</td>
<td>[8.5]</td>
<td>< 0.2</td>
</tr>
<tr>
<td>$E_p = 1.29$</td>
<td>(2$^-$; 1)</td>
<td>[8.5]</td>
<td>6.6</td>
</tr>
</tbody>
</table>

a For references and other values see Table 10.12 in (1979AJ01).

b See, however, Table 10.12.
Yields of deuterons have been measured for $E(\alpha) = 1.0$ to 2.5 MeV (d_0) and yields of tritons are reported for 2.0 to 4.2 MeV (t_0): a broad peak is reported at $E(\alpha) \approx 3.5$ MeV in the t_0 yield. See (1979AJ01) for references. Polarization measurements are reported at $E(\alpha) = 33.3$ MeV for the deuteron groups to $^8\text{Be}^*(16.63, 17.64, 18.15)$ and for the triton and ^3He groups to $^7\text{Be}^*(0, 0.43)$ and $^7\text{Li}^*(0, 0.48, 4.63)$: see (1984AJ01).

9. $^7\text{Li}(\alpha, \alpha)^6\text{Li}$ \[Q_m = 13.328 \quad E_b = 17.7873 \]

Excitation functions have been measured for $E(\alpha) = 1.3$ to 18.0 MeV: see (1974AJ01). The α_0 group (at 8°) shows a broad maximum at ≈ 2 MeV, a minimum at 3 MeV, followed by a steep rise which flattens off between $E(\alpha) = 4.5$ and 5.5 MeV. Integrated α_0 and α_1 yields rise monotonically to 4 MeV and then tend to decrease. Angular distributions give evidence of the resonances at $E(\alpha) = 1.4$ and 2.1 MeV seen in $^7\text{Li}(\alpha, \gamma)^{10}\text{B}$: $J^\pi = 2^+$ or 1^-, $T = (1)$ for both [see, however, reaction 5]: Γ_α is small. The α_2 yield [to $^6\text{Li}^*(3.56)$, $J^\pi = 0^+$, $T = 1$] shows some structure at $E(\alpha) = 1.4$ MeV and a broad maximum at ≈ 3.3 MeV: see Table 10.10 in (1979AJ01). Polarization measurements are reported at $E(\alpha) = 33.3$ MeV to $^6\text{Li}^*(0, 2.19, 3.56)$: see (1984AJ01). See also (1983AN1D, 1984PA1E).

10. $^7\text{Li}(\alpha, n)^{10}\text{B}$ \[Q_m = -2.7905 \]

Angular distributions are reported at $E_\alpha = 28$ and 32 MeV for the n_0, n_1 and n_2 groups (1985GU1E; prelim.). See (1979AJ01, 1984AJ01) for the earlier work.

11. $^9\text{Be}(p, \gamma)^{10}\text{B}$ \[Q_m = 6.5857 \]

Parameters of observed resonances are listed in Tables 10.10 and 10.11. Table 10.6 summarizes the γ-transitions from this and other reactions. For references to the discussion below, see (1974AJ01, 1979AJ01, 1984AJ01).

The $E_p = 0.32$ MeV resonance ($^{10}\text{B}^* = 6.87$ MeV) is ascribed to s-wave protons because of its comparatively large proton width [see $^9\text{Be}(p, p)$] and because of the isotropy of the γ-radiation. The strong transition to $^{10}\text{B}^*(1.74)$ requires E1 and hence $J^\pi = 1^-$, $T = 0$. $T = 0$ is also indicated by the large deuteron width. On the other hand, the strength of E1 transitions to $^{10}\text{B}^*(0.7, 2.1)$ indicates $T = 1$. The amplitudes for the $T = 0$ and $T = 1$ parts of the wave function for $^{10}\text{B}^*(6.87)$ are 0.92 and 0.39, respectively. For the $5.16 \rightarrow 1.74$ decay see Table 10.6. The proton capture data near $E_p = 1$ MeV appears to require at least five resonant states, at $E_p = 938, (980), 992, 1083$ and 1290 keV. The narrow $E_p = 1083$ keV level ($^{10}\text{B}^* = 7.56$ MeV) is formed by p-wave protons, $J^\pi = 0^+$ [see $^9\text{Be}(p, p)$, $^9\text{Be}(p, \alpha)$]. The isotropy of the γ-rays supports this
assignment. The strong M1 transitions to $J^\pi = 1^+$, $T = 0$ levels at 0.72, 2.15 and 5.18 MeV (Table 10.11) indicate $T = 1$. The width of 10B*(5.18) observed in the decay is 100 ± 10 keV.

The excitation function for ground-state radiation shows resonance at $E_p = 992$ ($\Gamma = 80$ keV) and 1290 keV ($\Gamma = 230$ keV). Elastic scattering studies indicate s-wave formation and $J^\pi = 2^-$ for both. For the lower level ($E_x = 7.48$ MeV) the intensity of the g.s. capture radiation, $\Gamma_\gamma = 25$ eV indicates E1 and $T = 1$. The angular distribution of γ-rays, $1 + 0.1 \sin^2 \theta$, is consistent with s-wave formation with some d-wave admixture or with some contribution from a nearby p-wave resonance; possibly a $J^\pi = 2^+$ level at $E_p = 980$ keV.

The angular distribution of ground-state radiation at $E_p = 1330$ keV is isotropic and $\Gamma_\gamma = 8.5$ eV, supporting E1, $T = 1$ for this level ($E_x = 7.75$ MeV).

Transitions to 10B*(0.7) [γ_1] show resonance at $E_p = 992$, 1290 and 938 keV, $\Gamma = 155$ keV. The latter is presumably also a resonance for (p, d) and (p, α). An assignment of $J^\pi = 2^-$, $T = 0$ is consistent with the data, although the E1 radiation then seems somewhat too strong for a $\Delta T = 0$ transition.

A resonance for capture radiation at $E_p = 2.567 \pm 0.003$ ($E_x = 8.895$ MeV) has a width of 40 ± 2 keV and decays mainly via 10B*(0.7) (unpublished Ph.D. thesis). It appears from the width that this resonance corresponds to that observed in 9Be(p, α), $J^\pi = 2^+$, $T = 1$ and not to the 9Be(p, n) resonance at the same energy. A further resonance is reported at $E_p = 4.72 \pm 0.01$ MeV, $\Gamma \approx 0.5$ MeV.

In the range $E_p = 4$ to 18 MeV, the γ_0 yield at 90° shows [unpublished Ph.D. thesis] the resonance at $E_p = 4.7$ MeV ($E_x = 10.7$ MeV) and fluctuations suggest states at $E_x \approx 14.6$, 15.6 and 19.7 MeV. 10B*(19.7) possibly decays via E1 and therefore $J^\pi = 2^-$, 3^-, 4^-. The other three states presumably decay by M1 and therefore $J^\pi = 2^+$, 3^+, 4^+. These fluctuations appear on a nearly constant γ_0 yield with a 90° differential cross section $\approx 1.5 \mu$b/sr. The average yield of γ_1 is $\approx \frac{2}{3}$ of the γ_0 yield. The broad giant resonance peak is centered at $E_x \approx 14.5$ MeV. Fluctuations in the γ_1 yield are reported at $E_x \approx 12.6$, 13.3 and 14.1 MeV. These states presumably decay by M1 to 10B*(0.7) [$J^\pi = 1^+$] and therefore $J^\pi = 0^+$, 1^+, 2^+. The weak γ_2 yield (to 10B*(1.74) [$J^\pi = 1^+$]; $T = 0^+$; 1) seems to exhibit a broad peak centered near $E_x = 15$ MeV (maximum 90° differential cross section $\approx 0.5 \mu$b/sr) and possibly some structure near $E_x = 20$ MeV. The γ_3 yield (to 10B*(2.15) [$J^\pi = 1^+$]) increases to $\approx 0.4 \mu$b/sr at $E_x \approx 16$ MeV and seems to remain constant beyond that energy, with some suggestion of a fluctuation corresponding to $E_x \approx 12.9$ MeV. 10B*(12.9) appears to have positive parity. Angular distributions of γ_0, γ_1, γ_2 and γ_3 are also reported [in an unpublished Ph.D. thesis].

The magnetic moment of 10B*(0.72) has been studied via $\gamma-\gamma$ correlations from 10B*(7.56): $g = +0.63 \pm 0.12$. See also (1985KI1B, 1985NE1C; applications), (1984YA1A; astrophysics) and (1983GO28, 1986NA15; theor.).

12. 9Be(p, n)9B

$$Q_m = -1.851$$

$$E_0 = 6.5857$$

Resonances in the neutron yield occur at $E_p = 2562 \pm 6$, 4720 \pm 10 and, possibly, at 3500 keV with $\Gamma_{c.m.} = 84 \pm 7$, ≈ 500 and ≈ 700 keV. These three resonances correspond to 10B*(8.890,
10.83, 9.7): see Table 10.13 in (1974AJ01). Cross section measurements for the (p, n) and (p, n$_0$) reactions have been obtained by (1983BY01; $E_p = 8.15$ to 15.68 MeV) [see also for a review of earlier work]. They indicate possible structure in 10B near 13–14 MeV (1983BY01).

The $E_p = 2.56$ MeV resonance is considerably broader than that observed at the same energy in 9Be(p, α) and 9Be(p, γ) and the two resonances are believed to be distinct. The shape of the resonance and the magnitude of the cross section can be accounted for with $J^\pi = 3^-$ or 3^+; the former assignment is in better accord with 10Be*(7.37). For $J^\pi = 3^-$, $\theta_n^2 = 0.135$, $\theta_p^2 = 0.115$ ($R = 4.47$ fm): see (1974AJ01).

The analyzing power for n_0 has been measured for $E_p = 2.7$ to 17 MeV (1980MA33, 1983BY02, 1986MU07) as has the polarization in the range $E_p = 2.7$ to 10 MeV (1983BY02). See (1983BY02, 1986MU07) for discussions of the $\sigma(\theta)$, $A_y(\theta)$ and $P(\theta)$ measurements. Polarization measurements have also been reported at $E_p = 3.9$ to 15.1 MeV and 800 MeV: [see (1984AJ01)] and at 53.5, 53.9 and 71.0 MeV (1988HE08) [K'_y, K'_z]. See also 9B, (1985TE1C), (1985CA41; astrophys.), (1986AL1J; applications) and (1988ZVZZ; theor.).

13. (a) 9Be(p, p)9Be
(b) 9Be(p, pn)8Be
(c) 9Be(p, pα)5He

\[E_B = 6.5857 \]
\[Q_m = -1.6654 \]
\[Q_m = -2.47 \]

The elastic scattering has been studied for $E_p = 0.2$ to 9.5 MeV [see (1974AJ01, 1979AJ01, 1984AJ01)] and at $E_p = 2.0$ to 3.8 MeV (1983AL10). Below $E_p = 0.7$ MeV only s-waves are present exhibiting resonance at $E_p = 330$ keV [10B*(6.88)], $J^\pi = 1^-$. Between $E_p = 0.8$ to 1.6 MeV polarization and cross-section measurements are well fitted by a phase-shift analysis, using only the 3S_1, 5S_2, 5P_1 and 5P_2 phases. Four levels satisfy the data, 1^+ and 2^- states at $E_x = 7.48$ MeV, a sharp 0^+ state at $E_x = 7.56$ MeV, and a 1^- state at 7.82 MeV: see Table 10.12. Pronounced minima at $E_p = 2.48$ and 2.55 MeV are observed in the polarization (p_0); these are ascribed to $T = 1$ analogs of the 3^- and 2^+ states 10Be*(7.37, 7.52). A strong anomaly is observed at $E_p = 6.7$ MeV: see Table 10.12.

Polarization measurements have been reported at $E_p = 0.9$ to 49.8 MeV, at 138.2 and 145 MeV, and at 990 MeV [see (1974AJ01, 1979AJ01)] as well as at $E_p = 780$ MeV and at 1 GeV [see (1984AJ01)]. Recently, A_y measurements have been reported at $E_p = 200$ MeV (1985GLZZ; p_0; prelim.) and 220 MeV (1985RO15; p_0, p_2). For inclusive proton scattering at $E_p = 303$ MeV see (1987MO04). See also (1985SE15). For reaction (b) see (1984WA21, 1986MEZZ, 1988BO47). Reaction (c) at $E_p = 150.5$ MeV has been studied by (1985WA13; A_y). For other high energy studies see (1984AJ01). See also 9Be, (1982BA78, 1985RO1C, 1985TR1A, 1986KO1R, 1984ZU01, 1985SA1G, 1986BA88, 1986MU07) and (1983KA37, 1984SH1K, 1985DY03, 1986HA1K; theor.).

14. (a) 9Be(p, t)7Be
(b) 9Be(p, 3He)7Li

\[Q_m = -12.082 \]
\[Q_m = -11.2016 \]
Table 10.12: Resonances in 9Be(p, p)9Be a

<table>
<thead>
<tr>
<th>E_{res} (keV)</th>
<th>E_x (MeV)</th>
<th>$\Gamma_{\text{c.m.}}$ (keV)</th>
<th>J^π</th>
<th>Γ_p/Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>330</td>
<td>6.88</td>
<td>145</td>
<td>1$^-$</td>
<td>0.30</td>
</tr>
<tr>
<td>980 ± 10</td>
<td>7.467</td>
<td>65 ± 10</td>
<td>1$^+$</td>
<td>1.0</td>
</tr>
<tr>
<td>980 ± 10</td>
<td>7.467</td>
<td>80 ± 8</td>
<td>2$^{-}$</td>
<td>0.90 ± 0.05</td>
</tr>
<tr>
<td>1084 ± 2</td>
<td>7.561</td>
<td>2.7</td>
<td>0$^+$</td>
<td>1.0</td>
</tr>
<tr>
<td>(1200 ± 30)</td>
<td>(7.67)</td>
<td>250 ± 20</td>
<td>(1$^+$)</td>
<td>0.30 ± 0.10</td>
</tr>
<tr>
<td>1370 ± 20</td>
<td>7.818</td>
<td>265 ± 30</td>
<td>1$^-$</td>
<td>0.90 ± 0.05</td>
</tr>
<tr>
<td>(2070 ± 10)</td>
<td>(8.4)</td>
<td>70 ± 10</td>
<td>(1$^-$, 2$^-$)</td>
<td>0.43</td>
</tr>
<tr>
<td>(2300)</td>
<td>(8.65)</td>
<td>≈ 300</td>
<td>(1$^+$, 2$^+$)</td>
<td></td>
</tr>
<tr>
<td>(2480)</td>
<td>(8.82)</td>
<td></td>
<td>(3$^-$; 1)</td>
<td></td>
</tr>
<tr>
<td>2560</td>
<td>8.89</td>
<td></td>
<td>≥ 2; (1) c</td>
<td>large</td>
</tr>
<tr>
<td>(4600)</td>
<td>(10.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5100)</td>
<td>(11.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6700 b</td>
<td>12.6</td>
<td>broad</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a For references and for a listing of other reported resonances see Table 10.13 in (1979AJ01). Nine anomalies in the p_0 yield are reported by (1983AL10) at $E_p = 2.07, 2.30, 2.44, 2.55, 2.56, 2.60, 3.80, 4.20$ and 4.72 MeV.

b Weak resonance near $E_p = 6.5$ MeV in p_0.

c Resonance shape shows $l_p = 2$ formation with a large Γ_p/Γ: the contribution from the 2^+ state appears small.

d See, however, Table 10.15 and footnote a in Table 10.13 of (1979AJ01).

Polarization measurements (reaction (b)) are reported at $E_p = 23.06$ MeV: see (1984AJ01). For a study at $E_p = 190$ and 300 MeV see (1987GR11). See also (1985SE15).

15. (a) 9Be(p, d)8Be $\quad Q_m = 0.5592$ $\quad E_b = 6.5857$

(b) 9Be(p, α)6Li $\quad Q_m = 2.126$

Knowledge of the cross sections of these two reactions at low energies is of importance for power generation and astrophysical considerations. Absolute cross sections for the d_0 and α_0 groups have been measured for $E_p = 28$ to 697 keV with ±5–6% uncertainty. The value of $S_{\text{c.m.}}$ ($E = 0$) for the combined cross sections is estimated to be 35^{+45}_{-15} MeV·b. At the 0.33 MeV resonance ($J^\pi = 1^-$), $\sigma_{\alpha_0} = 360 \pm 20$ mb and $\sigma_{d_0} = 470 \pm 30$ mb. The data (including angular
Table 10.13: Resonances in \(^9\text{Be}(p, d)^8\text{Be}\) and \(^9\text{Be}(p, \alpha)^6\text{Li}\)

<table>
<thead>
<tr>
<th>(E_p) (MeV)</th>
<th>(E_x) (MeV)</th>
<th>(\Gamma_{c.m.}) (keV)</th>
<th>(J^\pi; T)</th>
<th>(\Gamma_p/\Gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.34</td>
<td>6.89</td>
<td></td>
<td>1(^-); 0</td>
<td>0.30</td>
</tr>
<tr>
<td>0.46</td>
<td>7.00</td>
<td></td>
<td>1(^+)(2(^+), 3(^+))</td>
<td></td>
</tr>
<tr>
<td>(0.69)</td>
<td>(7.20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.94</td>
<td>7.43</td>
<td>140</td>
<td>(2(^-); 0)</td>
<td>0.7</td>
</tr>
<tr>
<td>1.15</td>
<td>7.62</td>
<td>225 (\pm) 50</td>
<td>(1(^+); 0)</td>
<td>(\approx) 0.4</td>
</tr>
<tr>
<td>1.65</td>
<td>8.07</td>
<td>800 (\pm) 200</td>
<td>(2(^-); 0)</td>
<td>(\approx) 0.07</td>
</tr>
<tr>
<td>(2.3)</td>
<td>(8.7)</td>
<td>((\approx 220))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.56 (^b)</td>
<td>8.89</td>
<td>36 (\pm) 2</td>
<td>2(^+); 1</td>
<td></td>
</tr>
<tr>
<td>3.5 (^c)</td>
<td>9.7</td>
<td></td>
<td>(T = 1)</td>
<td></td>
</tr>
<tr>
<td>4.49 (^c)</td>
<td>10.62</td>
<td></td>
<td>(T = 1)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) For references and for a listing of other reported resonances and additional information see Table 10.14 in (1979AJ01).

\(^b\) (1977KI04) have analyzed the \((\alpha_2\gamma)\) and \(p_0\) yields with an \(R\)-matrix formalism and find the following parameters:

\[
\begin{align*}
2.566 \pm 0.001 & \quad 2^+ \\
2.561_{-0.02}^{+0.10} & \quad 3^- \\
\end{align*}
\]

\(\Gamma_{c.m.} = \begin{cases} 40 \pm 1 \text{ keV}, \\ 100 \pm 20 \text{ keV}. \end{cases}\)

\(^c\) Resonance for \(\alpha_2\) to \(^6\text{Li}^*(3.56)\), \(J^\pi = 0^+, T = 1\).

\(^d\) See, however, Table 10.8.

Measurements of excitation functions for deuterons and \(\alpha\)-particles have been reported at a number of energies to \(E_p = 15\) MeV: see (1974AJ01, 1979AJ01). Observed resonances are displayed in Table 10.13.

Polarization measurements have been made in the range \(E_p = 0.30\) to 15 MeV and at 185 MeV [see (1974AJ01, 1979AJ01)] and at \(E_p = 60\) MeV (1987KA25; \(A_y\); inclusive deuteron spectra). For a fragmentation study at \(E_p = 190\) and 300 MeV see (1987GR11). See also (1983AN1D, 1984BA1L, 1985SE15, 1986ER1B), (1984YA1A, 1985CA41; astrophysics), (1984PA1E) and (1982BR1A; theor.).

16. \(^9\text{Be}(d, n)^{10}\text{B}\)

\[Q_m = 4.3612\]

31
Neutron groups are observed corresponding to the 10B states listed in Table 10.14. Angular distributions have been measured for $E_d = 0.5$ to 16 MeV [see (1974AJ01, 1979AJ01)], at 8 MeV (1986BA40; $n_0 \to n_5$, n_{6+7+8}; also at 4 MeV to the latter) and at 18 MeV (1987KAZL; n_0, n_1). Observed γ-transitions are listed in Table 10.16 of (1979AJ01). See Tables 10.6 and 10.7 here for the parameters of radiative transitions and for τ_m.

From all the various experiments the following picture emerges: the first five states of 10B have even parity [from l_p]. The ground state is known to have $J = 3$, by direct measurement, and 10B*(1.74) has $J^\pi = 0^+$ and is the $T = 1$ analog of the 10C g.s. [from the β^+ decay of 10C]. Then looking at the branching ratios and lifetimes of the other states, the sequence for 10B*(0, 0.72, 1.74, 2.15, 3.59) is $J^\pi = 3^+$, 1^+, 0^+, 1^+, 2^+ [see discussion in (1966LA04, 1966WA10)].

See also 11B in (1985AJ01), (1983TA1B, 1985SM08) and (1986OV1A; applications).

17. 9Be(3He, d)10B

Deuteron groups have been observed to a number of states of 10B: see Table 10.14. Angular distributions have been reported at $E(^3$He) = 10 to 33.3 MeV [see (1974AJ01, 1979AJ01, 1984AJ01)]. Spectroscopic factors obtained in the (d, n) and (3He, d) reactions are not in good agreement: see the discussions in (1974KE06, 1980BL02). See also (1986AV01; theor.).

18. 9Be($^\alpha$, t)10B

Angular distributions have been studied at $E_\alpha = 27$, 28.3 and 43 MeV [see (1979AJ01)], at 30.2 MeV (1984VA07; t_0, t_1, t_3, t_4) and at 65 MeV (1980HA33). In the latter experiment DWBA analyses have been made of the distributions to 10B*(0, 0.72, 1.74, 2.15, 3.59, 5.2, 5.92, 6.13, 6.56, 7.00, 7.5, 7.82, 8.9) and spectroscopic factors were derived. The distributions to 10B*(4.77, 6.03) could not be fitted by either DWBA or coupled channel analyses. In general coupled-channels calculations give a better fit to the 65 MeV data than does DWBA (1980HA33; see also for a comparison with the (d, n) and (3He, d) results).

19. 9Be(7Li, 6He)10B

At $E(^7$Li) = 34 MeV angular distributions have been obtained for the 6He ions to the first four states of 10B. Absolute values of the spectroscopic factors are $S = 0.88$, 1.38 ($p_{1/2}$ or $p_{3/2}$), 1.40 and 0.46 ($p_{1/2}$), 0.54 ($p_{3/2}$) for 10B*(0, 0.74, 1.74, 2.15) (FRDWBA analysis): see (1979AJ01). See also (1988AL1G).

20. 10Be(β^-)10B

\[Q_m = 0.5561 \]
Table 10.14: Levels of 10B from 9Be(d, n) and 9Be(3He, d) \(^a\)

<table>
<thead>
<tr>
<th>E_x (MeV) (^a)</th>
<th>9Be(d, n) (^b)</th>
<th>9Be(3He, d) (^c)</th>
<th>J^π; T (^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>l_p</td>
<td>S_{rel}</td>
<td>l_p</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>0.72</td>
<td>1</td>
<td>1.97</td>
<td>1</td>
</tr>
<tr>
<td>1.74</td>
<td>1</td>
<td>1.36</td>
<td>1</td>
</tr>
<tr>
<td>2.15</td>
<td>1</td>
<td>0.41</td>
<td>1</td>
</tr>
<tr>
<td>3.59</td>
<td>1</td>
<td>0.10</td>
<td>1</td>
</tr>
<tr>
<td>4.77 (≥ 2)</td>
<td>1</td>
<td>(3)(^e)</td>
<td>0.10</td>
</tr>
<tr>
<td>5.11</td>
<td>0</td>
<td>0.14</td>
<td>0 + 2</td>
</tr>
</tbody>
</table>
| 5.16 \(\{\)
| 5.18 \(\}
| 5.92 | 1 | 0.43 | 1 | 0.86 | $2^+; 1$ |
| 6.03 | 1 | 0.49 | 1 | 2.05 | $2^+; 0$ |
| 6.13 | (2) | (2)\(^f\) | 3.04 | 3^- |
| 6.56 | (3) | (2)\(^f\) | 2.01 | (4^-) |
| 6.89 ± 15 | (1) | | | $1^-; 0 + 1$ |
| 7.00 ± 15 | (1) | | | $(1, 2)^+; (0)$ |
| 7.48 ± 15 | \(d\) | | | \(g\) |
| 7.56 ± 25 | \(d\) | | | $0^+; 1$ |
| (7.85 ± 50) | \(d\) | | | 1^- |
| (8.07 ± 50) | \(d\) | | | $(2^-; 0)$ |
| (8.12 ± 50) | \(d\) | | | |

\(^a\) Values without uncertainties are from Table 10.5; others are from Table 10.15 in (1979AJ01). See that table for additional information and for references. See also (1984AJ01).

\(^b\) S_{rel} from experiment at $E_d = 12.0 - 16.0$ MeV.

\(^c\) $E(3$He$) = 18$ MeV; DWBA analysis; values shown are those obtained with one of the two optical-model potentials used in the analysis. For earlier (3He, d) results see Table 10.17 in (1979AJ01).

\(^d\) State observed in (d, n) reaction; l_p not determined.

\(^e\) Angular distribution poorly fitted by DWBA.

\(^f\) See (1980BL02) for a discussion of these two states, including a comparison with the (d, n) data: $l_p = 2$ is slightly preferred to $l_p = 1$ on the basis of the observed strengths. Neither $l_p = 2$ nor 1 gives a good DWBA fit.

\(^g\) Group shown corresponds to unresolved states in 10B.
See ^{10}Be.

21. $^{10}\text{Be}(p, n)^{10}\text{B}$

$Q_m = -0.2261$

The yield of the n_1 group has been studied for $E_p = 0.9$ to 2.0 MeV: see ^{11}B in (1990AJ01) (1986TE1A).

22. (a) $^{10}\text{B}(\gamma, n)^9\text{B}$

$Q_m = -8.436$

(b) $^{10}\text{B}(\gamma, p)^9\text{Be}$

$Q_m = -6.5857$

(c) $^{10}\text{B}(\gamma, pn)^8\text{Be}$

$Q_m = -8.2511$

(d) $^{10}\text{B}(\gamma, \pi^+)^{10}\text{Be}$

$Q_m = -140.125$

Absolute measurements have been made of the $^{10}\text{B}(\gamma, \text{Tn})$ cross section from threshold to 35 MeV with quasimonoenergetic photons; the integrated cross section is 0.54 in units of the classical dipole sum ($60 \,NZ/A \,\text{MeV} \cdot \text{mb}$). The $(\gamma, 2n) + (\gamma, 2np)$ cross section is zero, within statistics, for $E_\gamma = 16$ to 35 MeV: see (1979AJ01) and (1988DI02). The giant resonance is broad with the major structure contained in two peaks at $E_x = 20.1 \pm 0.1$ and 23.1 ± 0.1 MeV ($\sigma_{\text{max}} \approx 5.5$ mb for each of the two maxima): see (1979AJ01), (1987AH02) [and H. H. Thies, private communication] [using bs] report two broad [$\Gamma \approx 2$ MeV] maxima at 20.2 and 23.0 MeV [± 0.05 MeV] ($\sigma = 5.0$ and 6.0 mb, respectively; ±10%) and a minor structure at $E_x = 17.0$ MeV. For reactions (b) and (c) see (1988SU14). For reaction (d) see ^{10}Be. See also (1974AJ01) and (1983GO28, 1985GO1A, 1987KI1C; theor.).

23. (a) $^{10}\text{B}(e, e)^{10}\text{B}$

(b) $^{10}\text{B}(e, en)^9\text{B}$

$Q_m = -8.436$

(c) $^{10}\text{B}(e, ep)^9\text{Be}$

$Q_m = -6.5857$

(d) $^{10}\text{B}(e, e\pi^+)^{10}\text{Be}$

$Q_m = -140.125$

$\langle r^2 \rangle^{1/2} = 2.49 \pm 0.09$ fm (1986DO1E; prelim.).

Inelastic electron groups are displayed in Table 10.15. (1986FRZZ; prelim.) have measured the form factors for $^{16}\text{B}^*(0, 1.74, 5.16)$. For reactions (b) and (c) see (1984AJ01). For reaction (d) see ^{10}Be. See also (1984DO20, 1986PE05, 1987DE43, 1987HI1F) and (1986HA1M; theor.).

24. $^{10}\text{B}(n, n)^{10}\text{B}$

34
Table 10.15: Radiative widths for $^{10}\text{Be}(e, e')$ a

<table>
<thead>
<tr>
<th>E_x in ^{10}B (MeV)</th>
<th>$J^\pi; T$</th>
<th>Mult.</th>
<th>Γ_{γ} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.74</td>
<td>0$^+; 1$</td>
<td>M3</td>
<td>$(1.05 \pm 0.25) \times 10^{-7}$</td>
</tr>
<tr>
<td>5.16 \pm 0.04 b</td>
<td>2$^+; 1$</td>
<td>{</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.05 ± 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$(1.1 \pm 0.1) \times 10^{-6}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.106 ± 0.005</td>
</tr>
<tr>
<td>6.03</td>
<td>4$^+$</td>
<td>C2</td>
<td>$(3.3 \pm 0.8) \times 10^{-7}$</td>
</tr>
<tr>
<td>7.48</td>
<td>2$^+; 1$</td>
<td>M1</td>
<td>11.75 \pm 0.75</td>
</tr>
<tr>
<td>8.07</td>
<td>2$^+ ,^c$</td>
<td>C2</td>
<td>0.19 \pm 0.02</td>
</tr>
<tr>
<td>8.9</td>
<td>2$^+; 1$</td>
<td>{</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.3 \pm 0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$(1.0 \pm 0.1) \times 10^{-5}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$(1.2 \pm 0.1) \times 10^{-3}$</td>
</tr>
<tr>
<td>10.79</td>
<td></td>
<td>M1 or C2</td>
<td></td>
</tr>
<tr>
<td>11.56</td>
<td>(M1)</td>
<td></td>
<td>11.4 \pm 2.3 c</td>
</tr>
<tr>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a See Table 10.16 in (1984AJ01) for references. See also Table 10.18 in (1979AJ01).

b Assumed to correspond to 2$^+$ state at 5.16 MeV. $\Gamma_{\gamma_0} = (3.5 \pm 0.3) \times 10^{-4}$ eV for M2 if the transition were to the 2$^-$ state at 5.11 MeV; see also footnote g in Table 10.18 (1979AJ01).

c $\Gamma \approx 760$ keV.

Angular distributions have been studied for $E_n = 1.5$ to 14.1 MeV [see (1974AJ01, 1979AJ01)] and at 3.02 to 12.01 MeV (1986SAZR, 1987SAZX; prelim; $n_1 \to n_5$), 8 to 14 MeV (1983DA22; n_0) and 9.96 to 16.94 MeV (1986MU08; prelim.; n_0). See also ^{11}B in (1985AJ01, 1990AJ01), (1984TU02) and (1983KO1F; theor).

25. (a) $^{10}\text{B}(p, p)^{10}\text{B}$

(b) $^{10}\text{B}(p, 2p)^9\text{Be}$

$$Q_m = -6.5857$$

Angular distributions have been measured for a number of energies between $E_p = 3.0$ and 800 MeV [see (1974AJ01, 1979AJ01, 1984AJ01)] and at 10 to 17 MeV (1986MU08; p_0; prelim.). Table 10.16 displays the states observed in this reaction. The γ-ray results are shown in Table 10.6. See also (1979AJ01). For τ_m see Table 10.7 (1983VE03).
Table 10.16: 10B levels from 10B(p, p), 10B(d, d) and 10B(3He, 3He) a

<table>
<thead>
<tr>
<th>E_x (MeV ± keV) b</th>
<th>$\Gamma_{c.m.}$ (keV)</th>
<th>L</th>
<th>$\beta_L^{b, c}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7183 ± 0.4 d, e, f</td>
<td></td>
<td>2</td>
<td>0.67 ± 0.05</td>
</tr>
<tr>
<td>≡ 1.7402 f, g</td>
<td></td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>2.1541 ± 0.5 d</td>
<td></td>
<td>2</td>
<td>0.49 ± 0.04</td>
</tr>
<tr>
<td>3.5870 ± 0.5 d</td>
<td></td>
<td>2</td>
<td>0.45 ± 0.04</td>
</tr>
<tr>
<td>4.7740 ± 0.5 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1103 ± 0.6</td>
<td></td>
<td>3</td>
<td>0.45 ± 0.04</td>
</tr>
<tr>
<td>5.1639 ± 0.6</td>
<td>110 ± 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.18 ± 10 h, i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9195 ± 0.6 d</td>
<td>< 5</td>
<td>2</td>
<td>0.28 ± 0.03</td>
</tr>
<tr>
<td>6.0250 ± 0.6 d</td>
<td>< 5</td>
<td>2</td>
<td>0.95 ± 0.04</td>
</tr>
<tr>
<td>6.1272 ± 0.7 d</td>
<td>< 5</td>
<td>3</td>
<td>0.58 ± 0.03</td>
</tr>
<tr>
<td>6.55 ± 10 d</td>
<td>25 ± 5</td>
<td>3</td>
<td>0.46 ± 0.04 j</td>
</tr>
<tr>
<td>7.00 ± 10 d</td>
<td>95 ± 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.48 ± 10</td>
<td>90 ± 15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a For references and a more complete presentation see Table 10.19 in (1979AJ01).
b From (p, p).
c See results obtained from (3He, 3He) in Table 10.19 of (1979AJ01).
d Also observed in (d, d) and (3He, 3He).
e $E_x = 718.35 ± 0.04$ (from E_γ).
f $E_x = 718.5 ± 0.2$ and 1740.0 ± 0.6 keV (from E_γ).
g Also observed in (3He, 3He).
h Also observed in (d, d).
i Not reported in (p, p) at $E_p = 10$ MeV.
j If $J^\pi = 4^-$; $\beta_L = 0.59 ± 0.03$ if $J^\pi = 2^-$.
Axions may cause e^+e^- pairs in competition with γ-ray emission in an isoscalar M1 transition: a search for axions was undertaken in the case of the $3.59 \rightarrow \text{g.s.} \quad [2^+ \rightarrow 3^+]$ transition. It was negative (1986DE25). A beam dump experiment and other attempts to observe axions are discussed in (1987HA1O). For reaction (b) at $E_\alpha = 1$ GeV see (1985BE30, 1985DO16; prelim.) and (1974AJ01). See also (1988KRZY), (1985KI1B, 1988KOZL; applied) and 11C in (1985AJ01, 1990AJ01).

26. 10B(d, d)10B

Angular distributions have been reported at $E_d = 4$ to 28 MeV: see (1974AJ01, 1979AJ01). Observed deuteron groups are displayed in Table 10.16. The very low intensity of the group to 10B*(1.74) and the absence of the group to 10B*(5.16) is good evidence of their $T = 1$ character: see (1974AJ01).

27. 10B(t, t)10B

Angular distributions of elastically scattered tritons have been measured at $E_t = 1.5$ to 3.3 MeV: see (1974AJ01).

28. 10B(3He, 3He)10B

Angular distributions have been measured at $E(^3\text{He}) = 4$ to 46.1 MeV [see (1974AJ01, 1979AJ01, 1984AJ01)] and at 2.10 and 2.98 MeV (1987BA34; elastic). $L = 2$ gives a good fit of the distributions of 3He ions to 10B*(0.72, 2.15, 3.59, 6.03): derived β_L are shown in Table 10.19 of (1979AJ01). See also Table 10.16 here, 13N in (1986AJ01) and (1987RA36; theor.).

29. (a) 10B(α, α)10B
(b) 10B(α, 2α)6Li

\[Q_m = -4.4596 \]

Angular distributions have been measured for $E_\alpha = 5$ to 56 MeV [see (1974AJ01, 1979AJ01, 1984AJ01)] and at 91.8 MeV (1985JA12; α_0). Reaction (b) has been studied at $E_\alpha = 24$ and 700 MeV: see (1979AJ01, 1984AJ01). See also (1983GO27, 1985SH1D; theor.).

30. (a) 10B(6Li, 6Li)10B
(b) 10B(7Li, 7Li)10B
Elastic-scattering angular distributions have been studied at $E(^6\text{Li}) = 5.8$ and 30 MeV and at $E(^7\text{Li}) = 24$ MeV: see (1979AJ01).

31. \(^{10}\text{B}(^9\text{Be}, ^9\text{Be})^{10}\text{B}\)

Elastic angular distributions have been measured at $E(^{10}\text{B}) = 20.1$ and 30.0 MeV (1983SR01). For yield and cross section measurements see (1983SR01, 1986CU02). See also (1984IN03, 1986RO12; theor.).

32. (a) \(^{10}\text{B}(^{10}\text{B}, ^{10}\text{B})^{10}\text{B}\)
(b) \(^{10}\text{B}(^{11}\text{B}, ^{11}\text{B})^{10}\text{B}\)

Elastic angular distributions (reaction (a)) have been studied at $E(^{10}\text{B}) = 8$, 13 and 21 MeV. For yields and reaction (b) see (1979AJ01). See also (1985BE1A, 1985CU1A) and (1984HA43, 1986RO12; theor.).

33. (a) \(^{10}\text{B}(^{12}\text{C}, ^{12}\text{C})^{10}\text{B}\)
(b) \(^{10}\text{B}(^{13}\text{C}, ^{13}\text{C})^{10}\text{B}\)

34. \(^{10}\text{B}(^{14}\text{N}, ^{14}\text{N})^{10}\text{B}\)

Angular distributions have been reported at $E(^{10}\text{B}) = 100$ MeV and $E(^{14}\text{N}) = 73.9$ and 93.6 MeV; see (1979AJ01, 1984AJ01). For fusion cross section studies see (1979AJ01, 1984AJ01) and (1983DE26). See also (1983BI1A, 1983DA10, 1984FR1A, 1984HA53, 1985BE1A, 1985CU1A) and (1983GO13, 1984HA43, 1984IN03, 1985KO1J, 1986RO12; theor.).

35. (a) \(^{10}\text{B}(^{16}\text{O}, ^{16}\text{O})^{10}\text{B}\)
(b) \(^{10}\text{B}(^{17}\text{O}, ^{17}\text{O})^{10}\text{B}\)
(c) \(^{10}\text{B}(^{18}\text{O}, ^{18}\text{O})^{10}\text{B}\)
Elastic angular distributions (reaction (a)) have been studied at $E(^{16}\text{O}) = 15.0$ to 32.5 MeV and at $E(^{10}\text{B}) = 33.7$ to 100 MeV: see (1979AJ01, 1984AJ01). The elastic scattering for reaction (c) has been studied at $E(^{18}\text{O}) = 20$, 24 and 30.5 MeV: see (1974AJ01). For yield and fusion cross section measurements see (1984AJ01) and (1984GO1C). See also (1983BI1A, 1984FR1A, 1984HA53) and (1983GO13, 1985HU04; theor.).

36. (a) $^{10}\text{B}(^{19}\text{F}, ^{19}\text{F})^{10}\text{B}$
 (b) $^{10}\text{B}(^{20}\text{Ne}, ^{20}\text{Ne})^{10}\text{B}$

 The elastic scattering has been investigated for $E(^{19}\text{F}) = 20$ and 24 MeV for reaction (a) and $E(^{10}\text{B}) = 65.9$ MeV for reaction (b): see (1974AJ01, 1984AJ01).

37. (a) $^{10}\text{B}(^{24}\text{Mg}, ^{24}\text{Mg})^{10}\text{B}$
 (b) $^{10}\text{B}(^{25}\text{Mg}, ^{25}\text{Mg})^{10}\text{B}$

 The elastic scattering for both reactions has been studied at $E(^{10}\text{B}) = 87.4$ MeV: see (1984AJ01). The elastic scattering for reaction (b) has been measured at $E(^{10}\text{B}) = 34$ MeV by (1985WI18).

38. (a) $^{10}\text{B}(^{27}\text{Al}, ^{27}\text{Al})^{10}\text{B}$
 (b) $^{10}\text{B}(^{28}\text{Si}, ^{28}\text{Si})^{10}\text{B}$
 (c) $^{10}\text{B}(^{30}\text{Si}, ^{30}\text{Si})^{10}\text{B}$

 The elastic scattering for all three reactions has been studied at $E(^{10}\text{B}) = 41.6$ and ≈ 50 MeV [and also at 33.7 MeV for reaction (b)]: see (1984AJ01). See also (1984TE1A).

39. (a) $^{10}\text{B}(^{39}\text{K}, ^{39}\text{K})^{10}\text{B}$
 (b) $^{10}\text{B}(^{40}\text{Ca}, ^{40}\text{Ca})^{10}\text{B}$

 The elastic scattering has been studied at $E(^{10}\text{B}) = 44$ MeV for reaction (a) (1985WI18) and at 46.6 MeV for reaction (b): see (1984AJ01).

40. $^{10}\text{C}(\beta^+)^{10}\text{B}$

 $Q_m = 3.6481$
The half-life of ^{10}C is 19.255 ± 0.53 sec [see (1974AJ01, 1979AJ01)]; the decay is to $^{10}\text{B}^*(0.72, 1.74)$ with branching ratios of $(98.53 \pm 0.02)\%$ and $(1.465 \pm 0.014)\%$ and log $f_t = 3.047$ for the transition to $^{10}\text{B}^*(0.72)$ and 3.492 ± 0.005 for that to the analog state, $^{10}\text{B}^*(1.74)$: see Table 10.20 in (1979AJ01). The excitation energies of the two states are 718.32 ± 0.09 and 1740.16 ± 0.17 keV [$E_\gamma = 718.29 \pm 0.09$ and 1021.78 ± 0.14 keV]. See (1979AJ01) for a further discussion of the decay. See also (1988GI02, 1988KRZY).

41. $^{11}\text{B}(\gamma, n)^{10}\text{B}$

\[Q_m = -11.4542 \]

The intensities of the transitions to $^{10}\text{B}^*(3.59, 5.16)$ [$T = 0$ and 1, respectively] depend on the region of the giant dipole resonance in ^{11}B from which the decay takes place: it is suggested that the lower-energy region consists mainly of $T = \frac{1}{2}$ states and the higher-energy region of $T = \frac{3}{2}$ states: see ^{11}B in (1980AJ01). See also ^{11}B in (1985AJ01, 1990AJ01) and (1984AL22).

42. (a) $^{11}\text{B}(p, d)^{10}\text{B}$

\[Q_m = -9.2296 \]

(b) $^{11}\text{B}(p, pn)^{10}\text{B}$

\[Q_m = -11.4542 \]

Angular distributions of deuteron groups have been measured at several energies in the range $E_p = 17.7$ to 154.8 MeV [see (1979AJ01)] and at 18.6 MeV (1985BE13; d_0, d_1). The population of the first five states of ^{10}B and of $^{10}\text{B}^*(5.2, 6.0, 6.56, 7.5, 11.4 \pm 0.2, 14.1 \pm 0.2)$ is reported. For reaction (b) see (1985BE30, 1985DO16; 1 GeV; prelim.). See also (1988GUZW) and (1988BE1I; theor.).

43. $^{11}\text{B}(d, t)^{10}\text{B}$

\[Q_m = -5.1969 \]

Angular distributions have been measured at $E_d = 11.8$ MeV ($t_0 \rightarrow t_3; l = 1$) [see (1974AJ01)] and at 18 MeV (1987GUZZ, 1988GUZW; prelim.).

44. (a) $^{11}\text{B}(^3\text{He}, \alpha)^{10}\text{B}$

\[Q_m = 9.1236 \]

(b) $^{11}\text{B}(^3\text{He}, 2\alpha)^6\text{Li}$

\[Q_m = 4.6640 \]

Reported levels are displayed in Table 10.17. Angular distributions have been measured at a number of energies between $E(^3\text{He}) = 1.0$ and 33 MeV [see (1974AJ01)] and at 23.4 MeV (1987VA11; α_0, α_1; prelim.). For the decay of observed states see Table 10.6.

The $\alpha-\alpha$ angular correlations (reaction (b)) have been measured for the transitions via $^{10}\text{B}^*(5.92, 6.03, 6.13, 6.56, 7.00)$. The results are consistent with $J^\pi = 2^+$ and 4^+ for $^{10}\text{B}^*(5.92, 6.03)$ and
Table 10.17: ^{10}B levels from $^{11}\text{B}(^3\text{He}, \alpha)^{10}\text{B}$ \(^a\)

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$\Gamma_{\text{c.m.}}$ (keV)</th>
<th>l</th>
<th>S_{rel}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>0.718 ± 7</td>
<td>1</td>
<td>1</td>
<td>0.22</td>
</tr>
<tr>
<td>1.744 ± 7</td>
<td>1</td>
<td>1</td>
<td>0.73</td>
</tr>
<tr>
<td>2.157 ± 6</td>
<td>1</td>
<td>1</td>
<td>0.44</td>
</tr>
<tr>
<td>3.587 ± 6</td>
<td>1</td>
<td>1</td>
<td>0.09</td>
</tr>
<tr>
<td>4.777 ± 5</td>
<td>1</td>
<td>1</td>
<td>0.09</td>
</tr>
<tr>
<td>5.114 ± 5</td>
<td></td>
<td>1</td>
<td>1.81</td>
</tr>
<tr>
<td>5.923 ± 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.028 ± 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.131 ± 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.570 ± 7</td>
<td>30 ± 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.002 ± 10</td>
<td>95 ± 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.475 ± 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.567 ± 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.87 ± 40</td>
<td>240 ± 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.85 ± 100</td>
<td>300 ± 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.52 ± 35</td>
<td>500 ± 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.56 ± 30</td>
<td>100 ± 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.49 ± 50</td>
<td>300 ± 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.4 ± 100</td>
<td>800 ± 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(18.2 ± 200)</td>
<td>(1500 ± 300)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) See Table 10.21 in (1979AJ01) for references.
require $J^\pi = 3^-$ for $^{10}\text{B}^*$(6.13). There is substantial interference between levels of opposite parity for the α-particles due to $^{10}\text{B}^*$(6.56, 7.00): the data are fitted by $J^\pi = 3^+$ for $^{10}\text{B}^*$(7.00) and (3, 4) for $^{10}\text{B}^*$(6.56) [the $^6\text{Li}(\alpha, \alpha)$ results then require $J^\pi = 4^-$]. See, however, reaction 15, and see (1974AJ01) for the references. See also (1988GOZB; theor.).

45. $^{11}\text{B}(^7\text{Li}, ^8\text{Li})^{10}\text{B}$ \hspace{1cm} $Q_m = -9.421$

Angular distributions have been measured at $E(^7\text{Li}) = 34$ MeV involving $^{10}\text{B}^*$(0, 0.72, 1.74, 2.15) and $^8\text{Li}_{g.s.}$ (as well as $^8\text{Li}^*$(0.98) in the case of the $^{10}\text{B}_{g.s.}$ transition) (1987CO16).

46. (a) $^{12}\text{C}(\gamma, \text{d})^{10}\text{B}$ \hspace{1cm} $Q_m = -25.1868$

(b) $^{12}\text{C}(\gamma, \text{pn})^{10}\text{B}$ \hspace{1cm} $Q_m = -27.4114$

For reaction (a) see (1986SH1M) and ^{12}C in (1990AJ01). For reaction (b) see ^{12}C in (1985AJ01). See also (1984DO17) and (1984CH1A, 1986GU1G; theor.).

47. $^{12}\text{C}(\text{n}, \text{t})^{10}\text{B}$ \hspace{1cm} $Q_m = -18.9295$

See (1985FR07, 1987FR16; $E_\text{n} = 319$ to 545 MeV). See also (1986DO12).

48. $^{12}\text{C}(\pi^\pm, \pi^\pm\text{d})^{10}\text{B}$ \hspace{1cm} $Q_m = -25.1868$

At $E_{\pi^+} = 180$ MeV and $E_{\pi^-} = 220$ MeV, $^{10}\text{B}^*$(0.72, 2.15) are populated: see (1984AJ01). At $E_{\pi^+} = 150$ MeV momentum distributions of pions to unresolved states of ^{10}B are reported by (1987HU13).

49. (a) $^{12}\text{C}(\text{p}, ^3\text{He})^{10}\text{B}$ \hspace{1cm} $Q_m = -19.6933$

(b) $^{12}\text{C}(\text{p}, \text{pd})^{10}\text{B}$ \hspace{1cm} $Q_m = -25.1868$

Angular distributions of ^3He ions have been measured for $E_\text{p} = 39.8$, 51.9 and 185 MeV: see (1979AJ01). $^{10}\text{B}^*$(0, 0.72, 1.74, 2.15, 3.59, 4.77, 5.16, 5.92, 6.56, 7.50, 8.90) are populated. For reaction (b) see (1985DE17; $E_\text{p} = 58$ MeV; $^{10}\text{B}^*$(0.72, 1.74)) and (1984AJ01). See also (1986VDZY) and (1986GO28, 1986ZH03, 1987GA08, 1987KW01; theor.).
50. 12C(d, α)10B $Q_m = -1.3401$

Alpha groups have been observed to most of the known states of 10B below $E_x = 7.1$ MeV: see Table 10.23 in (1974AJ01). Angular distributions have been measured for $E_d = 5.0$ to 40 MeV: see (1979AJ01). Single-particle S-values are 1.5, 0.5, 0.1, 0.1 and 0.3 for 10B*(0, 0.72, 2.15, 3.59, 4.77). A study of the $m_s = 0$ yield at $E_d = 14.5$ MeV ($\theta = 0^\circ$) leads to assignments of 3+, 2− and (3+, 4−) for 10B*(4.77, 5.11, 6.56). The population of the isospin-forbidden group to 10B*(1.74) $[\alpha_2]$ has been studied with E_d up to 30 MeV: see 14N in (1986AJ01). See also (1984LOZZ).

51. 12C(α, 6Li)10B $Q_m = -23.7118$

Angular distributions have been reported at $E_\alpha = 42$ and 46 MeV: see (1979AJ01). At $E_\alpha = 65$ MeV, an investigation of the 6Li breakup shows that 10B*(0, 0.72, 2.16, 3.57, 4.77, 5.2, 5.9, 6.0) are involved: see (1984AJ01). See also (1987GA20).

52. 12C(7Li, 9Be)10B $Q_m = -8.492$

At $E(^7$Li) = 78 MeV angular distributions have been measured to 10B*(0, 2.15) (1986GLZV; prelim.).

53. (a) 12C(12C, 14N)10B $Q_m = -14.9144$

(b) 12C(14N, 16O)10B $Q_m = -4.4505$

Angular distributions (reaction (a)) involving 10B*(0, 0.7) have been studied at $E(^{12}$C) = 49.0 to 75.5 and 93.8 MeV. Angular distributions (reaction (b)) involving 10B*(0, 0.72, 2.15, 3.59) have been measured at $E(^{14}$N) = 53 MeV and 78.8 MeV (not to 10B*(3.59)): see (1979AJ01, 1984AJ01) for references. See also (1986AR04, 1986CR1A, 1986MOZV).

54. 13C(p, α)10B $Q_m = -4.0618$

Angular distributions have been measured at $E_p = 5.8$ to 18 MeV and 43.7 and 50.5 MeV: see (1979AJ01). See also 14N in (1986AJ01) and (1985MA1F; theor.).

55. 14N(p, pα)10B $Q_m = -11.6125$

43
See (1986VDZY; $E_p = 50$ MeV; prelim.). See also (1986GO28; theor.).

56. $^{14}\text{N}(d, ^6\text{Li})^{10}\text{B}$

\[Q_m = -10.137 \]

At $E_d = 80$ MeV angular distributions are reported to $^{10}\text{B}^*(0, 0.72, 2.15, 3.59, 4.8, 6.04, 7.05, 8.68)$: see (1984AJ01).

57. $^{16}\text{O}(^9\text{Be}, ^{15}\text{N})^{10}\text{B}$

\[Q_m = -5.542 \]

See (1985WI18).
10C
(Figs. 3 and 4)

GENERAL: See also (1984AJ01).

Special states: (1986AB10).

Reactions involving pions and other mesons (See also reactions 2 and 4.): (1985LI1E, 1987SI18).

Other topics: (1982KA1D, 1985AN28, 1986YA1F).

Mass of 10C: The threshold energy for the 10B(p, n)10C reaction is 4876.90 ± 0.37 keV: then $Q_0 = -4430.17 ± 0.34$ keV (1984BA12). Using the (1988WA18) masses for 10B, p and n, the atomic mass excess of 10C is then 15698.8 ± 0.5 keV. This value does not include a contribution from unpublished work on 12C(p, t)10C quoted in (1984AJ01). However, we adopt the (1988WA18) value: 15699.1 ± 0.3 keV.

\[B(E2)↑ \text{ for } ^{10}\text{C}^*(3.35) = (6.2 ± 1.0) \times 10^{-3} e^2 \cdot b^2, \]
\[[Q_0 = 0.25 ± 0.02 \text{ b}] (1987RA01). \]

1. 10C(β⁺)10B \hspace{1cm} Q_m = 3.6481

10C decays with a half-life of 19.255 ± 0.053 sec to 10B*(0.7, 1.7): the branching ratios are (98.53 ± 0.02)% and (1.465 ± 0.014)% respectively: see (1974AJ01). See also reaction 40 in 10B and (1986CA1L).

2. 7Li(3He, π^-)10C \hspace{1cm} Q_m = -125.429

At $E(^{3}\text{He}) = 235$ MeV 10C*(3.35) is populated (1984BI08). π^- production in this reaction has also been studied by (1984BR22) At $E(^{3}\text{He}) = 910$ MeV.
Fig. 3: Energy levels of ^{10}C. For notation see Fig. 1.
Table 10.18: Energy levels of 10C

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>τ or $\Gamma_{c.m.}$ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0$^+$; 1</td>
<td>$\tau_{1/2} = 19.255 \pm 0.053$ sec</td>
<td>β^+</td>
<td>1, 4, 5, 6, 7, 8</td>
</tr>
<tr>
<td>3.3536 ± 0.7</td>
<td>2$^+$</td>
<td>$\tau_m = 155 \pm 25$ fsec</td>
<td>γ</td>
<td>2, 4, 5, 6, 7, 8</td>
</tr>
<tr>
<td>5.22 ± 40</td>
<td>a</td>
<td>$\Gamma = 225 \pm 45$ keV</td>
<td></td>
<td>4, 5, 6, 7</td>
</tr>
<tr>
<td>5.38 ± 70</td>
<td>a</td>
<td>300 ± 60</td>
<td></td>
<td>4, 5, 6, 7</td>
</tr>
<tr>
<td>6.580 ± 20</td>
<td>(2$^+$)</td>
<td>200 ± 40</td>
<td></td>
<td>4, 6, 7</td>
</tr>
</tbody>
</table>

a One of these two states is presumably a 2$^+$ state.

3. 7Li(7Li, 4n)10C \hspace{1cm} $Q_m = -18.171$

Tetraneutron (n^4) production has been studied in this and in other reactions involving 10C at $E(\gamma)$ = 82 MeV (1987ALZG; prelim.): it is not observed.

4. 9Be(p, π^-)10C \hspace{1cm} $Q_m = -136.631$

Angular distributions of π^- groups have been measured at $E_p = 185$ MeV (to 10C*(0, 3.35, 5.28, 6.63)), at 200 MeV (g.s.), at 800 MeV (to 10C*(0, 3.35, 5.3, 6.6)) [see (1984AJ01)] and at $E_{\beta} = 650$ MeV (1986HO23; 10C*(0, 3.35); also A_y). A_y measurements have also been reported at $E_{\beta} = 200$ to 250 MeV: see (1984AJ01).

5. 10B(p, n)10C \hspace{1cm} $Q_m = -4.4305$

$Q_0 = -4430.17 \pm 0.34$ keV (1984BA12)

The E_x of 10C*(3.35) = 3352.7 ± 1.5 keV, $\tau_m = 155 \pm 25$ fsec, $\Gamma_\gamma = 4.25 \pm 0.69$ meV. Angular distributions have been measured for the n$_0$ and n$_1$ groups and for the neutrons to 10C*(5.2 ± 0.3) at $E_p = 30$ and 50 MeV [see (1974AJ01, 1979AJ01)] and for the n$_0$ and n$_1$ groups at $E_p = 14.0, 14.3$ and 14.6 MeV (1985SC08) and 15.8 and 18.6 MeV (1985GU1C; prelim.). See also (1984BA1R, 1988KA2E).

6. 10B(3He, t)10C \hspace{1cm} $Q_m = -3.6667$
Angular distributions have been measured at $E(^3\text{He}) = 14$ MeV and 217 MeV; see (1979AJ01). The latter [to $^{10}\text{C}^*(0, 3.35, 5.6)$] have been compared with microscopic calculations using a central+tensor interaction [$J^\pi = 0^+, 2^+, 2^+$]. Structures have been reported at $E_x = 5.22 \pm 0.04$ [\(\Gamma = 225 \pm 45\) keV], 5.38 ± 0.07 [300 ± 60 keV] and 6.580 ± 0.020 MeV [190 ± 35 keV].

7. $^{12}\text{C}(p, t)^{10}\text{C}$

Angular distributions have been reported at $E_p = 30.0$ to 54.1 MeV and at 80 MeV [see (1974AJ01, 1979AJ01, 1984AJ01)]. $L = 0, 2$ and 2 to $^{10}\text{C}^*(0, 3.35, 5.28)$ thus leading to $0^+, 2^+$ and 2^+ for these states [but note that the “5.28 MeV” state is certainly unresolved]: see reaction 6 and Table 10.18. $^{10}\text{C}^*(6.6)$ is also populated. Two measurements of the excitation energy of $^{10}\text{C}^*(3.4)$ are 3353.5 ± 1.0 keV, 3354.3 ± 1.1 keV: see (1984AJ01) [based on Q_m]. See also (1987KW01; theor.).

8. $^{13}(^3\text{He}, ^6\text{He})^{10}\text{C}$

Angular distributions have been measured at $E(^3\text{He}) = 70.3$ MeV the angular distributions of the ^6He ions corresponding to the population of $^{10}\text{C}^*(0, 3.35)$ have been measured. The group to $^{10}\text{C}^*(3.35)$ is much more intense than the ground-state group: see (1979AJ01).

\[
^{10}\text{N}, ^{10}\text{O}, ^{10}\text{F}, ^{10}\text{Ne}
\]

(Not illustrated)

Not observed: see (1979AJ01). (1985WA02) suggest 39.7 ± 0.4 MeV for the atomic mass excess of ^{10}N. See also (1982KA1D, 1983ANZQ, 1987BL18, 1987SA15; theor.).
Fig. 4: Isobar diagram, $A = 10$. The diagrams for individual isobars have been shifted vertically to eliminate the neutron-proton mass difference and the Coulomb energy, taken as $E_C = 0.60(Z - 1)/A^{1/3}$. Energies in square brackets represent the (approximate) nuclear energy, $E_N = M(Z, A) - ZM(H) - NM(n) - E_C$, minus the corresponding quantity for ^{10}B: here M represents the atomic mass excess in MeV. Levels which are presumed to be isospin multiplets are connected by dashed lines.
References

(Closed 1 June 1988)

1966FO05 P.D. Forsyth, H.T. Tu and W.F. Hornyak, Nucl. Phys. 82 (1966) 33
1966LA04 T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1
1979AJ01 F. Ajzenberg-Selove, Nucl. Phys. A320 (1979) 1

1983AB1A Abramovitch et al., in Moscow (1983) 362

1983AN1D Antolkovic et al., in Florence (1983) 438

1983BA1D H. Bando, Prog. Theor. Phys. 69 (1983) 1731

1983CE1A Cereda, de Leo, Micheletti and Pignanelli, in Florence (1983) 234

1983FA1B Farwell et al., in Florence (1983) 752
1983HA1E Haider and Malik, in Florence (1983) 548
1983LI1A Litherland, in Florence (1983) 697
1983NE1A Nelson et al., Radiocarbon 25 (1983) 693
1983PO1A Poenaru, Ivascu and Sandulescu, in Florence (1983) 662
1983PO1D Povh, in Florence (1983) 455
1983TU1A Tuniz et al., in Florence (1983) 751
1983WI1A Wilczynski, in Florence (1983) 305

53
1984BA1U Bayukov et al., in Panic (1984) 125
1984BE1C Belozerov et al., in Alma Ata (1984) 379
1984CH1A Cherkasov, in Alma Ata (1984) 371

54

56
1985BA1T Barnes, Lecture Notes in Phys. 219 (1985) 70
1985BE1A M. Beckerman, Phys. Rept. 129 (1985) 145
1985BO1D Body and Mihaly, INDC (HUN)-22/L (1985)
1985CU1A B. Cujec, Lecture Notes in Phys. 219 (1985) 108
1985GU1C Gulyamov et al., in Leningrad (1985) 291
1985GU1E Gulyamov et al., in Leningrad (1985) 321
1985KA1F Kadmenskii, Kurgalin and Chuvilskii, in Leningrad (1985) 438
1985KO1J Koonin, Lecture Notes in Phys. 219 (1985) 129
1985MA1F Mazitov and Rasulov, in Leningrad (1985) 298
1985NE1C Nemachkalo et al., in Leningrad (1985) 370
1985RA1A G.M. Raisbeck, F. Yiou, D. Bourles and D.V. Kent, Nature 315 (1985) 315
1985RO1C Roche et al., Bull. Amer. Phys. Soc. 30 (1985) 1284
1985SH1D Shvedov and Nemets, in Leningrad (1985) 317
1985TE1C Ter-Akopian et al., in Dubna P15-85-775 (1985)
1985TR1B Trockel et al., in Visby (1985) 148
1985YI1A Yio et al., Nature 316 (1985) 616
1986AL1J Allab, in Santa Fe (1985) 825
1986AV1B Avdeichikov, in Dubna (1986) 122
1986BE1P Bernstein, Private Communication (1986)
1986GO1L Gould et al., in Santa Fe 85 (1986) 139
1986KO1R Korteling et al., Int. Conf. on Nucl. Radiochem. (Beijing, China: Chinese Nucl. Soc. 1986) 37; Phys. Abs. 19259 (1987)
1986NIIA Nishizumi et al., Nature 319 (1986) 134

63
1986SIZS P.J. Simmonds, N.M. Clarke, K.I. Pearce, R.J. Griffiths, C.A. Ogilvie and M. Mannion, in Harrogate (1986) 315
1986WE1E Wei et al., Bull. Amer. Phys. Soc. 31 (1986) 1294

64
1987AB1H Abramovich et al., in Yurmala (1987) 521
1987AK1A Akhverdyan et al., in Panic (1987) 708
1987BI1C Bimbot et al., in Panic (1987) 370
1987FL1A Flerov, in Dubna (1987) 9
1987HI1F Hicks et al., in Panic (1987) 632
1987KO1Y Kobayashi et al., in Panic (1987) 476
1987PE1C Penionshkevich, in Dubna (1987) 364
1987PO1H B. Povh, Prog. Part. Nucl. Phys. 18 (1987) 183
1987VA1I Valiev et al., in Yurmala (1987) 346
1988AL1G Aleksandrov et al., in Baku (1988) 377

69
1988OR1C Ormand and Brown, NBI-87-63 (1988)