Energy Levels of Light Nuclei

$A = 11$

F. Ajzenberg-Selove a and T. Lauritsen b

a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396
b California Institute of Technology, Pasadena, California

Abstract: An evaluation of $A = 5–24$ was published in Nuclear Physics 11 (1959), p. 1. This version of $A = 11$ differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC format.

(References closed December 1, 1958)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-AC02-76-ER02785]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).
Table of Contents for \(A = 11 \)

Below is a list of links for items found within the PDF document. Figures from this evaluation have been scanned in and are available on this website or via the link below.

A. Nuclides: \(^{11}\text{Be},^{11}\text{B},^{11}\text{C}\)

B. Tables of Recommended Level Energies:

Table 11.1: Energy levels of \(^{11}\text{B}\)

Table 11.8: Energy levels of \(^{11}\text{C}\)

C. References

D. Figures: \(^{11}\text{B},^{11}\text{C}\)

E. Erratum to this Publication: PS or PDF
11Be
(Not illustrated)

GENERAL:

Mass of 11Be: From the decay energy, \(\text{11Be}(\beta^-)\text{11B} \), and using the Wapstra mass (1955WA1A) for 11B, the mass excess of 11Be, \(M - A = 23.39 \pm 0.15 \) MeV (1959WI49). The binding energies of a neutron, deuteron and triton in 11Be are, respectively, 0.54, 18.4 and 15.76 MeV.

1. \(\text{11Be}(\beta^-)\text{11B} \) \(Q_m = 11.48 \)

The decay proceeds to 11B\(_{g.s.}\) and to several excited states. For the ground-state transition, \(E_\beta(\text{max}) = 11.48 \pm 0.15 \) MeV; \(\tau_{1/2} = 13.57 \pm 0.15 \) sec, \(\log ft = 6.77 \) (1958AL96, 1959WI49); see 11B.

2. \(\text{9Be}(t, p)\text{11Be} \) \(Q_m = -1.13 \)

Not reported.

3. \(\text{11B}(n, p)\text{11Be} \) \(Q_m = -10.69 \)

At \(E_n = 14.8 \) MeV, an activity with a 14.1 \(\pm \) 0.3 sec half-life is observed which is attributed to the \(\beta^-\)-decay of 11Be formed in this reaction (1958NU40).

\(\text{11B} \)
(Figs. 16)

GENERAL:

1. \(\text{7Li}(\alpha, \gamma)\text{11B} \) \(Q_m = 8.670 \)
Three resonances are reported below $E_{\alpha} = 2.5$ MeV (1951BE13, 1954HE22): see Table 11.2. Study of α-γ and γ-γ angular correlations, taken together with the relative γ-intensities, leads to the following assignments: 9.28 MeV level, $J = \frac{5}{2}^+$; 9.19 MeV, $J = \frac{5}{2}^-$; 8.93 MeV, $J = \frac{3}{2}^-$ or $\frac{5}{2}^-$; 6.81 MeV, $J = \frac{3}{2}^-$; 4.46 MeV, $J = \frac{5}{2}^-$ (1952JO1B) and D.H. Wilkinson, private communication). The strength of the transition (8.92 \rightarrow g.s.) implies E1 radiation (1958BI31). Angular distributions of

Table 11.1: Energy levels of 11B

<table>
<thead>
<tr>
<th>E_x (Mev ± keV)</th>
<th>J^π</th>
<th>τ_m (sec) or Γ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{1}{2}^-$</td>
<td>stable</td>
<td>$-$</td>
<td>1, 10, 11, 12, 19, 22, 29, 30, 31, 34, 36, 38</td>
</tr>
<tr>
<td>2.127 ± 6</td>
<td>$\frac{1}{2}^-$</td>
<td>$\tau_m = (4.6 \pm 0.6) \times 10^{-15}$</td>
<td>γ</td>
<td>10, 11, 19, 22, 23, 27, 28, 36, 38</td>
</tr>
<tr>
<td>4.459 ± 8</td>
<td>$\frac{3}{2}^-$</td>
<td>$\tau_m = (1.17 \pm 0.17) \times 10^{-15}$</td>
<td>γ</td>
<td>1, 10, 12, 13, 19, 23, 28, 36, 38</td>
</tr>
<tr>
<td>5.035 ± 8</td>
<td>$\frac{3}{2}^-$</td>
<td>< 13</td>
<td>γ</td>
<td>1, 10, 19, 38</td>
</tr>
<tr>
<td>6.758 ± 7</td>
<td>$\frac{5}{2}^-$</td>
<td>< 13</td>
<td>γ</td>
<td>1, 10, (12), 13, 19, 22, 28, 38</td>
</tr>
<tr>
<td>6.808 ± 7</td>
<td>$\frac{5}{2}^-$</td>
<td>< 13</td>
<td>γ</td>
<td>1, 10, (12), 19, 22, 36</td>
</tr>
<tr>
<td>7.298 ± 6</td>
<td>$\frac{5}{2}^-$</td>
<td>< 13</td>
<td>γ</td>
<td>1, 10, 19, 38</td>
</tr>
<tr>
<td>7.987 ± 9</td>
<td>8</td>
<td>γ</td>
<td>10, 19, 22, 28, 38</td>
<td></td>
</tr>
<tr>
<td>8.568 ± 5</td>
<td>$(\frac{1}{2}^+, \frac{3}{2}^+)$</td>
<td>< 8</td>
<td>γ</td>
<td>10, 19, 28, 38</td>
</tr>
<tr>
<td>8.927 ± 5</td>
<td>$\frac{5}{2}^+$</td>
<td>< 0.7</td>
<td>γ, α</td>
<td>1, 10, 12, 13, 19, 38</td>
</tr>
<tr>
<td>9.191 ± 5</td>
<td>$\frac{5}{2}^+$</td>
<td>< 0.1</td>
<td>γ, α</td>
<td>1, 10, 13, 19, 26</td>
</tr>
<tr>
<td>9.276 ± 5</td>
<td>$\frac{5}{2}^+$</td>
<td>5</td>
<td>γ, α</td>
<td>1, 10, 19</td>
</tr>
<tr>
<td>9.88 ± 20</td>
<td>$\leq \frac{3}{2}$</td>
<td>160</td>
<td>α</td>
<td>4, 10</td>
</tr>
<tr>
<td>10.26</td>
<td>$\leq \frac{3}{2}$</td>
<td>220</td>
<td>α</td>
<td>4</td>
</tr>
<tr>
<td>10.32 ± 20</td>
<td>45 ± 14</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.62</td>
<td>100</td>
<td>α</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>11.0</td>
<td>670</td>
<td>α</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>11.46</td>
<td>70</td>
<td>$\alpha, (n)$</td>
<td>4, 18</td>
<td></td>
</tr>
<tr>
<td>11.68 ± 100</td>
<td>$(\frac{5}{2}^+, \frac{7}{2}^+)$</td>
<td>140</td>
<td>α, n</td>
<td>2, 4, 12, 18</td>
</tr>
<tr>
<td>11.95 ± 80</td>
<td>$(\frac{3}{2}^-, \frac{5}{2}^+)$</td>
<td>320</td>
<td>α, n</td>
<td>2, 4, 13, 18, 38</td>
</tr>
<tr>
<td>13.16</td>
<td>450</td>
<td>α</td>
<td>2, 13, 18</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>300</td>
<td>α</td>
<td>13, 18</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>500</td>
<td>α</td>
<td>13, 18</td>
<td></td>
</tr>
<tr>
<td>16.77</td>
<td>60</td>
<td>d, (n), p, t</td>
<td>6, 7, 8, 18</td>
<td></td>
</tr>
<tr>
<td>16.93</td>
<td>100</td>
<td>d, p, t</td>
<td>7, 8</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td></td>
<td>d, p</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Table 11.2: Resonances in 7Li(α, γ)11B

<table>
<thead>
<tr>
<th>E_r (MeV ± keV)</th>
<th>Γ_{lab} (keV)</th>
<th>11B* (MeV)</th>
<th>Partial widths b, $\omega \Gamma_{\gamma}$ (eV) to states of 11B at</th>
<th>0</th>
<th>2.14</th>
<th>4.46</th>
<th>5.03</th>
<th>6.81 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.401</td>
<td>< 1</td>
<td>8.925</td>
<td>0.15 c</td>
<td>< 0.003</td>
<td>< 0.003</td>
<td>≈ 0.005</td>
<td>< 0.003</td>
<td></td>
</tr>
<tr>
<td>0.819 ± 1</td>
<td>≈ 4</td>
<td>9.191</td>
<td>< 0.05</td>
<td>< 0.02</td>
<td>2.0</td>
<td>< 0.1</td>
<td>≈ 0.35</td>
<td></td>
</tr>
<tr>
<td>0.958 ± 1 d</td>
<td></td>
<td>9.280</td>
<td>3.5 e</td>
<td>< 0.17</td>
<td>8.1</td>
<td>< 0.4</td>
<td>2.4</td>
<td></td>
</tr>
</tbody>
</table>

a (1951BE13). See also (1954HE22).

b (1952JO1B) and D.H. Wilkinson, private communication: compare 9Be(3He, p)11B and Fig. 17. (1951BE13) report total gamma widths of 0.04, 0.6 and 4.7 eV for the three resonances.

c (1957WA07) finds $\omega \Gamma = 9 \times 10^{-3}$ eV for the 8.9-MeV state.

d (1957BR18) report 957.2 ± 2 keV. According to (1958FE70) the transition from 11B*(9.28) is to the 6.76-MeV level and not at 6.81 MeV.

e (1958ME77) report $\omega \Gamma = 0.8$ eV: see 11B(γ, α)7Li.

several gamma rays at each resonance are tabulated by (1957ME1D); no terms higher than $\cos^2 \theta$ are indicated. The absence of the transition (9.28 → 2.14) speaks for $J = \frac{7}{2}^-$ for the latter (1957W126). Angular distributions of γ-rays from the 9.28 MeV level have been measured by (1958FE70). The results are in agreement with assignments $J = \frac{5}{2}^+$ and $\frac{5}{2}^-$ for 11B*(9.28, 4.46), respectively. The angular distribution of the transition 9.28 → 6.76 strongly favors $J = \frac{7}{2}^-$ for the latter. See also (1958ME77): 11B(γ, α)7Li, and 10B(d, p)11B.

2. 7Li(α, n)10B

$$Q_m = -2.793$$

$$E_b = 8.670$$

For $E_\alpha < 5.8$ MeV, two resonances are observed; at $E_\alpha = 4.7$ MeV (broad), and 5.15 ± 0.08 MeV ($\Gamma = 0.22$ MeV) corresponding to 11B*(11.68 ± 0.10, 11.95 ± 0.08) (1957BI84). A further resonance at $E_\alpha = 7.15$ MeV, 11B*(13.22), is reported by (1958MA1J, 1959GI47). Calculation of $\sigma^{(10)}$B(n, α)7Li from the observed yield of 7Li(α, n)10B gives good agreement for $E_n = 0$ to 0.8 MeV. The 5.15 MeV resonance corresponds to that reported in $\sigma(n, \alpha)$ at 0.52 MeV: $E_x = 11.95$ MeV. It is concluded that the resonance is formed by s or p-wave neutrons, $J = \frac{5}{2}^+$ or $\frac{3}{2}^-$, $\Gamma_n \approx 20$ keV and $\Gamma_\alpha \approx 300$ keV (1959GI47). See also (1950HO1A).

3. 7Li(α, p)10Be

$$Q_m = -2.566$$

$$E_b = 8.670$$

See (1937EC1A).
Table 11.3: Resonances in $^7\text{Li}(\alpha, \alpha'\gamma)^7\text{Li}$

<table>
<thead>
<tr>
<th>E_α (MeV)</th>
<th>$^{11}\text{B}^*$ (MeV)</th>
<th>$\Gamma_{\text{c.m.}}$ (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90 ± 0.01</td>
<td>9.88</td>
<td>0.16</td>
</tr>
<tr>
<td>2.50 ± 0.03</td>
<td>10.26</td>
<td>0.22</td>
</tr>
<tr>
<td>3.06 ± 0.03</td>
<td>10.62</td>
<td>0.10</td>
</tr>
<tr>
<td>3.6 ± 0.1</td>
<td>11.0</td>
<td>0.67</td>
</tr>
<tr>
<td>4.39 ± 0.01</td>
<td>11.46</td>
<td>0.07</td>
</tr>
<tr>
<td>4.6 ± 0.1</td>
<td>11.6</td>
<td>0.14</td>
</tr>
<tr>
<td>5.0 ± 0.1</td>
<td>11.9</td>
<td>0.17</td>
</tr>
</tbody>
</table>

\(^a\) (1957BI84): no correction for barrier penetration effects.
\(^b\) (1954LI48) and (1957BI84). See also (1954HE22).
\(^c\) (1954HE22) and (1957BI84).
\(^d\) (1954LI48) find $\Gamma_{\text{c.m.}} = 125 \pm 10$ and ≈ 155 keV for the first two levels.

4. $^7\text{Li}(\alpha, \alpha')^7\text{Li}^*$ \hspace{2cm} $E_b = 8.670$

Observed resonances in the yield of 0.48 MeV γ-radiation are exhibited in Table 11.3 (1954HE22, 1954LI48, 1957BI84). Sum rule limits give $J \leq \frac{5}{2}$ for the 9.88 MeV level and $J \leq \frac{7}{2}$ for the 10.26 MeV level (1954LI48).

5. $^9\text{Be}(d, \gamma)^{11}\text{B}$ \hspace{2cm} $Q_m = 15.822$

This reaction has not been observed: at $E_d = 0.9$ MeV, $\sigma < 1.8 \mu$b; at $E_d = 1.5$ MeV, $\sigma < 20 \mu$b (1955AL16).

6. $^9\text{Be}(d, n)^{10}\text{B}$ \hspace{2cm} $Q_m = 4.358 \hspace{2cm} E_b = 15.822$

The cross section follows the Gamow function for $E_d = 70$ to 110 keV (1955RA14). The fast neutron and γ-ray yield rise smoothly to $E_d = 1.8$ MeV except for a broad resonance at $E_d = 1$ MeV (1949EV1A, 1955BO1A, 1957SH65). This resonance is observed in the total neutron yield and in the yield of the fast neutrons to each of the first five states of ^{10}B. Angular distributions change markedly through the resonance except for that corresponding to $^{10}\text{B}^*$(3.58), which is dominated by stripping throughout (1957SH65). On the other hand, (1958NE38, 1959NE1A)
have obtained integrated cross sections for three separate neutron groups from $E_d = 0.5$ to 2.0 MeV and find no evidence of a resonance near 1 MeV. See also 10B.

7. 9Be(d, d)9Be

$$E_b = 15.822$$

In the range $E_d = 1.02$ to 1.44 MeV, two resonance anomalies are reported by (1956JU17) at $E_d = 1.162$ and 1.348 MeV corresponding to 11B* (16.77, 16.93) ($\Gamma \approx 70$ and 120 keV, respectively). See also 9Be.

8. (a) 9Be(d, p)10Be
(b) 9Be(d, α)7Li
(c) 9Be(d, t)8Be
(d) 9Be(d, 2α)3H
(e) 9Be(d, tn)7Be

$$Q_m = 4.585$$
$$Q_m = 7.152$$
$$Q_m = 4.592$$
$$Q_m = 4.686$$
$$Q_m = -14.307$$

Reaction (a) exhibits a simple Gamow dependence to 250 keV (1953SA1A). Angular distributions for $E_d < 1.5$ MeV are reported by (1952DE24, 1955JU10, 1955JU1B, 1957HY1A, 1957SM1A, 1958JU38). The distributions of long-range protons for $E_d = 0.1$ to 0.2 MeV are analyzed in terms of two 11B states with $J = \frac{1}{2}^-$ and $\frac{1}{2}^+$ or $J = \frac{3}{2}^-$ and $\frac{5}{2}^+$ (1957SM1A). (1952CA19) reports broad maxima in the 90° yield of ground-state protons at $E_d \approx 0.9$, (1.3) and 2.1 MeV. (1957MC35) observe broad resonances at 1.3 and possibly at 1.8 MeV in the yield of 3.37 MeV γ-rays, in the range $E_d = 1.0$ to 5.6 MeV. No resonances are observed in the yield of 6 MeV γ-rays for $E_d = 2.0$ to 5.6 MeV. The cross section for production of 10Be (reaction (a)) rises to a peak value of ≈ 0.34 b at ≈ 4 MeV and then falls almost linearly to ≈ 0.08 b at ≈ 21.5 MeV (1955HE83). See also (1957CO54).

The cross section for reaction (b) shows a simple Gamow rise to $E_d = 250$ keV (1953SA1A). Angular distributions have been measured for $E_d = 0.3$ to 0.7 MeV by (1951RE1A): see also 7Li. The cross section for reaction (c) has been measured for $E_d = 0.15$ to 0.62 MeV by (1952DE24), for $E_d = 0.6$ to 1.5 MeV by (1955JU10, 1955JU1B), and at several energies in the range $E_d = 3$ to 19 MeV by (1955HE83). The forward yield of tritons shows a peak at $E_d = 1.38$ MeV (1955JU10, 1955JU1B). There seems also the possibility of a resonance at $E_d = 0.87$ MeV (1958JU38). Triton angular distributions for $E_d = 0.1$ to 0.2 MeV are analyzed in terms of two 11B states with $J = \frac{5}{2}^-$ and $\frac{5}{2}^+$ (1957SM1A). See also (1957HY1A) and 8Be.

Relative yields for the various groups from reactions (a), (b) and (c) are given by (1953GE01). See also (1957JA37).

The direct three-body reaction (d) does not appear to occur (1953GE01). The cross section for reaction (e) has been measured from threshold to $E_d \approx 21.5$ MeV ($\sigma \approx 80$ μb) (1955HE83).
9. 9Be(t, n)11B

$Q_m = 9.564$

Not reported.

10. 9Be(3He, p)11B

$Q_m = 10.329$

Angular distributions of the protons to the ground state and several excited states of 11B have been determined at various bombarding energies from 2 to 6 MeV: see 12C. See also (1956HO1C, 1956WO1A, 1957JO1B).

Gamma rays from the first nine excited states have been observed at $E(3^\text{He}) = 2.1$ MeV in coincidence with proton groups. The direct ground state gamma-transition is observed for all the levels. In addition the cascade through the 2.14 MeV state is observed from the 5.03, 6.81, 7.99 and 8.57 MeV states and, possibly, from the 6.76 and 8.92 MeV states, generally with an intensity comparable with that of the corresponding ground state transition. The gamma-ray width, Γ_γ, of the 8.92 MeV level is found to be comparable with its Γ_α. The decay scheme derived from this work is shown in Fig. 17 (1957FE1B, 1958FE70). The branching of the 5.03 and 7.30 MeV levels agrees with the shell-model assignments 3^-_2 and 5^-_2 (1957KU58, 1958FE70). At $E(^3\text{He}) = 5.7$ MeV, proton groups are reported to levels at 2.126 ± 0.010, 4.459 ± 0.010, 5.037 ± 0.010, 6.756 ± 0.010, 6.807 ± 0.010, 7.296 ± 0.010, 7.987 ± 0.010, 8.569 ± 0.010, 8.927 ± 0.010, 9.191 ± 0.010, 9.278 ± 0.010 and 9.87 ± 0.02 MeV. The 9.87 MeV state is broad, $\Gamma \approx 150$ keV (S. Hinds and R. Middleton, private communication). See also (1954MO1E, 1958BR1D, 1958SW63) and 7Li(α, γ)11B.

11. 9Be(α, d)11B

$Q_m = -8.022$

Deuteron groups have been observed at $E_\alpha = 21.6$ MeV to the ground and 2.14 MeV states of 11B. A search in the region $E_x = 0.4$ to 1.0 MeV showed no deuteron groups with intensity greater than 0.1 of the intensity of the two observed groups (1955RA41).

12. 10B(n, γ)11B

$Q_m = 11.464$

The thermal neutron capture cross section is 0.5 ± 0.2 b. Observed capture γ-rays are listed in Table 11.4. The relative weakness of the ground state transition suggests $J = \frac{7}{2}^+$ for the capturing level.

13. 10B(n, n)10B

$E_b = 11.464$
Table 11.4: Capture γ-rays in $^{10}\text{B}(\text{n}, \gamma)^{11}\text{B}$ (1957BA18)

<table>
<thead>
<tr>
<th>E_γ (MeV)</th>
<th>Intensity b (%)</th>
<th>Γ_γ (eV)</th>
<th>assignment c</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.43 ± 0.04</td>
<td>0.8</td>
<td>0.01</td>
<td>C → 0</td>
</tr>
<tr>
<td>8.91 ± 0.03</td>
<td>6</td>
<td>8.93</td>
<td>0 → 0</td>
</tr>
<tr>
<td>6.98 ± 0.03</td>
<td>18</td>
<td>0.2</td>
<td>C → 4.46</td>
</tr>
<tr>
<td>6.74 ± 0.03</td>
<td>10</td>
<td>6.76</td>
<td>0 → 0</td>
</tr>
<tr>
<td>4.73 ± 0.03</td>
<td>30</td>
<td>9.19</td>
<td>4.46 → 0</td>
</tr>
<tr>
<td>4.47 ± 0.02</td>
<td>80</td>
<td>4.46</td>
<td>0 → 0</td>
</tr>
</tbody>
</table>

a Corrected for recoil.
b γ-rays per 100 radiative captures (1958BA52). $\sigma_{\text{n}, \gamma}$ (total) = 0.5 ± 0.2 b.
c C = capturing level: $Q_m = 11.464$.

The epithermal scattering cross section (free) is 3.6 ± 0.2 b (1958HU18). Broad maxima appear in the total cross section at $E_n = 1.9$ and 2.8 MeV (1951BO45) and at 4 MeV (1957HU1D); additional peaks near 0.2 and 0.4 MeV may be indicated (1951BO45). Differential cross sections have been measured at $E_n = 0.55$, 1.00 and 1.50 MeV: derived phase shifts are $\delta_0 = -53.5^\circ$, $\delta_1 = -60.7^\circ$, $\delta_2 = -66.9^\circ$, $\delta_3 = -10.3^\circ$, $\delta_4 = -2.9^\circ$ at $E_n = 1.50$ MeV (1955WI25). The total cross section decreases from ≈ 1.9 b at 4.4 MeV to 1.6 b at 5.6 MeV and then remains approximately constant at ≈ 1.5 b from 6 to 9.7 MeV (1954NE1A, 1956BE1D). At $E_n = 14$ MeV it is 1.47 ± 0.03 b (1952CO1B) and it remains nearly constant to 18 MeV (1954CO16: $\sigma = 1.45 \pm 0.02$ b). See (1957HU1D).

14. $^{10}\text{B}(\text{n}, n')^{10}\text{B}^*$

$E_b = 11.456$

See (1952PH1A) and (1956DA23).

15. $^{10}\text{B}(\text{n}, p)^{10}\text{Be}$

$Q_m = 0.227$

$E_b = 11.464$

The thermal cross section is < 0.2 b (1958HU18); the cross section for fast pile neutrons is 3 mb (1948EG1A).

16. $^{10}\text{B}(\text{n}, d)^9\text{Be}$

$Q_m = -4.358$

$E_b = 11.464$
At $E_n = 14$ MeV, the integrated cross sections (0° to 90°, c.m.) for the transitions to the ground and the 2.4 MeV states of 9Be are 21 ± 3 mb and 16 ± 2 mb, respectively (1954RI15). See also (1956FR18).

17. 10B(n, t)8Be

$Q_m = 0.234$
$E_b = 11.464$

For $E_n = 5.20$ MeV, production of tritons appears to be mainly via 10B(n, α)7Li*(4.7) and direct three-body breakup (1956FR18). Cross sections at $E_n = 4, 5.6, 9.6$ and 14.1 MeV are $95 \pm 10, 230 \pm 25, 125 \pm 15$ and 85 ± 6 mb, respectively (1958WY67).

18. 10B(n, α)7Li

$Q_m = 2.793$
$E_b = 11.464$

Recent values for the thermal neutron absorption cross section in natural boron are 749 ± 4 b (1953CA45), 755 ± 3 b (1953HA1C), 744 ± 20 b (1954SC1A), 764 ± 3 b (1954VO1A) and 760 ± 2 b (1956CO1E). (1958HU18) give 755 ± 2 b for the thermal absorption cross section in “U. S. standard” boron and 3813 b for the thermal isotropic cross section; see also (1957HU1D).

The cross section follows the $1/\nu$ law from 7×10^{-4} eV to 100 keV (1955HU1B, 1957BI84). (1957BI1F) report $\sigma_{\text{total}} = 642/\sqrt{E_n} + 2.45$ b for $E_n = 3$ to 70 keV. The data from $E_n = 0$ to 250 keV can be satisfactorily interpreted in terms of the 11B levels at 11.46 and 11.68 MeV ($E_n = 0$ and 140 keV) observed in 7Li(α, α')7Li* (1957BI84). (1957BE71) find, on the other hand, that deviations from the $1/\nu$ law for $E_n < 1$ MeV indicate a single broad level at $E_n \approx 250$ keV with $J = \frac{5}{2}^-$ or $\frac{7}{2}^+$, $\Gamma_n \approx 400$ keV, $\Gamma_n \approx 200$ keV. A pronounced resonance is observed at $E_n = 1.86$ MeV: $\Gamma_{\text{c.m.}} = 0.45$ MeV ((1957BI84) and (1951PE18); see also (1950ST1A) and (1952BI1A)). There are indications of less pronounced resonances at 0.53, 2.8 and 4.1 MeV (with $\Gamma_{\text{c.m.}} = 0.10$, 0.3 and 0.5 MeV) in the energy range to $E_n = 4.8$ MeV (1957BI84). The ratio of ground state to excited state transition varies strongly with energy: see (1952AJ38, 1954DE1C, 1958BU02).

Cross sections for production of $2\alpha + t$ either through the 4.6 MeV level of 7Li or via three-body breakup have been determined for $E_n = 4$ to 19.5 MeV. A strong maximum near $E_n = 5.6$ MeV may indicate a resonance near 11B*(16.6) (1956FR18, 1958WY1B). See also (1955AJ61).

19. 10B(d, p)11B

$Q_m = 9.237$

Proton groups reported by (1951VA1A) and (1953EL12) are listed in Table 11.5. No other levels are observed below $E_x = 11.46$ MeV: the known levels observed in 7Li(α, α')7Li are presumably too wide to be seen here. See also (1954KH1A, 1955KH35).

The angular distribution of protons leading to the ground state ($J = \frac{3}{2}^-$) shows a well-developed $l_n = 1$ stripping pattern at all energies $\gtrsim 2.0$ MeV (1954EV1A, 1958EV01: 7.7 MeV), (1953HO48: 8 MeV), (1956ZE1A: 10 MeV), (1957LE1F: 15.1 MeV), (1956MA69: 1.0 to 3.0
<table>
<thead>
<tr>
<th>11B*</th>
<th>Γ</th>
<th>$d\sigma/d\Omega$</th>
<th>l_n</th>
<th>J^π</th>
<th>Λ_n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(keV)</td>
<td>(mb/sr)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ± 11</td>
<td></td>
<td>2</td>
<td>1</td>
<td>$\frac{3}{2}^-$</td>
<td>5.0</td>
</tr>
<tr>
<td>2.138 ± 9</td>
<td>< 15</td>
<td>0.4</td>
<td>1</td>
<td>$\frac{1}{2}^-$</td>
<td>0.9</td>
</tr>
<tr>
<td>4.459 ± 8</td>
<td>< 15</td>
<td>1.2</td>
<td>1</td>
<td>$\frac{3}{2}^-, \frac{5}{2}^-$</td>
<td>1.6</td>
</tr>
<tr>
<td>5.034 ± 8</td>
<td>< 15</td>
<td>1.0</td>
<td>1</td>
<td>$\frac{3}{2}^-$</td>
<td>0.5</td>
</tr>
<tr>
<td>6.758 ± 7</td>
<td>< 15</td>
<td>2</td>
<td>1</td>
<td>$\frac{5}{2}^-, \frac{7}{2}^-$</td>
<td>5.7</td>
</tr>
<tr>
<td>6.808 ± 7</td>
<td>< 15</td>
<td>0.2</td>
<td></td>
<td></td>
<td>weak g</td>
</tr>
<tr>
<td>7.298 ± 6</td>
<td>< 15</td>
<td>1.2</td>
<td></td>
<td></td>
<td>weak g</td>
</tr>
<tr>
<td>7.987 ± 9</td>
<td>< 10</td>
<td>1.0</td>
<td></td>
<td></td>
<td>weak g</td>
</tr>
<tr>
<td>8.568 ± 5</td>
<td>< 10</td>
<td>0.3</td>
<td>(2) g</td>
<td>$\frac{5}{2}^+, \frac{3}{2}^+$</td>
<td></td>
</tr>
<tr>
<td>8.927 ± 5</td>
<td>< 4</td>
<td>5</td>
<td>2, 0 g</td>
<td>$\frac{5}{2}^+, \frac{7}{2}^+$</td>
<td></td>
</tr>
<tr>
<td>9.191 ± 5</td>
<td>< 10</td>
<td>8</td>
<td>0 g</td>
<td>$\frac{5}{2}^+, \frac{7}{2}^+$</td>
<td></td>
</tr>
<tr>
<td>9.276 ± 5</td>
<td>< 10</td>
<td>4</td>
<td>0 g</td>
<td>$\frac{5}{2}^+, \frac{7}{2}^+$</td>
<td></td>
</tr>
<tr>
<td>10.32 ± 20</td>
<td>54 ± 17 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. (1951VA1A, 1953EL12): stated errors refer to Q-values.
2. Approximate differential cross sections in mb/sr at $\theta = 90^\circ$, $E_d = 1.51$ MeV (1951VA1A).
5. See text.
6. From p-γ correlation (1957CO54).
7. (1958BI31).
8. The width of this state suggests that it is not to be identified with that observed at 10.26 MeV in 7Li(α, α')7Li.

(a) (1951VA1A, 1953EL12): stated errors refer to Q-values.
(b) Approximate differential cross sections in mb/sr at $\theta = 90^\circ$, $E_d = 1.51$ MeV (1951VA1A).
(c) Relative neutron capture probability (1954EV1A: $E_d = 7.7$ MeV).
(d) (1954EV1A: $E_d = 7.7$ MeV).
(e) See text.
(f) From p-γ correlation (1957CO54).
(g) (1958BI31).
(h) The width of this state suggests that it is not to be identified with that observed at 10.26 MeV in 7Li(α, α')7Li.
MeV); see, however, (1957CO54). Even below $E_d = 1$ MeV, stripping appears to play an important role in formation of this level (1954BU06, 1954PA28, 1957HA1H). The relatively large neutron capture probability suggests a single-particle character (1953HO48, 1954EV1A). See also (1957CO54, 1957HA1H). The polarization has been studied by (1958HE47, 1958HI74).

For the 2.1 MeV state, the evidence is not so clear: the pattern though generally of an $l_n = 1$ shape (see, however, (1954PA28, 1957LE1F)) shows strong variations with energy (1954EV1A, 1956MA69, 1956ZE1A, 1957CO54, 1957LE1F, 1958EV01). An $l_n = 1$ formation implies $\frac{3}{2}^- \leq J \leq \frac{9}{2}^-$, in contradiction to the shell-model expectation that the state should have $J = \frac{1}{2}^-$; however to form such a state requires $l_n = 3$, involving rearrangement of several nucleons and hence a low probability (1956MA69, 1958EV01). The more probable mode of formation would appear to involve a nucleon exchange (1958EV01) or a spin reversal of the outgoing proton (1957WI26). The observation that the polarization of protons for this state is opposite to those corresponding to the ground state is consistent with either point of view, and permits $\frac{3}{2}^- \leq J \leq \frac{11}{2}^-$(1958HE47).

Support for the assignment $J = \frac{1}{2}^-$ is found in the observed isotropy of the p-γ correlation (see below): see also 11B(p, p$^\prime$)11B* and (1957WI26, 1958BO1C).

The 4.46, 5.03 and 6.76 MeV states are also formed by $l_n = 1$. The large neutron capture probability for the 6.76 MeV state indicates that it has a single-particle character (1954EV1A, 1958BI31). See also (1957CO54, 1957SJ1C). The next four states appear only weakly and probably arise from configuration mixing (1958BI31).

For the 8.92 MeV state, $l_n = 2$ with a small admixture of $l_n = 0$ is indicated; $J = \frac{5}{2}^+, \frac{7}{2}^+$. The large γ-width suggests $J = \frac{5}{2}^+$. The 9.19 and 9.28 MeV state are formed with $l_n = 0$, $J = \frac{5}{2}^+$ or $\frac{7}{2}^+$; the intensity ratio is consistent with $J(9.19) = \frac{7}{2}^+$, $J(9.28) = \frac{5}{2}^+$. Again, the high relative intensities suggest that these three are single-particle states, formed by direct capture into the 1d, 2s, shell (1958BI31); see also 7Li(α, γ)11B.

Gamma rays reported by (1955BE81) and (1955SA1B) are listed in Table 11.6. The p-γ angular correlation through the 2.14 MeV state is isotropic to $\approx 4\%$, consistent with $J = \frac{1}{2}$: see (1953TH1B, 1955GO1D, 1956GO1L, 1956GO1M, 1956GO39, 1957GA1B). The angular correlation through 4.46 MeV state is consistent with $J = \frac{3}{2}^-$ or $\frac{5}{2}^{-}$; that through the 6.76 MeV state rules out $J = \frac{3}{2}^-$ and suggest $J = \frac{9}{2}^-$ is unlikely for that state (1957CO54). See also (1956VA17).

20. 10B(t, d)11B $Q_m = 5.205$

Not reported.

21. 10B(α, 3He)11B $Q_m = -9.114$

Not reported.
Table 11.6: \(\gamma\)-rays from \(^{10}\text{B}(d, p)^{11}\text{B}\)

<table>
<thead>
<tr>
<th>(E_\gamma^a) (MeV)</th>
<th>(\sigma) (total) (^b) (mb)</th>
<th>(E_\gamma^c) (MeV)</th>
<th>(I^d) (relative)</th>
<th>Assignment (^{11}\text{B}^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.49 ± 0.05</td>
<td>5.0</td>
<td>4.46 ± 0.04</td>
<td>14</td>
<td>4.46 (\rightarrow 0)</td>
</tr>
<tr>
<td>5.03 ± 0.03</td>
<td>3.0</td>
<td>5.03 ± 0.09</td>
<td>6</td>
<td>5.03 (\rightarrow 0)</td>
</tr>
<tr>
<td>6.75 ± 0.03</td>
<td>5.4</td>
<td>6.78 ± 0.07</td>
<td>6</td>
<td>6.76 (\rightarrow 0)</td>
</tr>
<tr>
<td>7.30 ± 0.03</td>
<td>6.0</td>
<td>7.29 ± 0.04</td>
<td>5</td>
<td>7.30 (\rightarrow 0)</td>
</tr>
<tr>
<td>8.57 ± 0.04</td>
<td>1.8</td>
<td>8.27 ± 0.09</td>
<td>4</td>
<td>8.57 (\rightarrow 0)</td>
</tr>
<tr>
<td>8.93 ± 0.04</td>
<td>8.1</td>
<td>8.87 ± 0.02</td>
<td>11</td>
<td>8.93 (\rightarrow 0)</td>
</tr>
<tr>
<td>4.73 ± 0.03</td>
<td>6.3</td>
<td>4.75 ± 0.03</td>
<td>6</td>
<td>9.19 (\rightarrow 4.46)</td>
</tr>
</tbody>
</table>

\(^a\) (1955BE81): Doppler corrected.

\(^b\) Average value \(E_d = 0\) to 2.0 MeV (1955BE81).

\(^c\) (1955SA1B): no Doppler correction.

\(^d\) Relative intensity (1955SA1B): \((E_d = 1.4\) MeV).

22. \(^{11}\text{Be}(\beta^-)^{11}\text{B}\) \(Q_m = 11.48\)

The decay properties of \(^{11}\text{Be}\) are exhibited in Table 11.7. The transition energy to the ground state is \(E_\beta(\text{max}) = 11.48 \pm 0.15\) MeV; \(\tau_{1/2} = 13.57 \pm 0.15\) sec, \(\log ft = 6.77\) (1958AL96, 1959WI49), \(\tau_{1/2} = 14.1 \pm 0.3\) sec (1958NU40). The transition probabilities to \(^{11}\text{B}_{\text{g.s.}}, J = \frac{3}{2}^-\), and \(^{11}\text{B}^*\)(2.1), \(J = \frac{1}{2}^-\), suggest \(J = \frac{1}{2}^-\) for \(^{11}\text{Be}\), but it is not clear why the transition should be so much inhibited as compared with other allowed transitions (1959WI49).

23. \(^{11}\text{B}(\gamma, \gamma)^{11}\text{B}\)

The mean life of the 4.46 MeV level, determined by resonance absorption and scattering is \(\tau_m = 1.17 \pm 0.17 \times 10^{-15}\) sec, assuming \(J = \frac{5}{2}^-\). On the same assumption, the intensity ratio of quadrupole to dipole transitions is \(\leq 0.2\) (1958RA14). A mean life of \(\approx 1.5 \times 10^{-15}\) sec is calculated by (1957KU58).

A similar experiment yields \(\tau_m = (4.6 \pm 0.6) \times 10^{-15}\) sec for the 2.1 MeV state, assuming \(J = \frac{1}{2}^-\). The result does not distinguish \(J = \frac{1}{2}^-\) from \(J = \frac{1}{2}^+\), but the shortness of the lifetime excludes \(J > \frac{1}{2}^-\) (1958ME79): see (1957WI26: \(^{11}\text{B}(p, p')^{11}\text{B}^*\)). A calculation in intermediate coupling, assuming an M1 transition yields \(\tau_m = (2.5 \text{ to } 5) \times 10^{-15}\) sec (1957KU58). See also (1958MC1D).
Table 11.7: Beta decay of 11Be (1958AL96, 1959WI49)

<table>
<thead>
<tr>
<th>11B* (MeV)</th>
<th>J^π</th>
<th>% betas</th>
<th>log f_t</th>
<th>E_γ (MeV ± keV)</th>
<th>% gammas a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{3}{2}^-$</td>
<td>61</td>
<td>6.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.138</td>
<td>$\frac{3}{2}^-$</td>
<td>29</td>
<td>6.63</td>
<td>2.121 ± 10</td>
<td>32</td>
</tr>
<tr>
<td>4.459</td>
<td>($\frac{5}{2}^-$)</td>
<td>≤ 0.2</td>
<td>≥ 8.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.034</td>
<td>≤ 0.2</td>
<td>≥ 8.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.758</td>
<td>}</td>
<td>6.5</td>
<td>5.93</td>
<td>6.76 ± 30</td>
<td>4.4</td>
</tr>
<tr>
<td>6.808</td>
<td>}</td>
<td></td>
<td></td>
<td>4.64 ± 20</td>
<td>2.1</td>
</tr>
<tr>
<td>7.298</td>
<td>≤ 1.5</td>
<td>≥ 6.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.987</td>
<td>4.1</td>
<td>5.53</td>
<td></td>
<td>7.97 ± 30</td>
<td>1.7</td>
</tr>
<tr>
<td>8.568</td>
<td>≤ 0.3</td>
<td>≥ 6.3</td>
<td></td>
<td>5.86 ± 40</td>
<td>2.4</td>
</tr>
<tr>
<td>8.927</td>
<td>≤ 0.15</td>
<td>≥ 6.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Relative to all β-transitions.

24. 11B(γ, n)10B $Q_m = -11.464$

See (1951SH63) and (1955TI1A).

25. 11B(γ, t)4He + 4He $Q_m = -11.136$

See (1955AJ61).

26. 11B(γ, α)7Li $Q_m = -8.670$

Resonance absorption of 9.19 MeV radiation yields $\Gamma < 100$ eV, $(2J + 1)\Gamma_\gamma \approx 0.8$ eV for 11B*(9.19) (1958ME77).

27. 11B(n, n')11B*

At $E_n = 4.5$ MeV, a 2.2 MeV γ-ray is reported (1955GR18, 1956DA01). See also (1954SC85).
28. 11B(p, p')11B*

At $E_p = 3.58$ MeV, a 2.134±0.005 MeV γ-ray is observed (1957MC35); see also (1953HU29). The mean lifetime of the 2.14 MeV state has been determined by a Doppler shift measurement to be $< 4 \times 10^{-14}$ sec (1957WI26): see 11B(γ, γ)11B. It is pointed out that the observed isotropy in 10B(d, pγ)11B requires a nearly pure E2 transition if $J = \frac{3}{2}^-$ and the present lifetime value excludes E2. On the other hand, the lifetime is quite consistent with M1 (1957WI26). The 2.14 MeV γ-ray exhibits $< 2.0 \times 10^{-3}$ part of circular polarization; this observation places an upper limit of $F^2 \lesssim 1 \times 10^{-7}$ for the intensity of the parity non-conserving part of the wave function (1958WI41).

At $E_p = 185$ MeV, inelastic groups with $Q = -4.7$, -6.6 and -8.5 MeV are observed; the latter shows strong forward peaking and is attributed to a spin flip of a target nucleon, indicating $J = \frac{1}{2}^-, \frac{3}{2}^-$ or $\frac{5}{2}^-$ (1958TY46). See also (1955AJ61, 1956ST1D) and 12C.

29. 11B(d, d')11B*

Ground state deuterons have been observed at $E_d = 4.2$ MeV (1955KH35).

30. 11C(β+)11B

$Q_m = 1.981$

See 11C.

31. 12C(γ, p)11B

$Q_m = -15.958$

See 12C.

32. 12C(p, 2p)11B

$Q_m = -15.958$

At $E_p = 185$ MeV, the summed proton spectrum shows peaks attributed to removal of p- and s-protons (1958MA1B, 1958TY47).

33. (a) 12C(n, d)11B

(b) 12C(d, 3He)11B

$Q_m = -13.731$

$Q_m = -10.465$
Not reported.

34. $^{12}\text{C}(t, \alpha)^{11}\text{B}$

$Q_m = 3.855$

This reaction has been observed at $E_t = 1.4$ MeV (1955CU1A). See also (1958JA06).

35. (a) $^{13}\text{C}(n, t)^{11}\text{B}$

$Q_m = -12.419$

(b) $^{13}\text{C}(p, ^{3}\text{He})^{11}\text{B}$

$Q_m = -13.184$

Not reported.

36. $^{13}\text{C}(d, \alpha)^{11}\text{B}$

$Q_m = 5.167$

Alpha-particle groups have been observed corresponding to $^{11}\text{B}^*(2.107 \pm 0.017)$ (1951LI29) and $^{11}\text{B}^*(4.45, 6.83)$ (1953SP1A). A 4.46 MeV γ-ray observed by (1955BE62) in $^{13}\text{C} + \text{d}$ is definitely assigned to the present reaction by (1958RA13). See also (1955AJ61).

37. $^{14}\text{C}(p, \alpha)^{11}\text{B}$

$Q_m = -0.780$

Not reported.

38. $^{14}\text{N}(n, \alpha)^{11}\text{B}$

$Q_m = -0.152$

Q_0-values of -0.12 ± 0.06 and -0.18 ± 0.05 MeV are reported by (1958DO63). See also (1952LI1A).
\[^{11}\text{C} \]
(Fig. 18)

GENERAL:

1. \(^{11}\text{C}(\beta^+)^{11}\text{B} \quad Q_m = 1.981\)

The spectrum is simple; \(E_{\beta^+}(\text{max}) = 968 \pm 8 \text{ keV} \) (1954WO23). The mean of half-lives reported in (1955AJ61) is 20.36 ± 0.05 min. Recent values of the half-lives are 20.26 ± 0.1 min (1955BA63), 20.8 ± 0.2 min (1957PR53) and 20.11 ± 0.13 min (1958AR15); \(\log ft = 3.62\) (1954WO23). The ratio of K-capture to positron emission is 0.19 ± 0.03% (1957SC29). See also (1957BR18, 1957KA1C).

2. (a) \(^6\text{Li}(^{6}\text{Li}, n)^{11}\text{C} \quad Q_m = 9.462\)
 (b) \(^7\text{Li}(^{6}\text{Li}, 2n)^{11}\text{C} \quad Q_m = 2.209\)

See (1957NO17).

3. \(^9\text{Be}(^{3}\text{He}, n)^{11}\text{C} \quad Q_m = 7.565\)

See (1952PO27, 1953KU08, 1954MO1E).

4. \(^{10}\text{B}(p, \gamma)^{11}\text{C} \quad Q_m = 8.700\)

For \(E_p = 0.7\) to 3 MeV, the main capture radiation is to the ground state. Weaker radiations, \(\approx 5\%\), with \(E_\gamma \approx 4.2\) and 5.8 MeV suggest a cascade through the 4.23 MeV level (1956CH20, 1957HU79). Two broad resonances are reported at 1.14 and \(\approx 4.4\) MeV; see Table 11.9 (1954DA20, 1955BA22, 1955HA01, 1956CH20, 1957HU79). The angular distribution at the first resonance is \(1 + 0.5 \cos^2 \theta\). Using \(\sigma_\alpha = 16 \text{ mb/sr} \) (1956CH20) find \(\omega \Gamma_p \approx 40 \text{ keV, } \Gamma_\alpha \approx 500 \text{ keV, } \omega \Gamma_\gamma \approx 10 \text{ eV}\), consistent with M1 radiation. The angular distribution and the gamma-ray width appear to rule out all \(J \leq \frac{7}{2}\) except \(J = \frac{5}{2}^-\) (1956CH20); see, however, \(^{10}\text{B}(p, \alpha)^7\text{Be} \) (1956CR07). The cross section increases rapidly in the range \(E_p = 2.2\) to 2.7 MeV, but there is no indication of a previously reported 2.4 MeV resonance (see (1954DA20, 1955BA22, 1957HU79)). See also (1955AJ61, 1955WI1E) and (1957JA37).
Table 11.8: Energy levels of 11C

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>J^π</th>
<th>τ (min) or Γ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$(\frac{3}{2}^-)$</td>
<td>$\tau_{1/2} = 20.45 \pm 0.06$</td>
<td>β^+</td>
<td>1, 2, 3, 4, 11, 14, 15, 17, 18, 19, 20, 21, 23, 24</td>
</tr>
<tr>
<td>1.99 ± 20</td>
<td>$(\frac{5}{2}^- \rightarrow \frac{7}{2}^-)$</td>
<td></td>
<td></td>
<td>γ</td>
</tr>
<tr>
<td>4.26 ± 30</td>
<td>$(\frac{3}{2}^- \rightarrow \frac{7}{2}^-)$</td>
<td></td>
<td></td>
<td>γ</td>
</tr>
<tr>
<td>4.75 ± 30</td>
<td>$(\frac{5}{2}^- \rightarrow \frac{7}{2}^-)$</td>
<td></td>
<td></td>
<td>γ</td>
</tr>
<tr>
<td>6.50 ± 20</td>
<td></td>
<td></td>
<td></td>
<td>γ</td>
</tr>
<tr>
<td>6.77 ± 40</td>
<td></td>
<td></td>
<td></td>
<td>(γ)</td>
</tr>
<tr>
<td>7.40 ± 40</td>
<td></td>
<td></td>
<td></td>
<td>γ</td>
</tr>
<tr>
<td>8.108 ± 8</td>
<td></td>
<td></td>
<td></td>
<td>γ</td>
</tr>
<tr>
<td>8.431 ± 8</td>
<td></td>
<td></td>
<td></td>
<td>γ</td>
</tr>
<tr>
<td>8.661 ± 8</td>
<td></td>
<td></td>
<td></td>
<td>γ</td>
</tr>
<tr>
<td>8.98 ± 30</td>
<td></td>
<td></td>
<td></td>
<td>γ</td>
</tr>
<tr>
<td>(9.13 ± 20)</td>
<td></td>
<td></td>
<td></td>
<td>γ</td>
</tr>
<tr>
<td>(9.28 ± 30)</td>
<td></td>
<td></td>
<td></td>
<td>γ</td>
</tr>
<tr>
<td>9.74 ± 10</td>
<td>$(\frac{3}{2}^-)$</td>
<td>450</td>
<td>γ, p, α</td>
<td>4, 6, 10, 11</td>
</tr>
<tr>
<td>10.09 ± 10</td>
<td>$(\frac{5}{2}^+)$</td>
<td>200</td>
<td>p, α</td>
<td>6, 10, 11</td>
</tr>
<tr>
<td>(10.69 ± 20)</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>10.89 ± 20</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>(11.26 ± 20)</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>(11.52 ± 20)</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>12.3</td>
<td></td>
<td>≈ 500</td>
<td>γ, p, α</td>
<td>4, 10</td>
</tr>
<tr>
<td>13.8 ± 200</td>
<td></td>
<td></td>
<td>p, α</td>
<td>10</td>
</tr>
<tr>
<td>(15.7 ± 200)</td>
<td></td>
<td></td>
<td>(p, α)</td>
<td>10</td>
</tr>
</tbody>
</table>

5. 10B(p, n)10C $Q_m = -4.56$ $E_b = 8.700$

The cross section is ≤ 1.4 mb at $E_p = 5.35$ MeV, ≤ 2 mb at $E_p = 5.51$ MeV (1959GI47). See (1958MA1F, 1958TA03) and 10C.
Table 11.9: Resonances in 10B(p, γ)11C, 10B(p, p)10B, 10B(p, α_0)7Be and 10B(p, α_1)7Be

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E_{res} (MeV)</th>
<th>Γ_{lab} (keV)</th>
<th>σ</th>
<th>E_x (MeV)</th>
<th>J^π</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10B(p, γ)11C</td>
<td>1.146 ± 0.005</td>
<td>414 ± 20</td>
<td>5.5 ± 2.8 μb</td>
<td>9.74</td>
<td>($^5_-$)</td>
<td>(1957HU79)</td>
</tr>
<tr>
<td>10B(p, γ)11C</td>
<td>1.135 ± 0.015</td>
<td>540 ± 40</td>
<td>3.5 ± 1.0 μb</td>
<td>9.74</td>
<td>($^5_-$)</td>
<td>(1956CH20)</td>
</tr>
<tr>
<td>10B(p, γ)11C</td>
<td>1.21</td>
<td></td>
<td>7.5 ± 3.8 μb</td>
<td>(52)</td>
<td>($^3_-$)</td>
<td>(1954DA20)</td>
</tr>
<tr>
<td>10B(p, α_0)7Be</td>
<td>1.15</td>
<td></td>
<td>205 ± 40 mb</td>
<td>10.09</td>
<td>(5+)7_2</td>
<td>(1956AL23)</td>
</tr>
<tr>
<td>10B(p, α_0)7Be</td>
<td>1.17</td>
<td>300</td>
<td>210 ± 40 mb</td>
<td>10.09</td>
<td>($^3_-$)</td>
<td>(1956CR07)</td>
</tr>
<tr>
<td>10B(p, α_1)7Be</td>
<td>1.53 ± 0.005</td>
<td>220</td>
<td>80 ± 40 mb</td>
<td>10.09</td>
<td>(5+)7_2</td>
<td>(1957HU79)</td>
</tr>
<tr>
<td>10B(p, α_1)7Be</td>
<td>1.5</td>
<td>250</td>
<td>100 ± 20 mb</td>
<td>10.09</td>
<td>($^3_-$)</td>
<td>(1956CR07)</td>
</tr>
<tr>
<td>10B(p, α_0)7Be</td>
<td>1.5</td>
<td>250</td>
<td>230 ± 40 mb</td>
<td>10.09</td>
<td>($^3_-$)</td>
<td>(1956CR07)</td>
</tr>
<tr>
<td>10B(p, α_1)7Be</td>
<td>1.52</td>
<td>250</td>
<td>140 ± 30 mb</td>
<td>10.09</td>
<td>($^3_-$)</td>
<td>(1956CR07)</td>
</tr>
<tr>
<td>10B(p, α_0)7Be</td>
<td>1.5</td>
<td></td>
<td>140 ± 30 mb</td>
<td>10.09</td>
<td>($^3_-$)</td>
<td>(1956CR07)</td>
</tr>
<tr>
<td>10B(p, α_0)7Be</td>
<td>(1.5)</td>
<td></td>
<td></td>
<td>10.09</td>
<td>(5+)7_2</td>
<td>(1956CR07)</td>
</tr>
<tr>
<td>10B(p, α_1)7Be</td>
<td>1.53</td>
<td>230</td>
<td>210 ± 50 mb</td>
<td>10.09</td>
<td>($^3_-$)</td>
<td>(1956CR07)</td>
</tr>
<tr>
<td>10B(p, α_0)7Be</td>
<td>1.5</td>
<td></td>
<td></td>
<td>10.09</td>
<td>($^3_-$)</td>
<td>(1956CR07)</td>
</tr>
<tr>
<td>10B(p, α_1)7Be</td>
<td>1.5</td>
<td></td>
<td></td>
<td>10.09</td>
<td>($^3_-$)</td>
<td>(1956CR07)</td>
</tr>
<tr>
<td>10B(p, γ)11C</td>
<td>≈ 4</td>
<td>≈ 500</td>
<td>12.3</td>
<td>(1955BA22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10B(p, α)7Be</td>
<td>≈ 4</td>
<td></td>
<td>13.8</td>
<td>(1957KA1C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10B(p, α)7Be</td>
<td>5.6</td>
<td></td>
<td>(15.7)</td>
<td>(1957KA1C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. 10B(p, p)10B

$E_b = 8.700$

The elastic scattering cross section at $\theta = 138^\circ$ rises from nearly the Rutherford value for $E_p < 0.9$ MeV to 4 times Rutherford at $E_p = 1.6$ MeV. Anomalies are observed at $E_p = 1.15$ and 1.5 MeV (1951BR10). See Table 11.9.

7. 10B(p, p'10B

$E_b = 8.700$
The yield of 0.71 MeV radiation, from the first excited state of 10B, rises monotonically from $E_p = 1.5$ to 2.7 MeV (1952DA05, 1954DA20, 1957HU79). At $E_p = 2.7$ MeV the cross section is 11 ± 5 mb (1957HU79). Above $E_p = 2.4$ MeV, weak ($\approx 1\%$) γ-rays of 1.00 \pm 0.04 MeV (1.74 \rightarrow 0.71 transition in 10B) and 2.12 \pm 0.06 MeV (2.14 \rightarrow g.s. transition) are observed (1957HU79). See also (1952CR30), (1956CH20) and (1957JA37).

8. 10B(p, d)9B
$$Q_m = -6.212 \quad E_b = 8.700$$

See 9B.

9. 10B(p, 3He)8Be
$$Q_m = -0.532 \quad E_b = 8.700$$

See 8Be.

10. 10B(p, α)7Be
$$Q_m = 1.147 \quad E_b = 8.700$$

The excitation function is a smooth exponential from $E_p = 60$ to 200 keV (1955BA1M). Excitation functions have been studied up to 3 MeV (see (1957JA37)). Using the stacked foil method, (1957KA1C) report structure in the excitation function corresponding to 11C levels at 12.3, 13.8 \pm 0.2 and 15.7 \pm 0.2 MeV. The ground state α-particles (α_0) exhibit broad resonances at $E_p = 1.17$ and 1.53 MeV superposed on a continuous isotropic background (1951BR10, 1956AL23, 1956CR07). Alpha particles to the 0.43 MeV 7Be state (α_1) and 0.43 MeV γ-rays show only the resonance at $E_p = 1.53$ MeV (1951BR10, 1954DA20, 1956CH20, 1956CR07, 1957HU79). A summary of the evidence on the (10B + p) resonances is given in Tables 11.9 and 11.10.

The reaction cross section for α_0 at the $E_p = 1.17$ MeV resonance requires $J \geq \frac{5}{2}$. The angular distribution is isotropic, except for small terms attributed to interference, restricting the choice to $\frac{5}{2}^+, \frac{7}{2}^+, \frac{3}{2}^-$. The absence of α_1 suggests $\frac{3}{2}^+, \frac{5}{2}^+$ as most likely; $\frac{3}{2}^-$ would agree with the mirror level in 11B (1956CR07: see Table 11.10).

At the $E_p = 1.5$ MeV resonance, the angular distribution of α_0 has the form $1 - 0.53 \cos^2 \theta$. Between resonances, coefficient of odd order Legendre polynomials show a sharp peak, indicating that the two levels have opposite parity. The α_1 distribution at $E_p = 1.5$ MeV also shows interference effects. From the reaction cross section at $E_p = 1.5$ MeV, $J \geq \frac{5}{2}$. The most satisfactory account of the α_0 and α_1 angular distributions is given with the assumption of $J = \frac{7}{2}^+$, formed by s- and d-waves. The assumption $J = \frac{5}{2}^+, \frac{5}{2}^-$ for the 1.17 and 1.5 MeV resonances is excluded (1956CR07: see Table 11.10).

At $E_p = 1.2$ MeV the (non-resonant) 430 keV γ-rays are isotropic $\pm 2\%$ (1956CH20). See also (1955WI1E).
Table 11.10: Resonance parameters for \(^{10}\text{B}(p, \alpha)^{7}\text{Be}\) (1956CR07)

<table>
<thead>
<tr>
<th>(E_{\text{res}}) (MeV)</th>
<th>(J^\pi)</th>
<th>(\Gamma) (keV)</th>
<th>(\Gamma_p) (keV)</th>
<th>(\Gamma_{\alpha_0}) (keV)</th>
<th>(\theta^2_p) (%)</th>
<th>(\theta^2_{\alpha_0}) (%)</th>
<th>(\theta^2_{\alpha_1}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.17</td>
<td>(\frac{3}{2}^-)</td>
<td>300</td>
<td>75 (^a,c)</td>
<td>225</td>
<td>non res</td>
<td>0.8</td>
<td>8</td>
</tr>
<tr>
<td>1.53 (^b)</td>
<td>(\frac{7}{2}^+)</td>
<td>250</td>
<td>160 (^a)</td>
<td>56</td>
<td>34</td>
<td>13</td>
<td>15.7</td>
</tr>
</tbody>
</table>

\(^a\) Alternative solutions.
\(^b\) (1957HU79).
\(^c\) Compare \(^{10}\text{B}(p, \gamma)^{11}\text{C}.\)

11. \(^{10}\text{B}(d, n)^{11}\text{C}\)
\(Q_m = 6.473\)

Level information derived from studies of the neutron groups is displayed in Table 11.11 (1952JO10, 1954PA29, 1956CE1B, 1956CE73, 1956GR54, 1956MA83, 1957GR50, 1958MC1E, 1959NE1A). See also (1953GI05, 1954BU06, 1956BO1F). A search for possible doublet structure at \(E_x = 6.50\) MeV revealed no other level in this neighborhood. A group with relative intensity \(\frac{1}{10}\) would have been seen if the separation were as much as 40 keV (1959NE1A: \(E_d = 1.5\) MeV, \(\theta = 60^\circ\)).

Neutron threshold measurements indicate levels in \(^{11}\text{C}\) at 8.108, 8.431, and 8.661 MeV (1955MA76: \(\pm 0.008\) MeV). Gamma-ray measurements indicate lines with \(E_{\gamma} = 4.75 \pm 0.03\) MeV (1955SA1B), 5.35 \(\pm 0.05\) MeV (1955SA1B: from \(^{11}\text{C}^* (7.4 \rightarrow 2.0)\)), and 6.50 \(\pm 0.03\) (1955BE81: Doppler corrected), 6.52 \(\pm 0.05\) MeV (1955SA1B). Gamma rays of energy 6.5, 4.3, and \(\approx 2.0\) MeV are observed in coincidence with neutrons leading to \(^{11}\text{C}^* (6.50)\). In coincidence with neutrons to \(^{11}\text{C}^* (4.26 \text{ and } 4.75, \text{ unresolved})\) are \(E_{\gamma} = 4.28, \approx 2.3, \approx 2.0\) MeV (1958MC1E). See also (1957BI78).

12. \(^{10}\text{B}(^3\text{He}, d)^{11}\text{C}\)
\(Q_m = 3.206\)

At \(E(^3\text{He}) = 2\) MeV, deuterons have been observed in coincidence with a 2.0 \(\pm 0.1\) MeV \(\gamma\)-ray (1957GO1B).

13. \(^{10}\text{B}(\alpha, t)^{11}\text{C}\)
\(Q_m = -11.113\)

Not reported.
Table 11.11: Levels of 11C from 10B(d, n)11C

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>I_p</th>
<th>J^π</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>$\frac{1}{2}^-$ → $\frac{1}{2}^-$ a</td>
<td>(1954PA29, 1956CE1B, 1956CE73, 1956MA83)</td>
</tr>
<tr>
<td>1.94 ± 50</td>
<td>1</td>
<td>$\frac{1}{2}^-$ → $\frac{1}{2}^-$ a,b</td>
<td>(1952JO10, 1954PA29, 1956CE1B, 1956CE73, 1956GR54, 1956MA83)</td>
</tr>
<tr>
<td>4.26 ± 30</td>
<td>1</td>
<td>$\frac{1}{2}^-$ → $\frac{1}{2}^-$</td>
<td>(1952JO10, 1954PA29, 1956CE1B, 1956CE73, 1956GR54, 1958MC1E, 1959NE1A)</td>
</tr>
<tr>
<td>4.75 ± 30</td>
<td>1</td>
<td>$\frac{1}{2}^-$ → $\frac{1}{2}^-$</td>
<td>(1952JO10, 1955SA1B, 1956CE1B, 1956CE73, 1956GR54, 1959NE1A)</td>
</tr>
<tr>
<td>6.50 ± 20</td>
<td>c</td>
<td>$\frac{1}{2}^-$ → $\frac{1}{2}^-$</td>
<td>(1952JO10, 1955BE81, 1955SA1B, 1956CE1B, 1956CE73, 1958MC1E, 1959NE1A)</td>
</tr>
<tr>
<td>6.77 ± 40</td>
<td>c</td>
<td>$\frac{1}{2}^-$ → $\frac{1}{2}^-$</td>
<td>(1952JO10, 1956CE1B, 1956CE73)</td>
</tr>
<tr>
<td>7.40 ± 40</td>
<td></td>
<td></td>
<td>(1952JO10, 1956CE1B, 1956CE73)</td>
</tr>
<tr>
<td>8.431 ± 10</td>
<td>d</td>
<td></td>
<td>(1952JO10, 1955MA76, 1956CE1B, 1956CE73)</td>
</tr>
<tr>
<td>8.661 ± 10</td>
<td>d</td>
<td></td>
<td>(1952JO10, 1955MA76, 1956CE1B, 1956CE73)</td>
</tr>
<tr>
<td>8.97 ± 20</td>
<td></td>
<td></td>
<td>(1952JO10, 1956CE1B, 1956CE73, 1957GR50)</td>
</tr>
<tr>
<td>(9.13 ± 20)</td>
<td></td>
<td></td>
<td>(1952JO10)</td>
</tr>
<tr>
<td>(9.28 ± 30)</td>
<td></td>
<td></td>
<td>(1956CE1B, 1956CE73)</td>
</tr>
<tr>
<td>9.69 ± 30</td>
<td></td>
<td></td>
<td>(1956CE1B, 1956CE73)</td>
</tr>
<tr>
<td>10.09 ± 20</td>
<td></td>
<td></td>
<td>(1956CE1B, 1956CE73, 1957GR50)</td>
</tr>
<tr>
<td>(10.69 ± 20)</td>
<td></td>
<td></td>
<td>(1956CE1B, 1956CE73, 1957GR50)</td>
</tr>
<tr>
<td>10.89 ± 20 e</td>
<td></td>
<td></td>
<td>(1956CE1B, 1956CE73, 1957GR50)</td>
</tr>
</tbody>
</table>

a $(2J + 1)\gamma^2 = 2.1 \times 10^{-19}$ and 0.8×10^{-19} erg cm for 11B*(0, 2.1), respectively (1956MA83); $\theta_n^2 = 0.02$ and 0.016.
b J probably $\frac{1}{2}^-$. See 10B(d, p)11B.
c $I_p = 1$ for unresolved groups at $E_x \approx 6.6$ MeV (1956MA83).
d $I_p = 1$ for unresolved groups at $E_x \approx 8.5$ MeV (1956MA83). (1957GR50) reports $I_n = 0$.
e Neutron groups are also reported to $E_x = (11.26 \pm 0.02)$ and (11.52 ± 0.02) MeV (1956CE1B, 1956CE73).

14. 10B(6Li, 5He)11C $Q_m = 4.045$

See (1957NO17).

15. 11B(p, n)11C $Q_m = -2.764$

$Q_0 = -2.83^{+0.08}_{-0.05}$ (1956AJ22).

At $E_p = 7.03$ MeV, groups are observed corresponding to the ground state and to a state at 2.01 ± 0.06 MeV. The intensity of the ground-state group is ≈ 2.5 times that of the 11C*(2.0) group at the four angles studied; $I(0^\circ)/I(20^\circ) = 2.5$ for both groups. An appreciable number of low-energy (< 1.5 MeV) neutrons of undetermined origin is reported (1956AJ22). See also (1955MA84, 1958GO77).
16. 11B(3He, t)11C $Q_m = -1.999$

Not reported.

17. 12C(n, 2n)11C $Q_m = -18.722$

See 13C.

18. 12C(γ, n)11C $Q_m = -18.722$

See 12C.

19. 12C(p, d)11C $Q_m = -16.495$

See (1952BR52, 1956GR1E, 1956WE1B).

20. 12C(d, t)11C $Q_m = -12.463$

See (1956WE1B) and 14N.

21. 12C(3He, α)11C $Q_m = 1.856$

At $E(^3$He) = 1.3 and 2.0 MeV, no 1.9 MeV γ-radiation (from 11C*(2.0)) is observed by (1957BR18). The energy of the first excited state is 1.990 ± 0.010 MeV (1959PO61). See also (1952FR1A, 1952PO27, 1953KU08, 1958WE1E).

22. 13C(p, t)11C $Q_m = -15.183$

Not reported.

23. 14N(p, α)11C $Q_m = -2.916$

See 15O.

24. 16O(γ, nα)11C $Q_m = -25.870$

See (1955AJ61).
References

(Closed 1 December 1958)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author’s name and then by two additional characters. Most of the references appear in the National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form 1A, 1B, etc. In response to many requests for more informative citations, we have, when possible, included up to ten authors per paper and added the authors’ initials.

1937EC1A Eckardt, Ann. Phys. 29 (1937) 497
1948EG1A Eggler, Hughes and Huddleston, Phys. Rev. 74 (1948) 1238
1949EV1A Evans, Malich and Risser, Phys. Rev. 75 (1949) 1161
1950ST1A Stebler, Bichsel and Huber, Helv. Phys. Acta 23 (1950) 511
1951BR10 A.B. Brown, C.W. Snyder, W.A. Fowler and C.C. Lauritsen, Phys. Rev. 82 (1951) 159
1951LI29 C.W. Li and W. Whaling, Phys. Rev. 82 (1951) 122
1951PE18 B. Petree, C.H. Johnson and D.W. Miller, Phys. Rev. 83 (1951) 1148
1951RE1A Resnick and Hanna, Phys. Rev. 82 (1951) 463
1951SH63 R. Sher, J. Halpern and A.K. Mann, Phys. Rev. 84 (1951) 387
1951VA1A Van Patter, Buechner and Sperduto, Phys. Rev. 82 (1951) 248
1952AJ38 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 24 (1952) 321
1952BR52 R. Britten, Phys. Rev. 88 (1952) 283
1952CA19 F.L. Canavan, Phys. Rev. 87 (1952) 136
1952CR30 D.S. Craig, D.J. Donahue and K.W. Jones, Phys. Rev. 88 (1952) 808
1952JO10 V.R. Johnson, Phys. Rev. 86 (1952) 302
1952JO1B Jones and Wilkinson, Phys. Rev. 88 (1952) 423
1952LI1A A.B. Lillie, Phys. Rev. 87 (1952) 716
1952PH1A Phillips, Davis and Graces, Phys. Rev. 88 (1952) 600
1952PO27 M.L. Pool, Physica 18 (1952) 1304
1953CA45 R.S. Carter, H. Palevsky, V.W. Myers and D.J. Hughes, Phys. Rev. 92 (1953) 716
1953EL12 M.M. Elkind, Phys. Rev. 92 (1953) 127
1953GI05 W.M. Gibson, Phil. Mag. 44 (1953) 297
1953HA1C Hamermesh, Ringo and Wexler, Phys. Rev. 90 (1953) 603
1953SA1A Sawyer and Phillips, Los Alamos Rept.1578 (1953)
1953SP1A Sperduto and Fader, M.I.T. Prog. Rept. (May, 1953)
1953TH1B Thirion, Ann. Phys. 8 (1953) 489
1954MO1E Moak, Good and Kunz, Phys. Rev. 95 (1954) 641A
1954NE1A Nereson et al., LA 1655 (1954)
1954RI15 F.L. Ribe and J.D. Seagrave, Phys. Rev. 94 (1954) 934
1954SC1A Scott, Thomson and Wright, Phys. Rev. 95 (1954) 582
1954VO1A von Dardel and Sjostrand, Phys. Rev. 96 (1954) 1566
1954WO23 C. Wong, Phys. Rev. 95 (1954) 761
1955AJ61 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 27 (1955) 77
1955BA1M Bach and Livesey, Phil. Mag. 46 (1955) 824
1955BA63 W.C. Barber, W.D. George and D.D. Reagan, Phys. Rev. 98 (1955) 73
1955BO1A Borelli and Lalovic, Nature 176 (1955) 1021
1955CU1A Cuer, Magnac-Valette and Baumann, Compt. Rend. 240 (1955) 1880
1955GO1D Gorodetzky, Gallman, Croissiaux and Armbruster, Compt. Rend. 241 (1955) 1743
1955GR18 G.L. Griffith, Phys. Rev. 98 (1955) 579
1955HA01 T.M. Hahn Jr., B.D. Kern and G.K. Farney, Phys. Rev. 98 (1955) 1183A
1955HU1B Hughes and Harvey, BNL-325 (1955)
1955MA84 J.B. Marion, T.W. Bonner and C.F. Cook, Phys. Rev. 100 (1955) 91
1955RA14 D.C. Ralph and F.E. Dunnam, Phys. Rev. 98 (1955) 249A
1955TI1A Titterton, Prog. Nucl. Phys. 4 (1955) 1
1955WA1A Wapstra, Physica 21 (1955) 367
1956BE1D Becker and Barschall, Phys. Rev. 102 (1956) 1384
1957FE1B Ferguson, Gove, Litherland, Almqvist and Bromley, Bull. Amer. Phys. Soc. 2 (1957) 51
1957GA1B Gallmann, Ph.D. Thesis, Univ. of Strasbourg (1957)
1957GO1B Gove, Litherland, Almqvist, Bromley and Ferguson, Bull. Amer. Phys. Soc. 2 (1957) 51
1957GR50 A. Graue and B. Trumpy, Phil. Mag. 2 (1957) 138
1957HU1D Hughes and Schwartz, BNL-325, Suppl. 1 (1957)
1957JA37 N. Jarmie, J.D. Seagrave et al., LA-2014 (1957)
1957KA1C Kalinin, Ogloblin and Petrov, Sov. J. At. Energy 2 (1957) 193
1957KA58 D. Kurath, Phys. Rev. 106 (1957) 975
1957ME1D Meyer-Schutzmeister and Hanna, Bull. Amer. Phys. Soc. 2 (1957) 28
1957NO17 E. Norbeck Jr. and C.S. Littlejohn, Phys. Rev. 108 (1957) 754
1957SC29 J. Scobie and G.M. Lewis, Phil. Mag. 2 (1957) 1089
1957SJ1C Sjogren, Ark. Fys. 11 (1957) 383
1957SM1A Smither, Phys. Rev. 107 (1957) 196
1957WA07 H. Warhanek, Phil. Mag. 2 (1957) 1085
1958AR15 S.E. Arnell, J. Dubois and O. Almen, Nucl. Phys. 6 (1958) 196
1958BO1C J. E. Bowcock, Phys. Rev. 112 (1958) 923
1958BU02 E. Bujdoso, Nucl. Phys. 6 (1958) 107
1958FR1C French, Univ. of Pittsburgh Tech. Rept. 9 (1958)
1958JA06 N. Jarmie and R.C. Allen, Phys. Rev. 111 (1958) 1121
1958MA1B Th.A.J. Maris, P. Hillman and H. Tyren, Nucl. Phys. 7 (1958) 1
1958MC1E McDonell and Sargood, Private Communication (1958)
1958SW63 D.R. Sweetman, Bull. Amer. Phys. Soc. 3 (1958) 186, K1
1959NE1A Neilson, Dawson and Johnson, Rev. Sci. Instrum. 30 (1959) 963
1959PO61 B. Povh, Phys. Rev. 114 (1959) 1114