Energy Levels of Light Nuclei

$A = 12$

F. Ajzenberg-Selove a and T. Lauritsen b

a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396
b California Institute of Technology, Pasadena, California

Abstract: An evaluation of $A = 5–24$ was published in Nuclear Physics 11 (1959), p. 1. This version of $A = 12$ differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the TUNL/NNDC format.

(References closed December 1, 1958)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-AC02-76-ER02785]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).
Table of Contents for $A = 12$

Below is a list of links for items found within the PDF document. Figures from this evaluation have been scanned in and are available on this website or via the link below.

A. Nuclides: $^{12}{\text{B}}, ^{12}{\text{C}}, ^{12}{\text{N}}$

B. Tables of Recommended Level Energies:

 Table 12.1: Energy levels of $^{12}{\text{B}}$
 Table 12.4: Energy levels of $^{12}{\text{C}}$
 Table 12.12: Energy levels of $^{12}{\text{N}}$

C. References

D. Figures: $^{12}{\text{B}}, ^{12}{\text{C}}, ^{12}{\text{N}}$
12B
(Fig. 19)

GENERAL:

Theory: See (1956KU1A, 1958FR1C).

1. \(^{12}\text{B}(\beta^{-})^{12}\text{C} \quad Q_{m} = 13.376\)

 The spectrum is complex: see \(^{12}\text{C}\). The transition to \(^{12}\text{C}_{\text{g.s.}}\) is allowed; hence \(J^{(12}\text{B}) = 1^+\).

2. \(^{6}\text{Li}(^{7}\text{Li}, p)^{12}\text{B} \quad Q_{m} = 8.338\)

 Three groups of protons are reported, corresponding to the ground state and to the excited states at 0.95 and 1.67 MeV. At \(E(^{7}\text{Li}) = 2.0\) MeV, \(\theta = 90^\circ\) (lab), the relative intensities are 1 : 1.1 : 0.8 (1957NO14). See also (1957NO17).

3. \(^{7}\text{Li}(^{7}\text{Li}, d)^{12}\text{B} \quad Q_{m} = 3.311\)

 See \(^{14}\text{C}\).

4. \(^{9}\text{Be}(\alpha, p)^{12}\text{B} \quad Q_{m} = -6.884\)

 At \(E_{\alpha} = 21.7\) MeV, proton groups are observed corresponding to \(^{12}\text{B}^*(0, 0.95, 1.65, 3.38, 3.82)\) (1951MC57, 1955RA41).

5. \(^{9}\text{Be}(^{7}\text{Li}, \alpha)^{12}\text{B} \quad Q_{m} = 10.463\)

 See (1957NO17).

6. \(^{10}\text{B}(t, p)^{12}\text{B} \quad Q_{m} = 6.344\)
Table 12.1: Energy levels of ^{12}B

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>J^π</th>
<th>$\tau_{1/2}$ or Γ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1$^+$</td>
<td>$\tau_{1/2} = 20.34 \pm 0.5$ msec</td>
<td>β^-</td>
<td>1, 2, 3, 4, 5, 10, 13, 15, 20, 22</td>
</tr>
<tr>
<td>0.947 ± 5</td>
<td>$\leq 3^+$</td>
<td>< 10</td>
<td>γ</td>
<td>2, 4, 6, 10</td>
</tr>
<tr>
<td>1.674 ± 11</td>
<td>1$^-$, 2$^-$</td>
<td>< 10</td>
<td>γ</td>
<td>2, 4, 6, 10</td>
</tr>
<tr>
<td>2.618 ± 11</td>
<td></td>
<td>< 10</td>
<td></td>
<td>6, 10</td>
</tr>
<tr>
<td>2.723 ± 11</td>
<td></td>
<td>< 10</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>3.383 ± 9</td>
<td>$\leq 3^+$</td>
<td>< 10</td>
<td></td>
<td>4, 6, 10</td>
</tr>
<tr>
<td>3.76 ± 10</td>
<td>2$^+$</td>
<td>40 ± 5</td>
<td>n</td>
<td>4, 6, 8, 10</td>
</tr>
<tr>
<td>4.54 ± 20</td>
<td>3$^-$</td>
<td>140 ± 20</td>
<td>n</td>
<td>6, 8, 10</td>
</tr>
<tr>
<td>5.00 ± 20</td>
<td>1</td>
<td>60 ± 20</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>5.61 ± 20</td>
<td>2</td>
<td>120 ± 40</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>5.73 ± 20</td>
<td>3</td>
<td>60 ± 20</td>
<td>n</td>
<td>8</td>
</tr>
</tbody>
</table>

At $E_t = 0.90$ MeV, proton groups are observed corresponding to $^{12}\text{B}^*(0.94, 1.65, 2.61, 3.37, 3.75, 4.46)$ ($^{1955}\text{BI26}$: $\pm \approx 0.1$ MeV).

7. $^{11}\text{B}(n, \gamma)^{12}\text{B}$

$Q_m = 3.365$

$\sigma_{th} < 50$ mb ($^{1958}\text{HU18}$). See also ($^{1953}\text{WI1C}$).

8. $^{11}\text{B}(n, n)^{11}\text{B}$

$E_b = 3.365$

The parameters of observed resonances at $E_n = 0.43, 1.28, 1.78, 2.45$ and 2.58 MeV are exhibited in Table 12.2. The rise of the cross section at low energies may indicate a broad level formed by s-wave neutrons ($^{1951}\text{BO45}$). The angular distributions of elastically scattered neutrons have been studied for $E_n = 0.43$ to 1.50 MeV by ($^{1955}\text{WI25}$). It is found that the 0.43-MeV resonance has $J = 2^+$, formed by p-waves, either all in channel spin 1 or all in channel spin 2. The 1.28 MeV resonance had $J = 3^-$, formed by d-waves, with the level width of channel spin 2 about 10 times that of channel spin 1. Potential scattering at $E_n = 1.5$ MeV is nearly all s-wave: $\delta_0 = -90^\circ$ ($^{1955}\text{WI25}$).

The total cross section for natural boron shows no sharp discontinuities for $E_n = 4.4$ to 5.6 MeV ($\sigma \approx 1.6$ b) and for $E_n = 7.8$ to 8.6 MeV ($\sigma \approx 1.4$ b) ($^{1956}\text{BE1D}$). The total cross section has also been measured for $E_n = 6$ to 9.7 MeV ($^{1954}\text{NE1A}$) and from $E_n = 14.1$ to 18.0 MeV.
Table 12.2: Resonances in 11B(n, n)11B

<table>
<thead>
<tr>
<th>E_n^a (MeV)</th>
<th>$\sigma_{\text{max}} - \sigma_{\text{tot}}^b$ b</th>
<th>Γ_n^a (keV)</th>
<th>12B* (MeV)</th>
<th>l^c</th>
<th>θ_n^2 b (MeV)</th>
<th>J^π</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.43 ± 0.01</td>
<td>2.9</td>
<td>40 ± 5</td>
<td>3.76</td>
<td>1</td>
<td>0.036</td>
<td>2+</td>
</tr>
<tr>
<td>1.28 ± 0.02</td>
<td>2</td>
<td>140 ± 20</td>
<td>4.54</td>
<td>2</td>
<td>0.28</td>
<td>3</td>
</tr>
<tr>
<td>1.78 ± 0.02</td>
<td>0.4</td>
<td>60 ± 20</td>
<td>5.00</td>
<td>1</td>
<td>0.012</td>
<td>1</td>
</tr>
<tr>
<td>2.45 ± 0.02</td>
<td>0.5</td>
<td>120 ± 40</td>
<td>5.61</td>
<td>1</td>
<td>0.017</td>
<td>2</td>
</tr>
<tr>
<td>2.58 ± 0.02</td>
<td>0.6</td>
<td>60 ± 20</td>
<td>5.73</td>
<td>1</td>
<td>0.008</td>
<td>3</td>
</tr>
</tbody>
</table>

a (1951BO45, 1958HU18).

b (1951BO45): $R = 4.5 \times 10^{-13}$ cm.

by (1952CO1B, 1954CO16); see (1955HU1B). See also (1955HI1C, 1956LA1C, 1957LA14, 1958HU18). At $E_n = 14.5$ MeV the non-elastic cross section for natural boron is 0.64 ± 0.04 b (1956FL1B).

9. (a) 11B(n, d)10Be
 $Q_m = -9.010$
 $E_b = 3.365$

(b) 11B(n, t)9Be
 $Q_m = -9.564$

(c) 11B(n, α)8Li
 $Q_m = -6.636$

(d) 11B(n, p)11Be
 $Q_m = -10.69$

The cross section for reaction (c) decreases from 27 mb at $E_n = 12.6$ MeV to 16 mb at $E_n = 20.0$ MeV (1956AR21). At $E_n = 14.1$ MeV, the cross section for reaction (b) is 15 ± 5 mb (1958WY67). Reaction (a) has not been reported. See also (1954HE1B). For reaction (d) see 11Be.

10. 11B(d, p)12B
 $Q_m = 1.138$

Proton groups observed at $E_d = 4.0$ to 8.5 MeV are listed in Table 12.3. No other groups are observed for $E_x = 0$ to 3.15 MeV with an intensity greater than 4\% of the ground-state
Table 12.3: ^{12}B levels from $^{11}\text{B}(d, p)^{12}\text{B}$

<table>
<thead>
<tr>
<th>$^{12}\text{B}^*$ (MeV) a</th>
<th>l_n</th>
<th>J^π</th>
<th>$\frac{\Lambda}{2J+1} , ^e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1^+ c</td>
<td>3.4</td>
</tr>
<tr>
<td>0.947 ± 0.005</td>
<td>1</td>
<td>$3^+, 2^+, 1^+, (0^+)$</td>
<td>1.5, 2.1, 3.5, (10)</td>
</tr>
<tr>
<td>1.674 ± 0.011</td>
<td>0</td>
<td>$2^-, (1^-)$</td>
<td>3.5, (5.8)</td>
</tr>
<tr>
<td>2.618 ± 0.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.723 ± 0.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.383 ± 0.009</td>
<td>1</td>
<td>$3^+, 2^+, 1^+, (0^+)$</td>
<td>1.6, 2.2, 3.7, (11)</td>
</tr>
<tr>
<td>3.76 b</td>
<td>2</td>
<td>$3^- , ^d$</td>
<td>3.8</td>
</tr>
<tr>
<td>4.53 b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a (1950BU1A, 1953EL12).

b (1953HO48).

c From $^{12}\text{B}(\beta^-)^{12}\text{C}$.

d From $^{11}\text{B}(n, n)^{11}\text{B}$.

e Neutron capture probability; proportional to reduced width; values greater than 4 are regarded as improbable (1953HO48).

group, or from 3.15 to 3.5 MeV excitation with an intensity greater than 8% (1953EL12). See also (1954KH1A, 1955KH35). Angular distributions and absolute cross sections have been determined at $E_d = 8$ MeV. Analysis by stripping theory leads to the assignments indicated in Table 12.3. Neutron capture probabilities are compared with expected single-particle values to eliminate certain spin possibilities (1953HO48). At $E_d = 1.05$ MeV, γ-rays with energy 0.94 and 1.64 MeV are observed with an intensity ratio of 2 : 1 (1954TH1B). See also (1955RA41, 1956KA1A, 1956TA07, 1957CH25, 1957CO59).

11. $^{11}\text{B}(t, d)^{12}\text{B}$

$Q_m = -2.894$

Not reported.

12. $^{11}\text{B}(\alpha, ^3\text{He})^{12}\text{B}$

$Q_m = -17.213$

Not reported.

13. $^{12}\text{C}(n, p)^{12}\text{B}$

$Q_m = -12.593$
See \((1948\text{JE03})\).

14. \(^{12}\text{C}(t, \, ^{3}\text{He})^{12}\text{B}\) \[Q_{m} = -13.358 \]

Not reported.

15. \(^{13}\text{C}(\gamma, \, p)^{12}\text{B}\) \[Q_{m} = -17.539 \]

See \(^{13}\text{C}\).

16. \(^{13}\text{C}(d, \, ^{3}\text{He})^{12}\text{B}\) \[Q_{m} = -12.045 \]

Not reported.

17. \(^{13}\text{C}(t, \, \alpha)^{12}\text{B}\) \[Q_{m} = 2.274 \]

Not reported.

18. \(^{14}\text{C}(n, \, t)^{12}\text{B}\) \[Q_{m} = -17.228 \]

Not reported.

19. \(^{14}\text{C}(p, \, ^{3}\text{He})^{12}\text{B}\) \[Q_{m} = -17.993 \]

Not reported.

20. \(^{14}\text{C}(d, \, \alpha)^{12}\text{B}\) \[Q_{m} = 0.358 \]

\[Q_{0} = 0.362 \pm 0.0015 \text{ (1956DO41)} \]

See also \((1950\text{HU72})\).
21. $^{14}\text{N}(n, ^{3}\text{He})^{12}\text{B}$ $Q_m = -17.365$

Not reported.

22. $^{15}\text{N}(n, \alpha)^{12}\text{B}$ $Q_m = -7.629$

See (1948JE03).

^{12}C
(Fig. 20)

GENERAL:

1. $^{7}\text{Li} (^{6}\text{Li}, n)^{12}\text{C}$ $Q_m = 20.931$

See (1957NO17).

2. (a) $^{9}\text{Be} (^{3}\text{He}, n)^{11}\text{C}$ $Q_m = 7.565$ $E_b = 26.286$

(b) $^{9}\text{Be} (^{3}\text{He}, p)^{11}\text{B}$ $Q_m = 10.329$

(c) $^{9}\text{Be} (^{3}\text{He}, \alpha)^{8}\text{Be}$ $Q_m = 18.911$

(d) $^{9}\text{Be} (^{3}\text{He}, d)^{10}\text{B}$ $Q_m = 1.093$

The yields and angular distributions of protons leading to the ground state and several excited states of ^{11}B have been investigated by (1956AL1E: $E(^{3}\text{He})$ up to 2.7 MeV), by (1955HO1D, 1956HO1C: $E(^{3}\text{He}) = 2.0$ MeV), by ((1956WO1A, 1956WO1C, 1957JO1B) and E. Wolicki, private communication: 2 to 4.5 MeV) and by (D.R. Sweetman, private communication: 6.05 MeV). The yield rises rapidly to $E(^{3}\text{He}) = 1.8$ MeV and remains approximately constant to 4.5 MeV, with no indication of resonance. Angular distributions show fore and aft asymmetry and vary only slowly with energy. At $E(^{3}\text{He}) = 2$ MeV, it appears that both direct interaction and compound nucleus formation, involving interfering resonances with $l \leq 3$, may be taking place. At higher energies the forward peaking suggestive of direct interaction becomes more obvious. See also ^{11}B. For reactions (a), (c) and (d), see ^{11}C, ^{8}Be and ^{10}B.
Table 12.4: Energy levels of 12C

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>Γ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$0^+; 0$</td>
<td>$-^a$</td>
<td>stable</td>
<td>1, 3, 10, 11, 16, 17, 19, 20, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 39, 40, 41, 42</td>
</tr>
<tr>
<td>4.433 ± 5</td>
<td>$2^+; 0$</td>
<td>0.01 – 0.02 eV b</td>
<td>γ</td>
<td>3, 10, 16, 19, 20, 24, 25, 26, 27, 29, 30, 34, 39, 41</td>
</tr>
<tr>
<td>7.656 ± 7</td>
<td>$0^+; 0$</td>
<td>< 25</td>
<td>$\alpha, (\gamma)$</td>
<td>3, 10, 16, 19, 24, 25, 26, 29, 30, 39</td>
</tr>
<tr>
<td>9.63 ± 14</td>
<td>$(1^-); 0$</td>
<td>30 ± 8 a</td>
<td>α</td>
<td>10, 16, 24, 25, 26, 27, 29, 39, 42</td>
</tr>
<tr>
<td>10.1 ± 200</td>
<td>$0^+; 0$</td>
<td>≈ 2000</td>
<td>α</td>
<td>19, 25, 42</td>
</tr>
<tr>
<td>10.84 ± 50</td>
<td></td>
<td></td>
<td></td>
<td>10, 16, 26</td>
</tr>
<tr>
<td>11.1 ± 100</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>11.81 ± 50</td>
<td></td>
<td></td>
<td></td>
<td>10, 16</td>
</tr>
<tr>
<td>12.73 ± 50</td>
<td>$(1^+); 0$</td>
<td>(α), γ</td>
<td></td>
<td>10, 16, 26, 29, 30</td>
</tr>
<tr>
<td>(13.21 ± 50)</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>13.30 ± 50</td>
<td></td>
<td></td>
<td></td>
<td>10, 16</td>
</tr>
<tr>
<td>14.05 ± 60</td>
<td></td>
<td></td>
<td></td>
<td>10, 16</td>
</tr>
<tr>
<td>15.11 ± 10</td>
<td>$1^+; 1$</td>
<td>0.069</td>
<td>(α), γ</td>
<td>3, 10, 16, 20, 23, 25, 26, 34, 39</td>
</tr>
<tr>
<td>15.62 ± 60</td>
<td></td>
<td></td>
<td></td>
<td>10, 16</td>
</tr>
<tr>
<td>16.11 ± 2</td>
<td>$2^+; 1$</td>
<td>6</td>
<td>α, p, γ</td>
<td>10, 12, 14, 16, 23</td>
</tr>
<tr>
<td>16.58 ± 15</td>
<td>$2^-; (1)$</td>
<td>295</td>
<td>α, p, γ</td>
<td>10, 12, 23</td>
</tr>
<tr>
<td>17.23</td>
<td>$1^-; (1)$</td>
<td>1160</td>
<td>α, p, γ</td>
<td>12, 14, 22, 23</td>
</tr>
<tr>
<td>17.77</td>
<td>(0^+)</td>
<td>140</td>
<td>α, p</td>
<td>12</td>
</tr>
<tr>
<td>18.37</td>
<td>(2^+)</td>
<td>280</td>
<td>α, p, γ</td>
<td>12, 23</td>
</tr>
<tr>
<td>18.40</td>
<td></td>
<td>46</td>
<td>p, p$'$</td>
<td>14</td>
</tr>
<tr>
<td>18.85</td>
<td></td>
<td>90</td>
<td>n, p, γ</td>
<td>12, 13, 14</td>
</tr>
<tr>
<td>19.26</td>
<td></td>
<td>450</td>
<td>n, p, γ</td>
<td>12, 13, 14, 21</td>
</tr>
<tr>
<td>19.42</td>
<td></td>
<td>45</td>
<td>p</td>
<td>14</td>
</tr>
<tr>
<td>19.67</td>
<td></td>
<td>180</td>
<td>n, p, (γ)</td>
<td>13, 21</td>
</tr>
<tr>
<td>19.88</td>
<td></td>
<td>90</td>
<td>p, p$'$</td>
<td>14</td>
</tr>
<tr>
<td>20.27</td>
<td></td>
<td>180</td>
<td>n, p, (γ)</td>
<td>13, 14, 21</td>
</tr>
<tr>
<td>20.49</td>
<td></td>
<td>180</td>
<td>(n), p, γ</td>
<td>12, 21</td>
</tr>
<tr>
<td>20.65</td>
<td></td>
<td>180</td>
<td>n, p, γ</td>
<td>12, 13, 14, 21, 22, 26</td>
</tr>
<tr>
<td>21.34</td>
<td></td>
<td>180</td>
<td>n, p, (γ)</td>
<td>12, 13, 21, 22</td>
</tr>
</tbody>
</table>
Table 12.4: Energy levels of 12C (continued)

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>Γ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.80</td>
<td></td>
<td></td>
<td>$n, (\alpha), p, (\gamma)$</td>
<td>12, 13, 21, 22, 23</td>
</tr>
<tr>
<td>22.55 ± 100</td>
<td>≈ 4000</td>
<td>$n, p, (\gamma)$</td>
<td>12, 13, 20, 21, 22, 23</td>
<td></td>
</tr>
<tr>
<td>(22.8)</td>
<td></td>
<td>$n, (\alpha), (p), (\gamma)$</td>
<td>21, 22</td>
<td></td>
</tr>
<tr>
<td>(24.3)</td>
<td></td>
<td>$n, (\alpha), (\gamma)$</td>
<td>13, 23</td>
<td></td>
</tr>
<tr>
<td>(25.4)</td>
<td></td>
<td>n, p, d</td>
<td>6, 13</td>
<td></td>
</tr>
<tr>
<td>(26.0)</td>
<td></td>
<td>$n, \alpha, (p), d, (\gamma)$</td>
<td>5, 6, 8, 22</td>
<td></td>
</tr>
<tr>
<td>(26.4)</td>
<td></td>
<td>$(\alpha), p, d$</td>
<td>6, 8</td>
<td></td>
</tr>
<tr>
<td>(26.8)</td>
<td></td>
<td>$(\alpha), p, d$</td>
<td>6, 8</td>
<td></td>
</tr>
<tr>
<td>(27.0)</td>
<td></td>
<td>p, d</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>(27.2)</td>
<td></td>
<td>p, d</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>(27.4)</td>
<td></td>
<td>p, d</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>(29.4)</td>
<td></td>
<td>$(\alpha), (\gamma)$</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

a For reduced width, see 11B(d, n)12C and Table 12.8.

b See reactions 3, 20 and 24.

3. 9Be$(\alpha, n)^{12}$C $Q_m = 5.709$

Neutron groups corresponding to states of 12C*(0, 4.4, 7.6) have been observed with E_α up to 5.3 MeV. At $E_\alpha = 5.3$ MeV the forward yield of the group leading to the 7.6 MeV state is about 1/8 of that leading to the 4.4 MeV state: see (1952GU1A, 1955ST1C, 1956ME1B, 1957RI38); see also (1957DI1B).

The energy of the γ-ray from the first excited state is 4.425 ± 0.020 (1954MI68), 4.48 ± 0.06 MeV (1955BE1G) (both values corrected for Doppler shift). The internal pair conversion, coefficient indicates an E2 transition (1954MI68); the angular correlation of pairs admits M1 or E2, favoring the latter (1954HA07, 1956GO1K, 1956GO73, 1958AR1B). The angular distribution of γ-rays observed at several bombarding energies is consistent with $J = 2^+$ (1955TA28, 1956PR1A). The n-γ correlation at $E_\alpha = 5.3$ MeV (thick target) is isotropic within 6.5% (1956ST1E: see also (1958TA05)). The mean lifetime of the 4.4 MeV level is $(2.6 \pm 0.9) \times 10^{-14}$ sec, about one-eighth of the single-particle value for an E2 transition (1956DE22).

The 7.7 MeV state appears to decay predominantly into 8Be + α (see 12B$(\beta^-)^{12}$C and 12C$(\alpha, \alpha')^{12}$C*). A gamma ray of energy 3.1 MeV has been reported by (1953BE1C, 1954UE1A, 1956ST1E, 1956ST1F, 1957ST1E), but (1955BE1G, 1957GO1C, 1957KR1A) find no evidence of the 7.7
MeV nuclear pairs which should accompany the decay to the ground state. \((1955BE1G)\) estimate that at least 96\% of the decays proceed to \(^8\)Be + \(\alpha\); \((1957KR1A, 1958KR70)\) find \(< 1.6 \times 10^{-5}\) 7 MeV pairs per 4.4 MeV \(\gamma\)-ray; assuming a population ratio of 1 : 8, this result yields \(\Gamma_\pi/\Gamma < 1.3 \times 10^{-4}\). An upper limit of \(\frac{1}{600}\) for the ratio of 7.6/4.4 MeV pairs is reported by \((1957GO1C)\). \((1954DI1A)\) find no \(n-\gamma\) coincidences other than those associated with the 4.4 MeV level. See also \((1957RO1E)\).

At \(E_\alpha = 21.7\) and 175 MeV, \(\gamma\)-radiation from the 15 MeV, \(J = 1^+; T = 1\) state (see \(^{12}\)C(p, \(p'\))\(^{12}\)C*) is reported \((1954RA35, 1957WA04)\). At the higher energy, the ratio of 15 MeV to 4.4 MeV radiation is \(1.2 \times 10^{-2}\) \((1957WA1F)\). See also \((1954EL1B, 1955BR1A, 1955HA1E, 1956GO1N, 1957BR1J)\) and \((1955MA1J; \text{theor.})\).

4. \(^{10}\)B(d, \(\gamma\))\(^{12}\)C \hspace{2cm} \(Q_m = 25.195\)

At \(E_d = 0.95\) MeV, the upper limit to the capture cross section is 0.1 \(\mu\)b \((1955SA1B)\).

5. \(^{10}\)B(d, n)\(^{11}\)C \hspace{2cm} \(Q_m = 6.473\) \hspace{2cm} \(E_b = 25.195\)

The thin-target excitation function in the forward direction in the range \(E_d = 0.3\) to 4.6 MeV shows some indication of a broad resonance near \(E_d = 0.9\) MeV. Above \(E_d = 2.4\) MeV, the cross section increases rapidly to 210 mb/sr at 3.8 MeV, and then remains constant to 4.6 MeV \((1954BU06, 1955MA76)\). Angular distributions seem to be dominated by the stripping process: see \(^{11}\)C. The yield of 6.5 MeV \(\gamma\)-rays has been measured at four bombarding energies between 0.8 and 2.2 MeV \((1955SA1B)\). See also \(^{11}\)C.

6. \(^{10}\)B(d, p)\(^{11}\)B \hspace{2cm} \(Q_m = 9.237\) \hspace{2cm} \(E_b = 25.195\)

Absolute yields and angular distributions are reported for various proton groups by \((1952EN19, 1954BU06, 1954PA28, 1956MA69, 1956VA17)\) for \(E_d = 0.18\) to 3.1 MeV. Although the excitation functions show several broad peaks, no clear resonances can be identified, and it must be assumed that many overlapping resonances are involved \((1956MA69)\). Angular distributions indicate both stripping and compound nucleus processes even at low bombarding energies \((1954PA1D)\). However, the \(p_1\) group, leading to \(^{11}\)B*(2.1), shows no stripping even at \(E_d = 3\) MeV; it is suggested that an orbital angular momentum selection rule is operative here \((1956MA69; \text{see }^{11}\)B). Absolute cross sections reported by \((1954BU06, 1954PA28, 1956MA69)\) differ rather greatly.

The yields of 6.8 and 7.3 MeV \(\gamma\)-rays have been measured at four bombarding energies between 0.8 and 2.2 MeV \((1955SA1B)\). At \(E_d = 1.70\) MeV, \(\theta(\text{lab}) = 58^\circ\), the cross section for protons leading to the 6.76 MeV state is 6.1 \((\pm 15\%)\) mb/sr \((1956KA1A)\).
7. $^{10}\text{B}(\text{d, d})^{10}\text{B}$

$E_b = 25.195$

See ^{10}B.

8. $^{10}\text{B}(\text{d, }\alpha)^{8}\text{Be}$

$Q_m = 17.819$

$E_b = 25.195$

Excitation curves for ground state α-particles have been measured for $E_d = 0.9$ to 2.6 MeV at 45°, 90° and 150°. Broad maxima are observed at 1.0, (1.4) and 2.0 MeV. At $E_d = 0.91$ MeV, the angular distribution of α_0 particles shows a peaking in the forward direction (1956MA69). See also ^8Be.

9. $^{10}\text{B}(\text{t, n})^{12}\text{C}$

$Q_m = 18.937$

Not reported.

10. $^{10}\text{B}(^{3}\text{He, p})^{12}\text{C}$

$Q_m = 19.702$

Proton groups reported by (1955BI26) and (1958MO99) are listed in Table 12.5. A careful search, at $E(^{3}\text{He}) = 1.25$ MeV, reveals no other level in the range $E_x = 4.4$ to 7.7 MeV (1958MO99: region at $E_x = 6.4$ MeV obscured). At $E(^{3}\text{He}) = 2.0$ MeV, the proton group leading to the 15.11 MeV level was found to be in coincidence with a 15.10 MeV γ-ray: Γ_γ/Γ for this level is 0.77 ± 0.20. The ratio of the width for γ-emission to the 4.4 MeV level to the ground state Γ_γ is ≈ 0.03. The 12.76 MeV level also emits γ-rays: $\Gamma_\gamma/\Gamma \approx 0.02$, suggested $J^\pi = 1^+$ ((1957GO1B) and H.E. Gove, private communication). Coincidence studies by (1958MO99) lead to $\Gamma_\gamma/\Gamma < 0.9\%$ for the 7.7 MeV level, $\Gamma_\gamma/\Gamma = 3 \pm 1 \%$ for the 12.76 MeV level, and $50 \pm 25 \%$ for the 15 MeV level. See also $^{11}\text{B}(\text{d, n})^{12}\text{C}$, (1958BR1D, 1958SW63) and ^{13}N.

11. $^{10}\text{B}(\alpha, \text{d})^{12}\text{C}$

$Q_m = 1.351$

$Q_0 = 1.341 \pm 0.002$ (1956DO41).

$Q_0 = 1.36 \pm 0.09$ (1956PI1A).

$Q_0 = 1.39 \pm 0.01$ (1953SH64).

See also ^{14}N.

12. (a) $^{11}\text{B}(\text{p, }\gamma)^{12}\text{C}$

$Q_m = 15.958$

(b) $^{11}\text{B}(\text{p, }\alpha)^{8}\text{Be}$

$Q_m = 8.582$

$E_b = 15.958$
Table 12.5: 12C states from 10B(3He, p)12C

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_x (MeV)</td>
<td>Γ_x/Γ</td>
</tr>
<tr>
<td>4.43</td>
<td>1</td>
</tr>
<tr>
<td>7.77</td>
<td>7.65</td>
</tr>
<tr>
<td>9.61</td>
<td></td>
</tr>
<tr>
<td>10.75</td>
<td></td>
</tr>
<tr>
<td>11.83</td>
<td></td>
</tr>
<tr>
<td>12.76</td>
<td>0.02</td>
</tr>
<tr>
<td>13.31</td>
<td></td>
</tr>
<tr>
<td>13.97</td>
<td></td>
</tr>
<tr>
<td>15.10</td>
<td>0.77 ± 0.20</td>
</tr>
<tr>
<td>15.62</td>
<td></td>
</tr>
<tr>
<td>16.04</td>
<td></td>
</tr>
<tr>
<td>16.57</td>
<td></td>
</tr>
</tbody>
</table>

A: (1955BI26, 1957GO1B): $E(^3$He) = 0.9 and 2.0 MeV, values ±0.1 MeV.
B: (1958MO99): $E(^3$He) = 1.25 MeV.

In the range $E_p = 0$ to 3 MeV, five principal resonances occur, at $E_p = 0.16, 0.67, 1.4, 2.0$ and 2.6 MeV (see Table 12.6). All except the second and fourth exhibit resonance for α_0, α_1, γ_0 and γ_1 (to 8Be*(0, 2.9) and 12C*(0, 4.4)); at $E_p = 0.67$ MeV, only α_1, γ_1 are resonant. It follows from angular momentum selection rules that resonances for α_0 must have the character $J^\pi = 0^+, 1^-, 2^+, 3^-; \ldots; J = 0^+$ is excluded by observation of γ_0.

The $E_p = 0.16$ MeV resonance (12C*(16.11)) is well established as $J = 2^+$; probably the $T = 1$ analogue of 12B*(0.95). The angular distribution of α_0 particle is strongly anisotropic at resonance and shows a $(\cos \theta)$ term varying with energy near resonance. The assumption $J = 2^+, l_p = 1$, with interference from an s-wave state at higher energy gives a good account of the observed angular distributions from $E_p = 0.13$ to 0.3 MeV. The channel spin ratio $\chi = 0.42 ± 0.02$; the relative amplitude of the interfering $J = 1^-$ state is $0.022 ± 0.002$ (1952TH1B). The angular correlation of α_1 and the subsequent breakup of 8Be*(2.9) also requires $J = 2^+$, with the ratio of reduced matrix elements for outgoing d to s-waves, $B = 0.80$, phase difference $\cos \beta = 0.60$ (1955GE1A). The angular distribution of γ_1 and of the following 4.4 MeV radiation is consistent with the scheme 2^+(M1)2^+(E2)0$^+$ with the channel spin ratio $\chi = 0.42$ (1954GR1C); (1956CR1C) obtain $\chi = 0.51 ± 0.03$. Angular distributions of the 16 MeV radiation, γ_0, require $J = 2^+$, with interference from a $J = 1^-$ level at $E_p = 1.4$ MeV (1954GR1C, 1956CR1C). (γ_0 is not resonant.
at $E_p = 0.67$ MeV, so this state cannot be involved here.) The resonant energy is 163.1 ± 0.2 keV;

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Γ_{lab} (keV)</th>
<th>$\sigma(\gamma_{16})$ (mb)</th>
<th>$\sigma(\gamma_{12})$ (mb)</th>
<th>$\sigma(\alpha_0)$ (mb)</th>
<th>$\sigma(\alpha_1)$ (mb)</th>
<th>$\Gamma_{\gamma_{16}}$ (eV)</th>
<th>$\Gamma_{\gamma_{12}}$ (eV)</th>
<th>Γ_{α_0} (keV)</th>
<th>Γ_{α_1} (keV)</th>
<th>Γ_P (keV)</th>
<th>12C* (MeV)</th>
<th>$J^\pi; T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.163</td>
<td>7</td>
<td>5.5</td>
<td>152</td>
<td>0.2</td>
<td>10</td>
<td>$\lesssim 3$</td>
<td>$\lesssim 3$</td>
<td>70</td>
<td>0.1</td>
<td>5</td>
<td>0.005</td>
<td>16.11</td>
</tr>
<tr>
<td>0.675</td>
<td>322 (< 2.3)</td>
<td>48</td>
<td>6</td>
<td>150</td>
<td>40</td>
<td>$\lesssim 0.5$</td>
<td>$\lesssim 0.5$</td>
<td>150</td>
<td>7</td>
<td>200</td>
<td>1000 h</td>
<td>$2^-; (1)$</td>
</tr>
<tr>
<td>1.388</td>
<td>1270</td>
<td>35</td>
<td>6</td>
<td>150</td>
<td>40</td>
<td>$\lesssim 0.5$</td>
<td>$\lesssim 0.5$</td>
<td>150</td>
<td>7</td>
<td>200</td>
<td>1000 h</td>
<td>$2^-; (1)$</td>
</tr>
<tr>
<td>1.98</td>
<td>150 non-res.</td>
<td></td>
<td>non-res.</td>
<td>[8] f</td>
<td>[39] f</td>
<td>18</td>
<td>20</td>
<td>7</td>
<td>5</td>
<td>150</td>
<td>17.77</td>
<td>$1^-; (1)$</td>
</tr>
<tr>
<td>2.63</td>
<td>300 weak</td>
<td>weak</td>
<td>res.</td>
<td>[16] f</td>
<td>[180] f</td>
<td>10</td>
<td>40</td>
<td>7</td>
<td>5</td>
<td>150</td>
<td>17.83</td>
<td>2^+</td>
</tr>
<tr>
<td>3.13</td>
<td>100 weak</td>
<td>weak</td>
<td>res.</td>
<td></td>
<td></td>
<td>50</td>
<td>40</td>
<td>7</td>
<td>5</td>
<td>150</td>
<td>19.21</td>
<td></td>
</tr>
<tr>
<td>3.55</td>
<td>500 res.</td>
<td>res.</td>
<td>res.</td>
<td></td>
<td></td>
<td>200</td>
<td>40</td>
<td>7</td>
<td>5</td>
<td>150</td>
<td>20.49</td>
<td></td>
</tr>
<tr>
<td>4.94</td>
<td>200 non-res.</td>
<td>res.</td>
<td>res.</td>
<td></td>
<td></td>
<td>200</td>
<td>40</td>
<td>7</td>
<td>5</td>
<td>150</td>
<td>20.65</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>200 non-res.</td>
<td>res.</td>
<td>res.</td>
<td></td>
<td></td>
<td>200</td>
<td>40</td>
<td>7</td>
<td>5</td>
<td>150</td>
<td>20.65</td>
<td></td>
</tr>
</tbody>
</table>

a (1953HU29); ratio $\sigma(\gamma_{16})/\sigma(\gamma_{12}) = 3.3 \pm 1$ % at $E_p = 0.16$ MeV (1956CR1C).

b (1953HU29).

c (1955HO48).

d (1955BA22).

e (1953BE61).

f (1955PA1B); normalized at $E_p = 1.4$ MeV. See also (1955HO48).

s Non-resonant.

h According to (1957DE11), $\Gamma_p \approx 50$ keV; see 11B(p, p)11B. If this value is used, α-widths should be increased by a factor of 6, and γ-widths by a factor of 20.

$\Gamma_{lab} = 6.5 \pm 0.6$ keV (see (1955AJ61)). The very small α-width suggests $T = 1$ (1953BE61).

For the $E_p = 1.4$ MeV state (12C* (17.23)), the possible assignments are 1^- (s-wave), 2^+ (p-wave), 1^- or 3^- (d-wave); d-wave formation would seem to be excluded by the observed width. As indicated above, $J = 1^-$ appears to be required to account for the interference at lower energies in α_0 and γ_0; known higher resonances are probably too narrow to produce the observed effects. (1957DE11) find that the α_0-distributions for $E_p = 0.6$ to 1.4 MeV are well accounted for by the assumption of s-wave formation of $J = 1^-$ through channel spin ($\chi = 0$) with a relative d-wave amplitude $A = 0.5$, and interference by the 2.6 MeV, $J = 2^+$, state, with relative amplitude $C = 0.25$. A qualitative fit to the behavior of α_1 can be obtained with the same assumptions (1957DE11). Angular distributions of γ_0 at $E_p = 1.4$ MeV admit either $J = 2^+$ or 1^-; for the latter, however, formation in channel spin 2 ($\chi = \infty$, d-waves) is required (1955GO10). The angular correlation of internal pairs indicates E1 for γ_0 (1956GO1K, 1956GO1N, 1958AR1B). The large E1 width suggests $T = 1$ for this state (1953BE61).

The $E_p = 0.67$ MeV state (12C* (16.58)) may be formed by s- or p-waves; d-waves are excluded by the width (1953BE61). The angular distribution of α_1 at $E_p = 0.64$ and 0.93 MeV indicates s-wave formation: if $J = 2^-$ is assumed, the d-wave admixture is < 10%. The correlation of α_1 with the subsequent 8Be* (2.9) breakup is consistent with $J = 2^-$ and excludes
1−; an appreciable f-wave admixture in outgoing α1-particles is indicated (1957DE11). Correlation results at $E_p = 270$ keV can be accounted for by $J = 2^−$ with interference from the $1^−$, $E_p = 1.4$ MeV state (1955GE1A, 1957DE11). The angular distribution of γ_1 is reported to require $J = 2^+$, with interference from the $1^−$, $E_p = 1.4$ MeV state (1954GR1B): according to (1957DE11), however, the distributions observed by (1954GR1C, 1955GO10) can equally well be ascribed to $J = 2^−$, with interference from a broad, even parity state, possibly at $E_p = 2.0$ or 2.6 MeV (see, however, (1954GI1B)). The angular correlation of internal pairs indicates E1 for the γ_1 radiation (1956GO1K, 1956GO1N, AR57). The relatively large E1 width suggest $T = 1$ for this state (1953BE61).

The $E_p = 2.0$ MeV level is reported to be resonant for α_0 and α_1; the relative weakness of α_1 suggests $J = 0^+$ (1953PA1B). These seems to be no clear indication of resonance for γ_0 or γ_1 at this energy (1955GO10; see also (1953HU29)). At $E_p = 2.65$ MeV, resonance occurs for α_0, α_1 (1953PA1B) and, weakly, for γ_0, γ_1 (1955BA22, 1955GO10). A large P_2 coefficient in the angular distribution of γ_0 suggests $J = 2^+$ (1955GO10). (1955HO48) find $E_p = 1.98$ and 2.61 MeV for the resonant energies for α_0. Additional resonances for γ_0 and γ_1, reported by (1955BA22) are listed in Table 12.6. (1959GE33) have examined the excitation function for ground-state transitions from $E_p = 4$ to 7.7 MeV. The experiment locates the maximum of the 12C giant resonance at $E_x = 22.55 \pm 0.1$ MeV but does not resolve individual levels. Two additional peaks, at $E_x = 21.4$ and 22.1 MeV are suggested. The maximum value of $\sigma(\gamma, p)$ is calculated to be 29 ± 5 mb.

An upper limit for the total cross section (average value, $E_p = 1.7$ to 4.0 MeV) for the production of nuclear pairs with $E_\pi = 6.5$ to 9.5 MeV is 0.03 μb (1955BE62). See also (1955AJ61, 1956MA1T), (1957SI1B; theor.) and 8Be.

13. 11B(p, n)11C

Oberved maxima in the (p, n) cross section are listed in Table 12.7 (1951BL1A, 1955BA22, 1957KA1C, 1959GI47). The region covered is characterized by considerable overlapping of resonances (1959GI47). See also (1956KO1D, 1958MA1F, 1958TA03).

14. (a) 11B(p, p)11B

(b) 11B(p, p'$)^{11}$B*

Absolute elastic scattering cross sections are reported for one angle for $E_p = 0.6$ to 2.0 MeV by (1956TA16), for four angles for $E_p = 0.3$ to 1.0 MeV by (1957DE11). A pronounced anomaly is observed near $E_p = 0.67$ MeV at all angles; the level is therefore formed by s-waves. The 0.3 to 1.0 MeV results are well accounted for by two resonances: $E_p = 0.67$ MeV, s-wave, $J = 2^−$, $\Gamma = 0.33$ MeV, $\Gamma_p/\Gamma = 0.5$, d-wave < 10%, and $E_p = 1.4$ MeV, s-wave, $J = 1^−$, $\Gamma = 1.27$ MeV, $\Gamma_p/\Gamma = 0.05$ (1957DE11). (The reported Γ_p/Γ for the 1.4 MeV resonance appears to be inconsistent with
Table 12.7: Maxima in yields of 11B(p, n)11C and 11B(p, p')11B*

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_p (MeV)</td>
<td>E_p (MeV)</td>
<td>Γ (keV)</td>
<td>E_p (MeV)</td>
<td>σ (mb)</td>
</tr>
<tr>
<td>3.17</td>
<td>3.18</td>
<td>25</td>
<td>2.664</td>
<td>48</td>
</tr>
<tr>
<td>3.65</td>
<td>3.67</td>
<td>62</td>
<td>3.15</td>
<td>100</td>
</tr>
<tr>
<td>4.05</td>
<td>3.4</td>
<td>500</td>
<td>3.78</td>
<td>50</td>
</tr>
<tr>
<td>4.70</td>
<td>4.28</td>
<td>100</td>
<td>19.67</td>
<td></td>
</tr>
<tr>
<td>5.18</td>
<td>5.10</td>
<td>105</td>
<td>5.13</td>
<td>200</td>
</tr>
<tr>
<td>5.87</td>
<td>6.6</td>
<td>105</td>
<td>21.34</td>
<td></td>
</tr>
<tr>
<td>6.37</td>
<td>8.8</td>
<td>105</td>
<td>21.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.1</td>
<td>105</td>
<td>22.0</td>
<td></td>
</tr>
</tbody>
</table>

A: (p, n) (1951BL1A): stacked foils.
B: (p, n) (1955BA22): $\theta = 0 - 15^\circ$.
C: (p, n) (1957KA1C): stacked foils.
D: (p, n) (1959GI47): total cross section (estimated from curve).
E: (p, p') (1955BA22).

the values 0.8 or 0.2 derived by (1953BE61) from (p, γ) and (p, α) cross sections.) (1956TA16) find no rapid variation in cross section near $E_p = 2.0$ MeV. The absence of a detectable anomaly near $E_p = 0.16$ MeV confirms the small value of Γ_p assumed for this resonance; $\Gamma_p < 200$ eV (J.C. Overley, private communication). See also (1956KI54).

Maxima in the yield of 2.1 MeV γ-radiation from 11B* (2.1) are observed at $E_p = 2.664$ MeV, $\Gamma = 48$ keV: (1953HU29, 1955BA22) and at $E_p = 3.15, 3.4, 3.78, 4.28, 4.68$ and 5.13 MeV (1955BA22: see Table 12.7). (Judging from the width, the 2.66 MeV resonance is not that observed, e.g., in 11B(p, γ)12C.)

15. 11B(p, d)10B

$Q_m = -9.237$

$E_b = 15.958$

See 10B.
16. 11B(d, n)12C

$Q_m = 13.731$

$Q_0 = 13.63 \pm 0.05$ (1957BI78).

Reported neutron groups are listed in Table 12.8. The group corresponding to the 7.6 MeV state is weak, relative to neighboring groups, at all bombarding energies investigated, and the stripping pattern is poorly developed. The relative weakness of the 7.6 MeV state in this reaction and in the 12C(e, e')12C* and 12C(p, p')12C* reactions is attributed to lack of parentage overlap with the ground state of 12C (1955LA1C). At $E_d = 0.92$ MeV, there is no indication of a state in the range $E_x = 5.1 - 6.6$ MeV: the upper limit of the intensity of the corresponding neutron group is $\lesssim 1\%$ of the intensity of the group corresponding to the 4.4 MeV state (1957BI78). For $E_d = 1.1$ to 2.0 MeV only the groups corresponding to 12C*(4.4, 12.76) are accompanied by γ-radiation; an upper limit for (n, γ) coincidences from 12C*(7.6) is 0.2\% of 12C*(4.4) (1958DA11, 1958NE38, 1959NE1A).

Angular distributions of the neutrons to the first four states of 12C have been reported for a number of energies in the range $E_d = 0.5$ to 10 MeV. At the higher energies, the distributions are understood in terms of simple stripping theory (except for the 7.6 MeV state). At the lower energies, $E_d = 0.5$ to 5 MeV, a good account of the angular distributions of ground-state neutrons is obtained with the theory of (1957OW03) which includes not only stripping of the deuteron but also the possibility of stripping a neutron from 11B, and the interference between the two processes. The relative probability of the exchange stripping increases with energy until the Coulomb barrier is surmounted. The exchange process seems to involve s-wave deuteron capture by a 10B core with $J = 1^+$ (1956PR1B, 1957AM48, 1957OW03; see also (1959NE1A)). Angular distributions at $E_d = 9$ MeV indicate odd parity for the 9.6 MeV state (1956MA83; see also (1954GR53) and Table 12.8). For other work on angular distributions, see (1957AM48, 1958AM13: $E_d = 0.50$ to 1.15 MeV), (1955WA30: $E_d = 0.6$ MeV), (1955IH1B: $E_d = 0.69$ MeV), (1954GR53: $E_d = 0.85$ MeV), (1957BI78: $E_d = 0.92$ MeV), (1956PR1B: $E_d = 1.5$ to 5 MeV), (1953GI05: $E_d = 8.1$ MeV), and (1957ZE1A: $E_d = 10$ MeV). See also (1954BU06, 1956BO1F, 1956BO43, 1956KO1E, 1957RA1A) and (1955MA1J, 1958ED1C; theor.).

In the range $E_d = 1.0$ to 5.5 MeV, two slow neutron thresholds are observed at 1.627 \pm 0.004 MeV ($E_x = 15.11 \pm 0.01$ MeV) and near 4.1 MeV (broad; $E_x = 17.23$ MeV) (1955MA76). Gamma rays are observed with $E_\gamma = 4.44 \pm 0.05$ (1951RU1A) and 12.8 \pm 0.3 MeV (1958KA31). If the latter γ-ray is properly attributed to decay of the 12.8 MeV level, it is not clear why the level should so decay in view of its instability with respect to 8Be and 8Be*(2.9) (1958KA31: see also 10B(3He, p)12C). A 15.1 MeV γ-ray is observed with a threshold of $E_d = 1633 \pm 3$ keV, attributed to the first $T = 1$ state of 12C at 15.11 MeV. The observed width is < 2 keV. A search for α-particles to 8Be and 8Be* gives $\Gamma_\alpha/\Gamma_\gamma < 1.5$. At $E_d = 2.96$ MeV the cross section for production of the 16.1 MeV $T = 1$ state is < 1 mb/sr (1958KA31). See also (1955AJ61) and (1957WA04).

17. 11B(3He, d)12C

$Q_m = 10.464$
Table 12.8: Energy levels of 12C from 11B(d, n)12C

<table>
<thead>
<tr>
<th>12C* a (MeV)</th>
<th>l_p</th>
<th>$(2J + 1)\gamma^2$ (10$^{-13}$ MeV·cm)</th>
<th>$(2J + 1)\theta^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 e</td>
<td>1.6 e</td>
<td>0.11</td>
</tr>
<tr>
<td>4.38 ± 0.07</td>
<td>1 c,e</td>
<td>2.0 e</td>
<td>0.14</td>
</tr>
<tr>
<td>7.57 ± 0.11</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.6 ± 0.1</td>
<td>2 c,e</td>
<td>1.9 e</td>
<td>0.13</td>
</tr>
<tr>
<td>10.8 ± 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1 ± 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.74 ± 0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.76 ± 0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.21 ± 0.05 b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.36 ± 0.05 b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14.16 ± 0.05)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.09 ± 0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(15.52 ± 0.03)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.07 ± 0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b May represent a single level at 13.3 MeV (1952JO10).
c (1954GR53).
d Angular distribution shows peaking forward and backward: (see (1954GR53, 1957BI78)).

At $E(^3$He) = 4.5 MeV, the ground state deuteron group is strongly peaked in the forward direction (1957HO61).

18. 11B(α, t)12C $Q_m = -3.855$

Not reported.

19. 12B(β$^-$)12C $Q_m = 13.376$
Table 12.9: Branching in 12B(β^{-})12C (1958CO66)

<table>
<thead>
<tr>
<th>12C* (MeV)</th>
<th>J^π</th>
<th>Branching fraction (%)</th>
<th>$\log ft$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0+</td>
<td>97</td>
<td>4.1 ± 0.1</td>
</tr>
<tr>
<td>4.43</td>
<td>2+</td>
<td>1.5 ± 0.3</td>
<td>5.1 ± 0.2</td>
</tr>
<tr>
<td>7.653 ± 0.008</td>
<td>0+</td>
<td>1.3 ± 0.4</td>
<td>4.2 ± 0.3</td>
</tr>
<tr>
<td>10.1 ± 0.2 c</td>
<td>0+</td>
<td>0.13 ± 0.04</td>
<td>4.1 ± 0.4</td>
</tr>
</tbody>
</table>

a Based on $\tau_{1/2} = 20.6$ msec.

b (1958KA31): 1.4 ± 0.4 %, (1956TA07): 1.7 ± 0.4 %, (1958VE20): 6 ± 3 %.

c $\Gamma = 2.5$ MeV, $\theta_α^2 = 1.5$.

The half-life is 20.34 ± 0.5 msec (weighted mean of (1955AJ61, 1956NO1A, 1957CO57, 1958KR65, 1958VE20, 1959KR1B), excluding (1948JE03). E_β(max) = 13.40 ± 0.05 MeV (1958VE20). Branches are observed leading to 12C*(0, 4.4, 7.6, 10.1): see Table 12.9. The fact that the transition to the 0+ ground state is allowed establishes $J = 1^+$ for 12B. This assignment is confirmed by the allowed character of the transition to 12C*(4.4), $J = 2^+$. The 7.7 MeV level decays mainly by α-emission to 8Be(0) with $Q = 278 ± 4$ keV; $E_\gamma = 7.653 ± 0.008$ MeV (1957CO59). Gamma transitions with $E_\gamma > 6$ MeV accompany $< 10^{-4}$ of all β-decays (1956KA1A, 1958KA31); an upper limit of 3×10^{-5} is obtained in a search for $\beta-\gamma$ (7.6) coincidences (1958KA14). Upper limits for (3.2 + 4.4) MeV cascades are given as $(0.4 ± 2) \times 10^{-3}$ and 10^{-5} of all decays by (1956TA07) and (1958KA14) respectively. It follows that the relative partial width of the 7.6 MeV level is $< 3 \times 10^{-3}$ for 7.6 MeV γ-rays and $< 10^{-3}$ for 3.2 MeV γ-rays (see also 9Be(α, n)12C). Since the β-transition is allowed, the 7.7 MeV state has $J = 0^+$, 1^+ or 2^+; $J = 1^+$ is ruled out by the α-decay. The preponderance of α-decay over γ-decay speaks for $J = 0^+$ (1957CO59).

The 10.1 MeV level decays mainly via α-emission to 8Be(0); transitions to 8Be*(2.9) amount to $< 4\%$. The c.m. width is about 2.5 MeV (after removing the E_β^5 factor): the best account of the observed α-spectrum is obtained with $J = 0^+$, $E_\lambda = 10.4$ MeV, $\theta_α^2 = 1.5$, $R = 5.21 \times 10^{-13}$ cm (1958CO66).

The β-spectrum has been reported by (1950HO01, 1958VE20). (1958GE1C) discusses a possible distortion of high-energy β-spectra in axial-vector coupling due to a “weak-magnetic” interaction.

See also (1957CH25), (1955JA1C, 1957FE1C, 1959SC1B; theor.).

20. 12C(γ, γ')12C*
Table 12.10: Parameters of the 15.1 MeV 12C level from 12C(γ, γ')12C*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(1957HA13)</th>
<th>(1959GA09)</th>
</tr>
</thead>
<tbody>
<tr>
<td>peak absorption, σ_n^0 (b)</td>
<td>22.2 ± 2.2</td>
<td>29.7 ± 1.1</td>
</tr>
<tr>
<td>integrated scattering, $\int \sigma_s dE$ (MeV · mb)</td>
<td>1.90 ± 0.27</td>
<td>2.33 ± 0.19</td>
</tr>
<tr>
<td>Γ(total) (eV)</td>
<td>79 ± 16</td>
<td>64.5 ± 10.4</td>
</tr>
<tr>
<td>Γγ(15 → g.s.) (eV)</td>
<td>54.5 ± 9.3</td>
<td>59.2 ± 9.7</td>
</tr>
<tr>
<td>Γγ(15 → 4.4) (eV)</td>
<td>< 5.5</td>
<td>3.2 ± 2.5</td>
</tr>
<tr>
<td>Γα (eV)</td>
<td>18 − 25</td>
<td>2.1 ± 3.2</td>
</tr>
</tbody>
</table>

a Γα/Γ < 1.5 from 11B(d, n)12C (1958KA31).

The lifetime of the 4.4 MeV state has been determined by resonance scattering and resonant absorption (of γ-radiation from 15N(p, α)12C*) as $\tau_{\text{mean}} = (6.5 \pm 1.2) \times 10^{-14}$ sec (1958RA14).

Excitation of the 15.1 MeV level by bremsstrahlung is reported by (GA57B, 1957HA13, 1959GA09). From measurement of the yield of resonance scattered radiation and of the self-absorption coefficient, the integrated scattering cross section $\int \sigma_s dE$, and the peak absorption cross section σ_n^0 are deduced. The resulting values for partial widths are given in Table 12.10. It is noted the γ-ray width for the ground state transition is near the single-particle M1 value of 65 eV, and that the very small α-width strongly suggests $T = 1$ for this level (1957HA13). The scattering angular distribution indicates dipole radiation (1956LE1E, GA57B, 1959GA09). The strength of the M1 radiation also indicates $T = 1$: see (1958MO17). Inelastic scattering in the giant-resonance region has been studied by (1959GA09). See also (1957GO1F, 1958AX1A, 1958MC1D).

21. 12C(γ, n)11C $Q_m = -18.722$

The cross section for production of 11C exhibits a broad peak at $E_\gamma = 22.5$ MeV, $\Gamma \approx 4$ MeV, $\sigma_{\text{max}} = 8.3$ mb (1955BA63). Other reported values for σ_{max} are summarized by (1957CO57: note a 10% correction in this work). See also (1957CA1D). At high energies, the cross section exhibits a long tail, falling off approximately as E_γ^{-3}. The integrated cross section to $E_\gamma = 250$ MeV is 80 MeV-mb, accounting for about $\frac{1}{3}$ of the sum-rule limit for all absorption processes. It is noted that the relative prominence of the high-energy tail is not a general feature of (γ, n) reactions in heavy elements (1955BA63, 1957CO57). Comparison of (γ, n) and (e, n) cross section for 28 to 145 MeV are consistent with the assumption that the transitions are predominantly E1 (1958BA60). The angular distribution of photoneutrons at the giant resonance is $W(\theta) = 1 + (1.35 \pm 0.88) \sin^2 \theta$, indicating considerable emission of neutrons with $l > 0$ (1956FA1B). See 12C(γ, p)11B and (1954TE1A, 1955MO1B, 1957BA1K; theor.).

Discontinuities in the yield function are reported to indicate levels at 19.3, 19.8, 20.1, 20.5, 20.7, 21.1, 21.6, 22.4, and 22.8 MeV (1954GO39, 1954KA1A). The first two are given as 19.09 ±
0.05 and 19.55 ± 0.05 MeV by (1955SP1A). Eighteen discontinuities observed between \(E_\gamma = 18.90 \) and 22.88 MeV are tabulated by (1958KA1D). A search for resonance absorption near \(E_\gamma = 22.8 \) MeV indicates a width \(\Gamma > 580 \) keV, in apparent contradiction of the activation results (1956TZ1A). (1958WO1B), using monochromatic gamma rays, find no evidence of fine structure in the total cross section from \(E_\gamma = 20.3 \) to 20.8 MeV. The upper limit is, however, not in conflict with the recent report of (1958KA1D). See also (1955JO1B, 1955SA1F, 1958BA1K, 1958SM1A).

22. \(^{12}\text{C}(\gamma, p)^{11}\text{B}\) \(Q_m = -15.958 \)

The cross section exhibits a giant resonance at \(E_\gamma = 21.5 \pm 0.5 \) MeV, \(\Gamma = 1.7 \pm 0.5 \) MeV (1951HA1C). The peak cross section is 22 mb, and the integrated cross section to 24 MeV is 56 MeV-mb (1956CO59): compare \(^{11}\text{B}(p, \gamma)^{12}\text{C} \) (1959GE33). The photoproton spectrum shows the general features of the inverse reaction, \(^{11}\text{B}(p, \gamma)^{12}\text{C} \), and suggests resonances at \(E_\gamma = 17.3, (20.8), 22.6, \) and (23.1) MeV (1956CO59; see, however, (1958WO1B)). (1957LI1A) finds indications of peaks at \(E_\gamma = 17.6 \) MeV yields \(\sigma(\gamma, p) = 1.19 \pm 0.21 \) mb, in good agreement with the value 1.09 ± 0.16 mb calculated from the inverse reaction (1956MA1T). See also (1956GO1G, 1958CH31, 1958PE1A, 1958WH1A).

Angular distributions of photoprotons show a pronounced 90° peaking, somewhat skewed in the forward direction (1952HA1B, 1953HE1B, 1955JO1B, 1956KL19, 1957DO1A, 1957LI1A, 1957MI1A). Such distributions are inconsistent with s-wave proton emission from \(J = 1^-; \) \(^{12}\text{C} \) compound states formed by E1 absorption and suggest a direct interaction involving independent-particle states: \(L-S \) coupling seems to be favored (1955MA1H). The angular distributions of \(^{12}\text{C}(\gamma, n) \) and \((\gamma, p)\) are evidently quite similar, as expected on the assumption of charge independence; the difference of about a factor of 2 in total cross section is ascribed to a 1% \(T = 0 \) admixture in the intermediate state (1957BA1K). See also (1953HE1B, 1957CH24, 1958BA1M, 1958BA30, 1958PA1B, 1958PE1B, 1958SM1A) and (1955MO1B, 1957SI1B; theor.).

23. \(^{12}\text{C}(\gamma, 3\alpha)\) \(Q_m = -7.281 \)

Maxima in the yield of 3-prong stars are reported at \(E_\gamma = 17.3, 18.3, 21.9, 24.3 \) and 29.4 MeV; some evidence of fine structure is also found. The integrated cross section is 1.21 ± 0.16 MeV-mb for \(E_\gamma < 20.5 \) MeV, 2.8 ± 0.4 MeV-mb for 20.5 ≤ \(E_\gamma < 42 \) MeV, and < 0.2 MeV-mb for 42 ≤ \(E_\gamma < 60 \) MeV (1953GO13, 1955GO59). (1955CA19) summarize cross section measurements for the \(^7\text{Li}(p, \gamma)\) radiation and find evidence for a resonance near \(E_\gamma = 12.3 \) MeV and possibly others at 15 and 16 MeV. According to (1955JO1C), peaks occur at \(E_\gamma = 14.7, 15.8, 16.6, 18.3, 24.3, \) and > 29 MeV, in fair agreement with (1953GO13). Absolute cross sections are reported for \(E_\gamma = 13 \) to 30 MeV, and integrated cross sections agree well with (1953GO13, 1955JO1C).
See also (1953DA1A, 1953GU1A, 1953MI31, 1955HA1D). According to (1955GO59), the three-body reaction is not involved for $E_\gamma < 40$ MeV (see, however, (1953MI31, 1954CH1B)). The reaction $^{12}\text{C}(\gamma, \alpha)^{8}\text{Be}^*(\text{p})^7\text{Li}$ is reported by (1956L105).

Studies of angular distributions indicate that for $E_\gamma = 12$ to 15.6 MeV, the reaction involves mainly $E2$ absorption ($^{12}\text{C}^*; J = 2^+; T = 0$); from 15.6 to 20 MeV both E1 ($J = 1^-; T = 1$) and E2 ($J = 2^+; T = 1$), and for $E_\gamma > 20$ MeV, mainly E1 ($J = 1^-; T = 1$). Significant E2 absorption ($J = 2^+; T = 1$) also occurs for $E_\gamma = 20$ to 25 MeV (1955GO59: see, however, (1951TE1A, 1953GE1B)). See also (1953LI1C, 1954GR1B, 1955RA1E, 1955SO1B, 1955TI1A, 1956MA1T, 1957MU1C).

24. $^{12}\text{C}(e, e')^{12}\text{C}$

Both elastic and inelastic scattering angular distributions have been studied at $E_e = 80$, 150 and 187 MeV by (1955FR1G, 1956FR27) and at 420 MeV by (1958EH1B). The elastic data are well accounted for by a modified Gaussian charge distribution of r.m.s. radius 2.50×10^{-13} cm, derived from a harmonic well with a characteristic length parameter of 1.68×10^{-13} cm (1956FR27, 1958EH1B). See also (1953HO79, 1956FE1B, 1956HO93, 1957HO1E, 1958EH1A, 1958RA43).

Inelastic peaks corresponding to $^{12}\text{C}^*(4.4, 7.7, 9.6)$ are observed, in addition to some unresolved structure near 11 MeV. There is no indication of the 15.1 MeV level. The observed angular distributions agree well with shell-model calculations of (1955RA1D, 1956MO1E, 1956TA1C, 1957TA1B) with a harmonic well of r.m.s. radius 2.40×10^{-13} cm. Predicted absolute cross sections are low by a factor of 2 in L-S coupling, 6 in j-j coupling; it is presumed that some collective modes of excitation are involved.

Excitation of the 4.4 MeV level is electric; a width of $(12.5 \pm 2.5) \times 10^{-3}$ eV, $\tau_m = (0.53 \pm 0.11) \times 10^{-13}$ sec, is obtained (1956HE83). The 7.7 and 9.6 MeV levels are also electrically excited; the angular distributions indicate either monopole or quadrupole transitions, $J = 0^+, 2^+$. The matrix element for the 7.7 MeV E0 transition is 50 mb, in good agreement with that observed for the ^{16}O monopole transition (1955SC1B, 1956FR27). A shell model calculation in intermediate coupling indicates that configuration mixing is required to give a non-zero matrix element for the $0^+_1-0^+_2$ transition and suggests that a semi-collective model is indicated (1955SC1B, 1956SH1F, 1957TA1B: see also (1955LA1C)). According to (1956EL1C), satisfactory agreement is obtained with a 50% admixture of $1s^31p^82s$ and $1s^41p^72p$. (1956RE1C) also finds reasonable agreement using the $1s^{-1}2s$ configuration and suggests that such a “core” excitation might appear quite generally in the light nuclei (see ^{16}O, ^{14}C and (1954CH1A)). Calculations using an independent-particle approach to a collective description give a good account of the form factors for both the 4.4 and 7.7 MeV excitations. The form factor for the 9.6 MeV level is consistent with $J = 1^-$ (1956FE1B: see also (1957PA1B)). See also (1958EL48; theor.).

Neutron production with $E_e = 35$ to 150 MeV has been studied by (1956GE1B). Comparison of $\sigma(\gamma, \text{n})$ and $\sigma(e, e'\text{n})$ for $E_e = 24$ to 145 MeV indicates that the transitions are largely E1 (1958BA60).
25. (a) 12C(n, n)12C
 (b) 12C(n, n')12C*
 (c) 12C(n, n')4He4He

For $E_n \gtrsim 14$ MeV, elastic scattering angular distributions show pronounced optical-model effects: see (1956BU95, 1956CU1A, 1958NA09) and 13C.

A gamma ray of energy 4.42 ± 0.03 MeV is observed at $E_n = 6.58$ MeV (1956DA23: see also (1954TH1A, 1955BA1N, 1955BE1H)). Production of 15.1 MeV γ-rays is observed at $E_n = 90$ MeV (1957WA04, 1957WA1F). At $E_n = 14$ MeV, inelastic neutron groups corresponding to 12C*(4.4, 9.6) are reported by (1956WO1B: see also (1953WH1A, 1956BE1F, 1956CA1E, 1958AN32)). The angular distributions for neutrons corresponding to 12C*(4.4) agree well with (p, p') distributions and with direct interaction theory (1958AN32: $E_n = 14$ MeV).

Inelastic excitation leading to α-particle states has been studied by (1955FR35): levels of 12C at 7.7 and 9.6 MeV are involved. (1953JA1C) find that for $E_n < 20$ MeV, most events proceed through a level at 10 ± 0.8 MeV, $\Gamma_{\text{obs}} = 1.6$ MeV, to 8Be(0) (See (1955FR35) and 12B(3He)C). See also 13C, (1953LI1C) and (1956LA1D; theor.).

26. (a) 12C(p, p')12C*
 (b) 12C(p, p')4He4He

also reported by (1957MA1G, 1957TY36); the last appears strongly in the work of (1956ST65)
($E_x = 20.8$ MeV) and is there associated with the giant resonance seen in $^{12}\text{C}(\gamma, \text{n})$ and $^{12}\text{C}(\gamma, \text{p})$.

For $E_p \lesssim 30$ MeV, the angular distribution of the proton group corresponding to the 4.4 MeV
level exhibits a minimum near $90^\circ - 100^\circ$ (c.m.) and a definite fore-and-aft asymmetry. Neither the compound nucleus model nor the direct interaction theory appears to give a satisfactory account
of these distributions (1957CO53, 1957GI14, 1957PE14). A direct interaction calculation, using
distorted waves, does reproduce the general features of the distributions and also fits the observed
($p' - \gamma$) correlation of (1956SH1E) and (1958LE06). See also (1956BE1G, 1957BA1L, 1957BU52,

The angular distribution of protons corresponding to the 7.7 MeV state depends strongly on
energy in the range $E_p = 14$ to 19 MeV, but consistently shows a strong forward peak, indicative
of $l = 0$ and hence $J = 0^+$ (1957PE14). See also (1955LA1C). An attempt to observe γ-decay of
this level yields an upper limit of 3% for $\Gamma_\gamma / \Gamma_\alpha$ (1956HO1D). The angular distribution of protons
leading to the 9.6 MeV level is consistent with $l = 1$, $J = 0^-, 1^-, 2^-$ (1957PE14).

The angular distribution of pick-up deuterons at $E_p = 95$ MeV indicates significant contribu-
tions of high momentum components in the bound, 1p neutron wave function, suggesting strong
interactions, (≈ 200 MeV), for close distances, $R \approx 1 \times 10^{-13}$ cm (1955SE1C, 1956SE1A). See also (1956GR1E).

Emission of (15.1 ± 0.2) MeV γ-radiation, ascribed to the first $T = 1$ level, has been studied
in the range $E_p = 15$ to 340 MeV by (1957WA04, 1957WA1F). The general shape of the excitation
function indicates direct nucleon-nucleon interaction for the higher energies; near threshold,
emission of s-wave protons is indicated. Estimates of the α-particle width, and comparison with
isobaric spin forbidden reactions (e.g. $^{12}\text{C}(\alpha, \alpha')^{12}\text{C}^*$, $^{12}\text{C}(\text{d}, \text{d}')^{12}\text{C}^*$) indicate a $T = 0$ admixture
$\approx 10^{-3}$. At 31 MeV, $\theta_{lab} = 80^\circ$, γ-rays of energy 15.1, 12.8 and 10.7 MeV are observed, with
relative intensities $1/0.090 \pm 0.015/0.095 \pm 0.014$. The 12.8 MeV radiation is ascribed to excitation
of a ^{12}C level of that energy, while the 10.7 MeV radiation represents a cascade from $^{12}\text{C}^*(15.1)$
to $^{12}\text{C}^*(4.4)$ (1957WA1F; see also $^{10}\text{B}(^3\text{He}, \text{p})^{12}\text{C}$).

A study of reaction (c) at an energy of 29 MeV shows no indication of direct 4-body decay
of $^{13}\text{N}^*$; $\frac{1}{4}$ of the events proceed via $^8\text{Be}(0)$, and $> \frac{1}{2}$ via $^8\text{Be}^*(2.9)$. Evidence is found for the
participation of $^{12}\text{C}^*(9.6, \approx 12, 16, 20, 25)$ (1955NE18). See also (1955RE16), (1957JA1B) and

See also (1956ST30, 1957AL39, 1957GO1D) and (1957KA1D, 1958EL48; theor.).

27. $^{12}\text{C}(\text{d}, \text{d}')^{12}\text{C}^*$

The angular distribution of elastic scattering has been studied at $E_d = 19$ MeV by (1954FR24);
several diffraction peaks appear. See also (1958WA07).

Inelastic groups corresponding to $^{12}\text{C}^*(4.4, 9.6)$ are reported by (1951KE02, 1954FR24, 1956GR37,
1956HA90; see also (1956CA65)). The 7.7 MeV level has not been observed. The angular distribution
of the $Q = -4.4$ MeV group at $E_d = 15$ MeV has been analyzed in terms of direct nuclear
interaction theory and in terms of electric interaction theory by (1956HA90); neither appears to give a satisfactory account of the observations.

A search for 15 MeV γ-radiation at \(E_d = 85 \) MeV yielded a negative result; a \(T = 0 \) admixture of \(< 4 \times 10^{-2} \) is indicated (1957WA04, 1957WA1F).

See also (1955KH31, 1955KH35).

28. \(^{12}\text{C}(^{3}\text{He}, ^{3}\text{He}')^{12}\text{C}\)

See (1958WE1E).

29. (a) \(^{12}\text{C}(\alpha, \alpha')^{12}\text{C}\)
(b) \(^{12}\text{C}(\alpha, \alpha n)^{11}\text{C}\)

\[Q_m = -18.722 \]

Elastic scattering has been studied at \(E_\alpha = 19 \) MeV by (1958PR65), at 31.5 MeV by (1956WA29), at 40 MeV by (1956IG02, 1956WE1C, 1957IG03) and at 48 MeV by (1955VA1A). The angular distributions show strong diffraction effects indicative of a direct interaction. Inelastic groups corresponding to levels at 4.4, 7.64 \(\pm 0.07 \), 9.6 and possibly, 12.7 MeV are observed. \(^{12}\text{C}\) recoils corresponding to the ground and 4.4 MeV states are also reported; the absence of recoils corresponding to the 7.7 MeV state is taken to indicate that this state disintegrates primarily (\(> 80\% \)) by \(\alpha \)-emission (1955RA1B; see \(^{11}\text{B}(d, n)^{12}\text{C}\)). From a similar experiment, (1958EC12) find that the chance is less than 0.1 for \(\Gamma_\gamma / \Gamma > 10^{-3} \).

Angular distribution of the \(Q = -4.4 \) MeV inelastic group at \(E_\alpha = 31.5 \) MeV are consistent with the direct surface interaction theory of (1953AU1A). A similar analysis of the \(Q = -7.7 \) MeV group gives good agreement for \(J = 0^+ \) (1956WA29). At \(E_\alpha = 42 \) MeV, the angular distribution of this group is well matched by the \(j_0^2(kr) \) or \(j_2^2(kr) \) functions, indicating \(J^\pi = 0^+ \) or \(2^+ \). The former is preferred in view of the small \(\gamma \)-width (1958EC12). See also (1956WE1C, 1957FI1C, 1958PR65, 1958SH65).

A search for \(\gamma \)-radiation from the de-excitation of the 15 MeV, \(T = 1 \) level at \(E_\alpha = 48 \) and 175 MeV gives an upper limit of \(\approx 10^{-3} \) for the \(T = 0 \) admixture (1957WA04, 1957WA1F).

See also (1954JU1B). For reaction (b), see (1953LI1B).

30. \(^{12}\text{N}(\beta^+)^{12}\text{C}\)

\[Q_m = 17.46 \]

The decay is mainly to the ground state via an allowed transition. Transitions to \(^{12}\text{C}^*(4.4, 7.65)\) also are allowed. Branching ratios are 100/15/3; \(\log ft = 4.17 \), 4.4 and 4.4, respectively (1958VE20). Delayed \(\alpha \)-particles with a total energy of \(\approx 4 \) MeV are also observed, suggesting that a state of \(^{12}\text{C}\) in the region 11 to 12 MeV is involved (1950AL57). See \(^{12}\text{N}\).
31. $^{13}\text{C}(\gamma, \text{n})^{12}\text{C}$
$Q_m = -4.946$

See ^{13}C.

32. $^{13}\text{C}(\text{p, d})^{12}\text{C}$

$Q_m = -2.719$

$Q_0 = -2.720 \pm 0.007$ (1957BU36).

See (1955NE18) and (1957BE49).

33. $^{13}\text{C}(\text{d, t})^{12}\text{C}$

$Q_m = 1.313$

Angular distributions of the ground state tritons have been measured at $E_d = 2.2$ and 3.3 MeV (1954HO48).

34. $^{13}\text{C}(^{3}\text{He}, \alpha)^{12}\text{C}$

$Q_m = 15.632$

Angular distributions of the α-particle groups to the ground and 4.4 MeV states have been obtained at $E(^3\text{He}) = 2$ MeV (1957HO63) and 4.5 MeV (1957HO62). Some direct interaction appears to be involved at both energies. At $E(^3\text{He}) = 2$ MeV, a 15.1 MeV γ-ray is observed (1957BR18, 1957GO1B, 1958BR1D).

35. $^{14}\text{C}(\text{p, t})^{12}\text{C}$

$Q_m = -4.635$

Not observed.

36. $^{14}\text{N}(\gamma, \text{d})^{12}\text{C}$

$Q_m = -10.265$

Not observed.

37. $^{14}\text{N}(\text{n, t})^{12}\text{C}$

$Q_m = -4.007$

See ^{15}N and (1952LI1A).
Table 12.11: 12C states from 14N(d, α)12C

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q (MeV ± keV)</td>
<td>σ (mb)</td>
<td>Q (MeV ± keV)</td>
<td>Q (MeV ± keV)</td>
<td>Q (MeV ± keV)</td>
<td>Q (MeV ± keV)</td>
<td>12C* (MeV)</td>
</tr>
<tr>
<td>13.39 ± 80</td>
<td>1</td>
<td>13.575 ± 12</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>9.02 ± 70</td>
<td>3</td>
<td>9.137 ± 6</td>
<td></td>
<td></td>
<td></td>
<td>4.442</td>
</tr>
<tr>
<td>5.77 ± 70</td>
<td>0.3</td>
<td>5.89 ± 30</td>
<td>5.910 ± 15</td>
<td>5.912 ± 13</td>
<td></td>
<td>7.664</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.955 ± 3</td>
<td></td>
<td></td>
<td></td>
<td>9.63</td>
</tr>
</tbody>
</table>

A: $E_\alpha = 1.01$ MeV, $\theta = 90^\circ$ (1940HO1A).
B: (1951MA08).
C: Based on $Q_1 = 9.137$ for the second group (1953DU23). At $E_\alpha = 0.62$ MeV, $\theta = 90^\circ$, this group has 6% the intensity of the first.
D: (1955PA50).
E: (1956AH32).
F: (1956DO41): it is suggested that a systematic error exists in (1951MA08)’s value for this state.
G: Based on $Q_0 = 13.579$.

38. 14N(p, 3He)12C

$Q_m = -4.772$

Not observed.

39. 14N(d, α)12C

$Q_m = 13.579$

For α-groups have been observed corresponding to 12C*(0, 4.4, 7.7, 9.6): see Table 12.11 and (1957HO1H). Alpha-gamma correlations give $J = 2^+$ for the 4.4 MeV state (1954ST1C) while γ-γ correlations give $J = 0$ or > 2 for the 7.7 MeV state (1955SE1B; see, however, 12B(β^-)12C). The width of the 7.7 MeV state is < 25 keV (1953DU23, 1956AH32) and that of the 9.6 MeV state is 30 ± 8 keV (c.m.). The J^π values for the 9.6 MeV state are limited to 0^+, 1^-, 2^+, 3^-, 4^+ (1956DO41). Angular distributions of the α-particles to the ground, 4.4 and 9.6 MeV states have been measured at $E_d = 20.9$ MeV (1957FI1C). See also (1952GI01, 1958BO18, 1958BO71). A small yield of 15 MeV γ-radiation is observed at $E_d = 10.8$ MeV, presumably due to excitation of the 15.1 MeV, $T = 1$ state (1954RA35). See also (1956GR37, 1958RA13) and 16O.

40. 14N(3He, pα)12C

$Q_m = 8.086$

See 16O.
41. $^{15}\text{N}(p, \alpha)^{12}\text{C}$

Alpha particles have been observed to a state of ^{12}C at 4.432 ± 0.010 MeV (1952SC1B). The γ-ray energy after Doppler correction of 20 keV is 4.443 ± 0.020 MeV. The necessity for the correction implies a lifetime $< 3 \times 10^{-13}$ sec (1952TH24); see $^{12}\text{C}(\gamma, \gamma')^{12}\text{C}$. The angular distributions of short-range alpha particles and 4.4 MeV γ-radiation indicate that the 4.4 MeV state has $J = 2^+$ or > 4 (1953KR1B; see also (1957GO1E)). See also ^{16}O and (1958RA14).

42. (a) $^{16}\text{O}(\gamma, \alpha)^{12}\text{C}$

$Q_m = -7.148$

(b) $^{16}\text{O}(\gamma, 4\alpha)$

$Q_m = -14.429$

There is evidence for the involvement of ^{12}C states at 9.6 and ≈ 11 MeV which decay to the ground state of ^8Be, a state at 12−13 MeV, decaying mainly to the 2.9 MeV state of ^8Be, and $T = 1$ state at ≈ 16 and 18−19 MeV, again leading mainly to the 2.9 MeV ^8Be state. The 4.4 and 7.7 MeV states of ^{12}C seem to occur rarely, if at all (see ^{16}O).

43. $^{19}\text{F}(p, 2\alpha\gamma)^{12}\text{C}$

$Q_m = 0.971$

See (1957ZA1A).

^{12}N

(Fig. 21)

GENERAL:

Mass of ^{12}N: From the Q of the $^{10}\text{B}(^3\text{He}, n)^{12}\text{N}$ reaction, 1.46 ± 0.06 MeV, and the Wapstra (1955WA1A) atomic masses for ^{10}B, ^3He and n, the mass excess of ^{12}N is 21.00 ± 0.06 MeV.

1. $^{12}\text{N}(\beta^+)^{12}\text{C}$

$Q_m = 17.46$

The half life is 12.5 ± 1 msec; $E_\beta(\text{max}) = 16.6 \pm 0.2$ MeV (1949AL05), $\tau_{1/2} = 11.43 \pm 0.05$ msec; $E_\beta(\text{max}) = 16.37 \pm 0.06$ MeV (1958VE20). The decay is complex; ^{12}N decays to the ground state of ^{12}C and to $^{12}\text{C}^*(4.4, 7.6)$; see ^{12}C. Log $ft = 4.17$ for the ground state transition (1958VE20). See also (1959SC1B; theor.).
Table 12.12: Energy levels of 12N

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>J^π</th>
<th>$\tau_{1/2}$</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1$^+$</td>
<td>(11.43 ± 0.05) × 10$^{-3}$ sec</td>
<td>β^+</td>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>1.06 ± 0.08</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1.56 ± 0.08</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>(1.97 ± 0.10)</td>
<td></td>
<td></td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td>2.35 ± 0.08</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3.18 ± 0.15</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3.46 ± 0.15</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

2. 10B(3He, n)12N

$Q_m = 1.46$

$Q_0 = 1.46 ± 0.06$ (1957AJ71).

The neutron spectrum has been studied at $E(^3$He) = 2.54 and 3.60 MeV. Seven neutron groups are observed, corresponding to the ground state and to excited states at 1.06 ± 0.08, 1.56 ± 0.08, (1.97 ± 0.10), 2.35 ± 0.08, 3.18 ± 0.15 and 3.46 ± 0.15 MeV, in good agreement with the levels of the mirror nucleus, 12B. At the lower energy, the (c.m.) angular distribution of the ground state neutrons is isotropic within $\approx 15\%$ statistics; at the higher energy, the distribution is peaked forward (1957AJ71).

3. 12C(p, n)12N

$Q_m = -18.24$

$E_{\text{thresh}} = 20.0 ± 0.1$ MeV (1949AL05). See also (1957CA1E, 1957GR1F) and 13N.

4. 12C(3He, t)12N

$Q_m = -17.48$

Not reported.

5. 14N(γ, 2n)12N

$Q_m = -30.73$

See 14N.

6. 14N(p, t)12N

$Q_m = -22.25$

Not reported.
References

(Closed 1 December 1958)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author’s name and then by two additional characters. Most of the references appear in the National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form 1A, 1B, etc. In response to many requests for more informative citations, we have, when possible, included up to ten authors per paper and added the authors’ initials.

1940HO1A M.G. Holloway and B.L. Moore, Phys. Rev. 58 (1940) 847
1949AL05 L.W. Alvarez, Phys. Rev. 75 (1949) 1815
1950AL57 L.W. Alvarez, Phys. Rev. 80 (1950) 519
1950BU1A Buechner, van Patter, Strait and Sperduto, Phys. Rev. 70 (1950) 262
1950HO01 W.F. Hornyak and T. Lauritsen, Phys. Rev. 77 (1950) 160
1950HU72 E.L. Hudspeth, C.P. Swann and N.P. Heydenburg, Phys. Rev. 80 (1950) 643
1951HA1C J. Halpern and A.K. Mann, Phys. Rev. 83 (1951) 370
1951MA08 R. Malm and W.W. Buechner, Phys. Rev. 81 (1951) 519
1951MC57 W.O. McMinn, M.B. Sampson and V.K. Rasmussen, Phys. Rev. 84 (1951) 963
1951RU1A Rutherglen, Rae and Smith, Proc. Phys. Soc. (London) A64 (1951) 906
1951TE1A V.L. Telegdi, Phys. Rev. 84 (1951) 600
1952BR52 R. Britten, Phys. Rev. 88 (1952) 283
1952HA1B J. Halpern, A.K. Mann and M. Rothman, Phys. Rev. 87 (1952) 164
1952JO10 V.R. Johnson, Phys. Rev. 86 (1952) 302
1952LI1A A.B. Lillie, Phys. Rev. 87 (1952) 716
1952TH24 R.G. Thomas and T. Lauritsen, Phys. Rev. 88 (1952) 969
1953AU1A Austern, Butler and McManus, Phys. Rev. 92 (1953) 350
1953DA1A Dawson and Bigham, Can. J. Phys. 31 (1953) 167
1953EL12 M.M. Elkind, Phys. Rev. 92 (1953) 127
1953GE1B Gell-Mann and Telegdi, Phys. Rev. 91 (1953) 169
1953GI05 W.M. Gibson, Phil. Mag. 44 (1953) 297
1953HE1B Hendel, Z. F. Phys. 135 (1953) 168
1953HO79 R. Hofstadter, H.R. Fechter and J.A. McIntyre, Phys. Rev. 92 (1953) 978
1953LI1B Lindner and Osborne, Phys. Rev. 91 (1953) 1501
1953PA1B Paul and Clarke, Phys. Rev. 91 (1953) 463, KA14
1953SH64 E.S. Shire, J.R. Wormald, G. Lindsay-Jones, A. Lundan and A.G. Stanley, Phil. Mag. 44 (1953) 1197
1953WH1A B.G. Whitmore, Phys. Rev. 92 (1953) 654
1953WI1C Wilkinson, Phil. Mag. 44 (1953) 1019
1953WR1A Wright, UCRL 2422 (1953)
1954CH1A Christy and Fowler, Phys. Rev. 96 (1954) 851, F11
1954DI1A Diller and Crouch, Phys. Rev. 93 (1954) 362, 17
1954FI1B Fischer, UCRL-2546 (1954)
1954GR53 A. Graue, Phil. Mag. 45 (1954) 1205
1954HE1B Heiberg, Phys. Rev. 96 (1954) 856, 112
1954JU1B Juric, Atomics and Atomic Tech. 5 (1954) 333
1954NE1A Nereson et al., LA 1655 (1954)
1954PA1D Pauli, Ark. Fys. 8 (1954) 16A
1954ST1C A.G. Stanley, Phil. Mag. 45 (1954) 807
1954TE1A Telegdi, Phys. in Canada 10 (1954) 44
1954TH1B L.C. Thompson, Phys. Rev. 96 (1954) 369
1954UE1A Uebergang, Aust. J. Phys. 7 (1954) 279
1955AJ61 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 27 (1955) 77
1955BA1N M.E. Battat and E.R. Graves, Phys. Rev. 97 (1955) 1266
1955BA63 W.C. Barber, W.D. George and D.D. Reagan, Phys. Rev. 98 (1955) 73
1955BE1H Beghian, Hicks and Milman, Phil. Mag. 46 (1955) 924
1955BR1A R.J. Breen and M.R. Hertz, Phys. Rev. 98 (1955) 599
1955CU1C Cuer, Samman and Combe, Compt. Rend. 240 (1955) 1527
1955FE1A Ferrell and Visscher, Phys. Rev. 100 (1955) 1796, F8
1955HA1D Havlicek and Dobovisek, Phys. Rev. 100 (1955) 1355
1955HI1C Hibdon and Langsdorf, Phys. Rev. 98 (1955) 223, B3
1955HU1B Hughes and Harvey, BNL-325 (1955)
1955JO1B Johansson, Phys. Rev. 97 (1955) 434
1955LA1C Lane and Wilkinson, Phys. Rev. 97 (1955) 1199
1955MO1B H. Morinaga, Phys. Rev. 97 (1955) 1185
1955NE18 J.L. Need, Phys. Rev. 99 (1955) 1356
1955PA50 R.T. Pauli, Ark. Fys. 9 (1955) 571
1955RA1B Rasmussen, Miller and Sampson, Phys. Rev. 100 (1955) 181
1955RA1D Ravenhall, Phys. Rev. 100 (1955) 1797, H6
1955RA1E D. Raymond, D. Cooper and Dan J. Zaffarano, Phys. Rev. 98 (1955) 1199, X13
1955RE16 J.B. Reynolds, Phys. Rev. 98 (1955) 1289
1955SC1B L.I. Schiff, Phys. Rev. 98 (1955) 1281
1955SE1B Seed, Phil. Mag. 46 (1955) 100
1955SE1C W. Selove, Phys. Rev. 98 (1955) 208
1955SO1B S.D. Softky, Phys. Rev. 98 (1955) 173
1955SP1A B.M. Spicer and A.S. Penfold, Phys. Rev. 100 (1955) 1375
1955ST1C L. Stewart, Phys. Rev. 98 (1955) 740
1955TI1A Titterton, Prog. Nucl. Phys. 4 (1955) 1
1955VA1A Vaughn, UCRL-3174 (1955)
1955WA1A Wapstra, Physica 21 (1955) 367
1956AH32 K. Ahnlund, Ark. Fys. 10 (1956) 369
1956BE1D Becker and Barschall, Phys. Rev. 102 (1956) 1384
1956BE1G Benoist, Marty and Meyer, Physica 22 (1956) 1173A
1956BO1F Bogdanov, Vlasov, Kalinin, Rybakov and Sidorov, Physica 22 (1956) 1150
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 19
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 56
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 191
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 93
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 108
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 1414
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 1047
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 1358
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 767
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 173
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 1059
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 1212
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 91
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 1755
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 475
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 617
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 225
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 387
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 701
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 791
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 548
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 1159A
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 898
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 376
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 28
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 507
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 613
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 1398
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 1466
E. J. Burge, Y. Fujimoto and A. Hossain, Phil. Mag. 1 (1956) 1446
1956HO93 R. Hofstadter, Rev. Mod. Phys. 28 (1956) 214
1956KA1A Kavanagh, Ph.D. Thesis, CalTech (1956)
1956KL19 G.K. Kliger, V.I. Riabinin, I.V. Chuvilo and V.S. Shevchenko, Physica 22 (1956) 1142A
1956KU1A Kurath, Phys. Rev. 101 (1956) 216
1956LA1C Langsdorf, Lane and Monahan, ANL 5567 (1956)
1956LA1D J.R. Lamarsh and H. Feshbach, Phys. Rev. 104 (1956) 1633
1956MO1E Morpurgo, Nuovo Cim. 3 (1956) 430
1956NA1A Nakagawa, Ohmura, Takebe and Obi, Prog. Theor. Phys. 16 (1956) 389
1956NO1A Norbeck, Bull. Amer. Phys. Soc. 1 (1956) 329
1956PI1A G.F. Pieper and G.S. Stanford, Phys. Rev. 101 (1956) 672
1956SA1C Samman, Compt. Rend. 242 (1956) 2232
1956SA1D Samman, Compt. Rend. 242 (1956) 3062
1956SE1A Selove, Phys. Rev. 101 (1956) 231
1956SH1F B.F. Sherman and D.G. Ravenhall, Phys. Rev. 103 (1956) 949
1956ST1E Steffen, Hinrichs and Neuert, Z. F. Phys. 145 (1956) 156
1956ST1F Steffen and Neuert, Z. F. Phys. 147 (1956) 125
1956TA07 N.W. Tanner, Phil, Mag. 1 (1956) 47
1956TA16 G.W. Tautfest and S. Rubin, Phys. Rev. 103 (1956) 196
1956TZ1A Tzara, Compt. Rend. 242 (1956) 2340
1956WA29 H.J. Watters, Phys. Rev. 103 (1956) 1763
1956WI1F R. Wilson, Phys. Rev. 104 (1956) 1424
1957AL79 R. Alphonce, A. Johansson and G. Tibell, Nucl. Phys. 3 (1957) 185
1957BA1H Barker, Phil. Mag. 2 (1957) 780
1957BA1K Barker and Mann, Phil. Mag. 2 (1957) 5
1957BA1L Banerjee and Levinson, Ann. Phys. (USA) 2 (1957) 499
1957BI1C Biel, Phil. Mag. A70 (1957) 866
1957BR1J Breen, Hertz and Wright, Bull. Amer. Phys. Soc. 2 (1957) 357
1957BU36 W.W. Buechner and A. Sperduto, Phys. Rev. 106 (1957) 1008
1957BU52 S.T. Butler, Phys. Rev. 106 (1957) 272
1957CA1D Carver and Lokan, Aust. J. Phys. 10 (1957) 312
1957CA1E Carpenter and Wilson, Bull. Amer. Phys. Soc. 2 (1957) 382
1957CO53 H.E. Conzett, Phys. Rev. 105 (1957) 1324
1957CO57 B.C. Cook, Phys. Rev. 106 (1957) 300
1957DI28 J.M. Dickson and D.C. Salter, Nuovo Cim. 6 (1957) 235
1957DO1A Dodge and Barber, Bull. Amer. Phys. Soc. 2 (1957) 377
1957FE1C A.M. Feingold, Phys. Rev. 105 (1957) 944
1957FI1C Fischer and Fischer, Bull. Amer. Phys. Soc. 2 (1957) 182
1957GO1B Gove, Litherland, Almqvist, Bromley and Ferguson, Bull. Amer. Phys. Soc. 2 (1957) 51
1957GO1C G. Goldring, Y. Wolfson and R. Wiener, Phys. Rev. 107 (1957) 1667
1957GO1D Gooding, Bull. Amer. Phys. Soc. 2 (1957) 350
1957GR1F Gross, Bull. Amer. Phys. Soc. 2 (1957) 14
1957HA13 E. Hayward and E.G. Fuller, Phys. Rev. 106 (1957) 991
1957HE1A Heiberg, Phys. Rev. 106 (1957) 1271
1957HE1B A. Herzenberg, Nucl. Phys. 3 (1957) 1
1957HI1C Hintz, Bull. Amer. Phys. Soc. 2 (1957) 14

38