Energy Levels of Light Nuclei

$A = 13$

F. Ajzenberg-Selove a and T. Lauritsen b

a University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396
b California Institute of Technology, Pasadena, California

Abstract: An evaluation of $A = 5$–24 was published in Nuclear Physics 11 (1959), p. 1. This version of $A = 13$ differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

(References closed December 1, 1958)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-AC02-76-ER02785]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).
A. Nuclides: ^{13}B, ^{13}C, ^{13}N

B. Tables of Recommended Level Energies:

- **Table 13.1**: Energy levels of ^{13}B
- **Table 13.2**: Energy levels of ^{13}C
- **Table 13.9**: Energy levels of ^{13}N

C. References

D. Figures: ^{13}C, ^{13}N

E. Erratum to this Publication: PS or PDF
Table 13.1: Energy levels of 13B

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>$J^\pi; T$</th>
<th>$\tau_{1/2}$ (sec)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>($\frac{3}{2}^-$); $\frac{3}{2}$</td>
<td>(35 ± 15) $\times 10^{-3}$</td>
<td>β^-</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

13B
(Not illustrated)

GENERAL:

Mass of 13B: The mass excess of 13B is 20.40 ± 0.05 MeV from the Q of the reaction 7Li(7Li, p)13B (1957NO14), and Wapstra’s masses (1955WA1A) for 7Li and 1H. 13B is then stable by 4.88 MeV to decay into 12B + n, by 11.00 MeV to decay into 10Be + t and by 11.3 MeV to decay into 9Li + α.

1. 13B(β^-)13C

$Q_m = 13.44$

The half-life of 13B is (35 ± 15) $\times 10^{-3}$ sec (1956NO1A). Attempts to observe delayed neutrons from the decay of neutron-unstable states of 13C have been unsuccessful (1953HU1C, 1956NO1A). It is pointed out by (1957NO14) that transitions to such states are unlikely if 13B has the expected $J = \frac{3}{2}^-$. See also (1948SN1A, 1952SH44).

2. 7Li(7Li, p)13B

$Q_m = 5.97$

$Q_0 = 5.97 \pm 0.05$ (1957NO14).

This reaction has been observed for $E(^7$Li) = 1.4 to 2.0 MeV (1956AL1F, 1957NO14, 1958LI42). At $E(^7$Li) = 2 MeV, no proton groups have been observed corresponding to excited states of 13B below $E_x = 2.9$ MeV (1958LI42). See also 14C.

3. 11B(t, p)13B

$Q_m = 0.24$

Not reported.
^{13}C
(Fig. 22)

GENERAL:

1. (a) $^6\text{Li}(^{7}\text{Li}, \text{p})^{12}\text{B} \quad Q_m = 8.338 \quad E_b = 25.876$
 (b) $^6\text{Li}(^{7}\text{Li}, \text{n})^{12}\text{C} \quad Q_m = 20.931$
 (c) $^6\text{Li}(^{7}\text{Li}, 2\text{n})^{11}\text{C} \quad Q_m = 2.209$

See (1957NO17).

2. $^{7}\text{Li}(^{7}\text{Li}, \text{n})^{13}\text{C} \quad Q_m = 18.624$

See (1957NO17).

3. $^9\text{Be}(\alpha, \gamma)^{13}\text{C} \quad Q_m = 10.654$

At $E_\alpha = 1.60$ MeV, the capture cross section is less than 30 μb (1955AL16).

4. $^9\text{Be}(\alpha, \text{n})^{12}\text{C} \quad Q_m = 5.709 \quad E_b = 10.654$

Resonances for neutrons and for γ-rays from $^{12}\text{C}*(4.4)$ are given in Table 13.3. Absolute cross sections for several resonances are reported by (1956BO61, 1959GI47). For the prominent 1.9 MeV resonance, $d\sigma/d\Omega$ (90°) for 4.4 MeV γ-rays is given as 12 mb/sr (lab) by (1956BO61) and as 26 mb/sr by (1955TA28). For $E_\alpha = 2.5$ to 8.2 MeV, absolute neutron yields have been measured by (1958MA1J, 1959GI47).

Separate excitation curves (at 0°) for ground state neutrons (n_0) and for neutrons to the 4.4 MeV state (n_1) are reported by (1957RI38) in the range $E_\alpha = 1.7$ to 4.8 MeV (n_0) and 3.1 to 4.8 MeV (n_1). The n_0 yield curves show broad maxima at $E_\alpha = 1.9, 2.0, 2.6, 4.2$ and 4.5 MeV. The sharp 3.98 MeV resonance is strong for n_1, but quite weak for n_0. Angular distributions of ground-state neutrons suggest two broad resonances in the region $E_\alpha = 3.9$ to 4.6 MeV, probably $J = \frac{3}{2}^+$ and $\frac{5}{2}^+$ (1957RI38).
Table 13.2: Energy levels of ^{13}C

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>J^π</th>
<th>τ_m or Γ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\frac{1}{2}^-$</td>
<td>–</td>
<td>stable</td>
<td>2, 9, 15, 17, 23, 29, 30, 32, 34, 35, 37, 40, 41</td>
</tr>
<tr>
<td>3.085 ± 5</td>
<td>$\frac{1}{2}^+$</td>
<td>$\tau_m < 3 \times 10^{-13}$ sec</td>
<td>γ</td>
<td>9, 15, 18, 23, 29, 32, 40</td>
</tr>
<tr>
<td>3.680 ± 7</td>
<td>$\frac{3}{2}^-$</td>
<td>$\tau_m < 3 \times 10^{-13}$ sec</td>
<td>γ</td>
<td>9, 15, 17, 23, 29, 32, 34, 40</td>
</tr>
<tr>
<td>3.850 ± 10</td>
<td>$\frac{5}{2}^+$</td>
<td>$\tau_m > 3 \times 10^{-13}$ sec</td>
<td>γ</td>
<td>9, 15, 23, 32, 40</td>
</tr>
<tr>
<td>5.51 ± 50</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>6.10 ± 50</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>6.86 ± 10</td>
<td>$\frac{5}{2}^+$</td>
<td>$\Gamma = 6$</td>
<td>n</td>
<td>15, 18, 23, 40</td>
</tr>
<tr>
<td>7.470 ± 20</td>
<td></td>
<td></td>
<td></td>
<td>23, 40</td>
</tr>
<tr>
<td>7.533 ± 20</td>
<td></td>
<td></td>
<td></td>
<td>15, 23, 40</td>
</tr>
<tr>
<td>7.641 ± 20</td>
<td>$\frac{3}{2}^+$</td>
<td>55 ± 15</td>
<td>n</td>
<td>18, 23, 40</td>
</tr>
<tr>
<td>8.33 ± 100</td>
<td>$\frac{3}{2}^+$</td>
<td>1000 ± 250</td>
<td>n</td>
<td>18, 23, 35</td>
</tr>
<tr>
<td>8.82 ± 40</td>
<td></td>
<td></td>
<td></td>
<td>15, 18, 40</td>
</tr>
<tr>
<td>9.50 ± 20</td>
<td></td>
<td></td>
<td>n</td>
<td>15, 18, 23, 40</td>
</tr>
<tr>
<td>9.90 ± 20</td>
<td>$>$ 0</td>
<td></td>
<td>n</td>
<td>15, 18, 23, 40</td>
</tr>
<tr>
<td>10.76 ± 20</td>
<td></td>
<td></td>
<td>n</td>
<td>18, 19, 23</td>
</tr>
<tr>
<td>10.94 ± 100</td>
<td></td>
<td></td>
<td>n</td>
<td>15, 18, 19</td>
</tr>
<tr>
<td>11.02 ± 30</td>
<td>($\frac{1}{2}^+$)</td>
<td>50</td>
<td>α, n</td>
<td>4, 15</td>
</tr>
<tr>
<td>11.08 ± 30</td>
<td></td>
<td>sharp</td>
<td>α, n</td>
<td>4, 15</td>
</tr>
<tr>
<td>11.97 ± 15</td>
<td>($\frac{7}{2}^-$)</td>
<td>70</td>
<td>α, n</td>
<td>4, 15, 18, 19</td>
</tr>
<tr>
<td>12.21 ± 30</td>
<td></td>
<td>≈ 140</td>
<td>α, n</td>
<td>4, 15, 18, 19</td>
</tr>
<tr>
<td>12.44 ± 30</td>
<td>($\frac{1}{2}^-$)</td>
<td>≈ 140</td>
<td>α, n</td>
<td>4, 19</td>
</tr>
<tr>
<td>12.81 ± 100</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>13.41 ± 30</td>
<td></td>
<td>50</td>
<td>α, n</td>
<td>4</td>
</tr>
<tr>
<td>13.77 ± 30</td>
<td></td>
<td>≈ 280</td>
<td>α, n</td>
<td>4</td>
</tr>
<tr>
<td>14.1 ± 100</td>
<td></td>
<td>≈ 210</td>
<td>α, n</td>
<td>4</td>
</tr>
<tr>
<td>14.64 ± 30</td>
<td></td>
<td>α, n</td>
<td>α, n</td>
<td>4</td>
</tr>
<tr>
<td>16.1 ± 100</td>
<td></td>
<td></td>
<td>α, n</td>
<td>4</td>
</tr>
<tr>
<td>20.52 ± 20</td>
<td></td>
<td>115 ± 10</td>
<td>d, n</td>
<td>10</td>
</tr>
<tr>
<td>21.28 ± 20</td>
<td></td>
<td>160 ± 15</td>
<td>d, n</td>
<td>10</td>
</tr>
</tbody>
</table>
Table 13.3: Resonances in 9Be$(\alpha, n)^{12}$C

<table>
<thead>
<tr>
<th>E_α (MeV)</th>
<th>E_α (MeV)</th>
<th>Γ (MeV)</th>
<th>J^π</th>
<th>13C* (MeV)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.53</td>
<td>0.53</td>
<td>70</td>
<td>$\left(\frac{1}{2}^+ \right)^j$</td>
<td>11.02</td>
<td>c</td>
</tr>
<tr>
<td>0.61</td>
<td>0.61</td>
<td>sharp</td>
<td></td>
<td>11.08</td>
<td>c</td>
</tr>
<tr>
<td>1.9</td>
<td>1.905</td>
<td>180</td>
<td>$\left(\frac{7}{2}^- \right)^j$</td>
<td>11.97 k</td>
<td>d</td>
</tr>
<tr>
<td>2.24</td>
<td></td>
<td>\approx 200</td>
<td></td>
<td>12.21 k</td>
<td>e</td>
</tr>
<tr>
<td>2.58</td>
<td>2.6</td>
<td>\approx 200</td>
<td>$\left(\frac{1}{2}^- \right)^j$</td>
<td>12.44 k</td>
<td>f</td>
</tr>
<tr>
<td>4.00</td>
<td>3.98</td>
<td>70</td>
<td></td>
<td>13.41</td>
<td>h,i</td>
</tr>
<tr>
<td>(4.2)</td>
<td>(\approx 300)</td>
<td>(13.6)</td>
<td></td>
<td></td>
<td>g</td>
</tr>
<tr>
<td>4.50</td>
<td>4.4</td>
<td>\approx 400</td>
<td></td>
<td>13.77 k</td>
<td>h,i</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>\approx 300</td>
<td></td>
<td>14.1 k</td>
<td>h</td>
</tr>
<tr>
<td>5.75</td>
<td></td>
<td></td>
<td></td>
<td>14.64</td>
<td>i</td>
</tr>
<tr>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
<td>16.1</td>
<td>i</td>
</tr>
</tbody>
</table>

a Resonances in neutron yield.
b Resonances for 4.4 MeV γ-rays.
c (1954BE08).
e (1954TR09, 1956BO61).
g (1957RI38).
h (1956BO61).
i (1958MA1J, 1959GI47).
j (1956JA28).
k Not corrected for effects of Coulomb barrier penetration.

Extensive angular distribution studies have been made for $E_\alpha < 2$ MeV by (1955TA28, 1956JA28). According to (1956JA28), the best fit to the distributions in the range $E_\alpha = 0.4$ to 1.3 MeV is obtained from the assignments $J = \frac{1}{2}^+, \frac{7}{2}^-, \frac{1}{2}^-$ for the 0.5, 1.9 and 2.6 (?) MeV resonances (see also (1955TA28)). The angular correlation of neutrons and 4.4 MeV gamma-rays is isotropic at $E_\alpha = 1.2$ and 2.8 MeV, indicating that stripping plays only a minor role at these energies (1958TA05). See also (1955MA1J; theor.) and (1956BE98).

5. 9Be$(\alpha, p)^{12}$B

$Q_m = -6.884$

$E_b = 10.654$

See 12B.
6. \(^9\)Be(\(\alpha\), d)\(^{11}\)B \\
\(Q_m = -8.022\) \\
\(E_b = 10.654\)

See \(^{11}\)B.

7. (a) \(^9\)Be(\(\alpha\), \(\alpha'\))\(^9\)Be* \\
\(E_b = 10.654\)

(b) \(^9\)Be(\(\alpha\), \(\alpha'n\))\(^8\)Be \\
\(Q_m = -1.667\)

(c) \(^9\)Be(\(\alpha\), n)\(^4\)He\(^4\)He\(^4\)He \\
\(Q_m = -1.572\)

For reaction (a) see \(^9\)Be and (1955TA28). For reactions (b) and (c), see (1952AJ38).

8. \(^{10}\)B(t, \(\alpha\))\(^9\)Be \\
\(Q_m = 13.210\) \\
\(E_b = 23.882\)

See \(^9\)Be.

9. \(^{10}\)B(\(\alpha\), p)\(^{13}\)C \\
\(Q_m = 4.070\) \\
\(Q_0 = 4.064 \pm 0.012\) (W.J. Fader, quoted in (1957VA11)). \\
\(Q_0 = 4.08 \pm 0.03\) (1956PI1A). \\
\(Q_0 = 4.10 \pm 0.03\) (1956PA1B).

Four proton groups are observed, corresponding to the \(^{13}\)C levels at 0, 3.09, 3.68 and 3.85 MeV (1953SH64, 1954FA1A, 1954FA1B, 1956PI1A). Additional groups are reported by (1957RO1F). The relative intensities depend strongly on bombarding energy (see \(^{14}\)N, (1953SH64)). See also (1955AJ61).

A study of gamma rays from this reaction and from \(^{12}\)C(d, p)\(^{13}\)C shows three lines with \(E_\gamma = 0.1695 \pm 0.0004, 3.844 \pm 0.015\) and 3.69 \pm 0.02 MeV. The 3.85 MeV \(\gamma\)-ray exhibits no Doppler shift and therefore has a lifetime greater than \(3 \times 10^{-13}\) sec; the 3.69 MeV line shows approximately the maximum possible Doppler shift (\(\tau < 3 \times 10^{-13}\) sec). The 170 keV line is due to the cascade transition between the 3.84 and 3.68 MeV states; the internal conversion coefficient is consistent with E1, although M1 cannot be excluded. The probability of this cascade decay of the 3.84 MeV state is 0.24 \pm 0.05. Cascade transitions to the 3.1 MeV excited state have not been observed. Their intensities are less than 3\% of the ground state transitions (1956MA1Q, 1956MA52): see Fig. 23. (For earlier work see (1953SH64) and (1954ST20)). The angular distributions and p-\(\gamma\) correlations for the 3.8 MeV radiation contain terms in \((\cos^4 \theta)\), indicating \(J = \frac{5}{2}^+\) for the 3.84 MeV state (1954ST20: see \(^{12}\)C(d, p)\(^{13}\)C). If the 170 keV line is due to an E1 transition, the \(J^\pi\) of the 3.68 MeV state is then \(\frac{3}{2}^-\) (\(J^\pi = \frac{1}{2}^-, \frac{3}{2}^-\) follows from \(^{12}\)C(d, p)\(^{13}\)C); the angular distribution of the 3.7 MeV radiation is consistent with M1 (1954ST20).
Angular distributions of the grounds state protons are reported at $E_\alpha = 4.9, 6.0, 7.0$ and 8.1 MeV (1957VO25) and at $E_\alpha = 30.5$ MeV (1957HU1E): in both cases direct interaction appears to be involved. See also (1957BA1K) and (1955BR1A).

10. 11B(d, n)12C

<table>
<thead>
<tr>
<th>Q_m</th>
<th>E_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.731</td>
<td>18.677</td>
</tr>
</tbody>
</table>

The yield of neutrons has been measured for $E_d = 0.2$ to 5.4 MeV. The total cross section for ground state neutrons in the 0.5 to 1.15 MeV range rises from 0.5 to 30 mb; both direct and exchange stripping processes seem to be involved (1956PA23, 1957AM48). The yield of the excited-state group, 12C*(4.4) rises smoothly from $E_d = 0.5$ to 1.1 MeV and is essentially flat from $E_d = 1.1$ to 2.0 MeV (1959NE1A). At $E_d = 600$ keV, angular distributions indicate that stripping is important for the ground-state group. For the excited-state group (12C*(4.4)), the interpretation is less clear; the observed distribution can be accounted for by p-wave formation of a $J = \frac{7}{2}^+$ level in 13C (1955WA30). (1959NE1A) find evidence of strong “heavy-particle” stripping for this group in the range $E_d = 0.5$ to 2.0 MeV. The cross section for emission of neutrons in the forward direction is ≈ 270 mb/sr at $E_d = 5.4$ MeV (1955MA76). For $E_d = 1.6$ to 3.2 MeV, the yield of 15.1 MeV γ-rays shows resonances at $E_d = 2.180 \pm 0.010$ and 3.080 ± 0.015 MeV, corresponding to 13C*(20.52, 21.28) with $\Gamma_{c.m.} = 115 \pm 10$ and 160 ± 15 keV, respectively; the cross section at $E_d = 2.2$ MeV is 29 ± 7 mb (1958KA31). See also (1954BU06, 1955RI1B) and 12C.

11. 11B(d, p)12B

<table>
<thead>
<tr>
<th>Q_m</th>
<th>E_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.138</td>
<td>18.677</td>
</tr>
</tbody>
</table>

The thin-target yield rises smoothly from $E_d = 0.3$ to 3.1 MeV with no evidence of resonances (1949HU41, 1958KA31). At $E_d = 1.5$ MeV, $\sigma \approx 0.38$ b (1958KA31: see, however, (1949HU41)). See also 12B.

12. 11B(d, d)11B

$E_b = 18.677$

See 11B.

13. 11B(d, α)9Be

<table>
<thead>
<tr>
<th>Q_m</th>
<th>E_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.022</td>
<td>18.677</td>
</tr>
</tbody>
</table>

Some absolute cross sections are given by (1958KA31). See also 9Be.

14. 11B(t, n)13C

<table>
<thead>
<tr>
<th>Q_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.419</td>
</tr>
</tbody>
</table>
Table 13.4: Levels of 13C from 11B$(^3$He, p)13C

<table>
<thead>
<tr>
<th>E_x<sup>a</sup> (MeV ± keV)</th>
<th>E_x<sup>b</sup> (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.09</td>
<td>3.08</td>
</tr>
<tr>
<td>3.68</td>
<td>3.77</td>
</tr>
<tr>
<td>3.86</td>
<td></td>
</tr>
<tr>
<td>5.51 ± 50</td>
<td>6.10 ± 50</td>
</tr>
<tr>
<td>6.87</td>
<td>6.89</td>
</tr>
<tr>
<td>7.55 ± 40</td>
<td>7.63</td>
</tr>
<tr>
<td>8.87 ± 50</td>
<td>8.96</td>
</tr>
<tr>
<td>9.52 ± 60</td>
<td>10.00</td>
</tr>
<tr>
<td>9.91 ± 50</td>
<td>10.99</td>
</tr>
<tr>
<td>10.9 ± 150<sup>c</sup></td>
<td>11.1 ± 150<sup>c</sup></td>
</tr>
<tr>
<td>12.08 ± 100<sup>c</sup></td>
<td>12.81 ± 100<sup>c</sup></td>
</tr>
</tbody>
</table>

^a (1958MO99): $E(^3$He) = 1.23 MeV.

^b (1955BI26): $E(^3$He) = 0.9 MeV; values are ±100 keV.

^c (1957GA01): $E(^3$He) = 1.25 MeV.

Not reported.

15. 11B$(^3$He, p)13C

$Q_{in} = 13.184$

Levels derived from reported proton groups are listed in Table 13.4. The levels at 5.5 and 6.1 MeV have not been observed in any other reaction. From the fact that they do not appear in 12C(n, n)12C, an upper limit of $\Gamma = 10$ keV is estimated; the mirror levels in 13N must be assumed to have $\theta_p^2 < 0.02$ (1958MO99).

Angular distributions have been measured for the p_0, p_1 and ($p_2 + p_3$) groups at $E(^3$He) = 4.5 MeV. The p_0 group appears to be peaked in both the forward and the backward direction. The
other groups do not exhibit a strong angular variation (1957HO61). At $E(^3\text{He}) = 6.05$ MeV the p\textsubscript{0} group is strongly peaked forward ((1958SW63), and D.R. Sweetman, private communication).

16. $^{11}\text{B}(\alpha, d)^{13}\text{C}$
$Q_m = -5.167$

Not reported.

17. $^{12}\text{C}(n, \gamma)^{13}\text{C}$
$Q_m = 4.946$

The thermal capture cross section is 3.3 ± 0.2 mb (1958HU18). In addition to the 4.95 MeV ground state transition ($E_\gamma = 4948 \pm 8$ keV), a γ-ray is reported with an energy of 3.68 ± 0.05 MeV and an intensity of 0.3 γ/capture. If 3.1 and 3.9 MeV γ-rays occur, their intensities are less than 0.10 and 0.06 γ/capture, respectively (1953BA18).

18. $^{12}\text{C}(n, n)^{12}\text{C}$
$E_n = 4.946$

The cross section is approximately constant to 160 keV, then decreases monotonically to $E_n = 2$ MeV. There follows a region of resonances to 8.5 MeV, followed by a smooth variation of the cross section to $E_n = 100$ MeV (1958HU18). (1958CO07) finds a minimum of 1.3 b at $E_n = 14$ MeV, followed by a rise to 1.5 b at $E_n = 15.5$ MeV: see also $^{12}\text{C}(n, p)^{12}\text{B}$. The average total cross section in the range $E_n = 14$ to 10000 eV is 4.69 ± 0.10 b (1956BR99).

The parameters of observed resonances are displayed in Table 13.5. A careful search for resonances in the region $E_n = 20$ to 1360 keV with 10 and 22 keV resolution revealed no deviation $> 5\%$ from a smooth monotonic decrease in σ_t (1950MI1A) (see, however, $^{11}\text{B}(^3\text{He}, p)^{13}\text{C}$). The course of the cross section in this region can be accounted for by the broad $s_{1/2}$ state at $^{13}\text{C}^*(3.09)$ (1952TH1D). A similar search, with 5 keV resolution, in the range $E_n = 2.73$ to 2.80 MeV revealed no deviations > 0.2 b from a smooth function (1958WI36: see $^{12}\text{C}(d, p)^{13}\text{C}$).

Below $E_n = 4.0$ MeV, three d-wave resonances occur, at 2.08, 2.95, and 3.67 MeV. The total cross section and angular distributions establish the first as D_2 (1958WI36); phase shift analyses of angular distributions yield D_2 for the other two. The s-wave phase shift is everywhere negative and decreases slowly with energy: the behavior for $E_n = 0$ to 4 MeV can be accurately reproduced by a static potential well with a diffuse boundary (1958WI36). See also (1954HU1A). The $p_{1/2}$ and $p_{3/2}$ phase shifts are negative and small, not inconsistent with hard-sphere scattering (1954ME95, 1955BU56, 1958WI36). Polarization of scattered neutrons is discussed in these three papers and in (1956MC70, 1957MC1B). Other angular distribution studies in this range are reported by (1957LA14: $E_n = 0.06$ to 1.8 MeV), (1955WI25: $E_n = 0.55$ to 1.5 MeV), (1956MU96: $E_n = 1.66$ MeV), (1955LI50: $E_n = 2.7$ MeV), (1955WA27: $E_n = 4.1$ MeV).
Table 13.5: Resonances in $^{12}\text{C}(n, n)^{12}\text{C}$

<table>
<thead>
<tr>
<th>E_{res} (MeV)</th>
<th>Γ_{lab} (keV)</th>
<th>$^{13}\text{C}^*$ (MeV)</th>
<th>l_n</th>
<th>J^π</th>
<th>θ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.076 ± 0.008 a</td>
<td>7 a</td>
<td>6.862</td>
<td>2 a</td>
<td>$\frac{3}{2}^+ a$</td>
<td>0.006 a</td>
</tr>
<tr>
<td>2.95 b</td>
<td>90 g</td>
<td>7.67</td>
<td>2 h</td>
<td>$\frac{3}{2}^+ h$</td>
<td>0.038 a</td>
</tr>
<tr>
<td>3.67 b</td>
<td>1690 g</td>
<td>8.33</td>
<td>2 h</td>
<td>$\frac{3}{2}^+ h$</td>
<td>0.51 a</td>
</tr>
<tr>
<td>4.4 c</td>
<td></td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.95 d</td>
<td></td>
<td>9.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.40 d</td>
<td></td>
<td>9.93</td>
<td>> 0 d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3 e</td>
<td></td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5 f</td>
<td></td>
<td>11.9</td>
<td>> 1/2 d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.83 f</td>
<td></td>
<td>12.17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a (1958WI36): see also (1951BO45).
b See (1950RI1B, 1951BO45, 1951RI1A, 1951RI1B, 1958WI36).
c (1950FR61).
d (1956BE98).
e See (1953NE01, 1957BO13, 1958HU18).
f (1956HA1E).
g (1958WI36): (1954ME95) report 60 and 1200 keV.

For $E_n = 4$ to 8 MeV, several additional resonances are reported by (1950FR61, 1956BE98, 1956HA1E, 1957BO13): see Table 13.5 and (1958HU18). The structure above $E_n = 7$ MeV is undoubtedly quite complex: see $^9\text{Be}(\alpha, n)^{12}\text{C}$ and $^{12}\text{C}(n, n')^{12}\text{C}^*$. Further angular distribution measurements are reported by (1955JE27: 4.4 MeV), (1958HI68: 5 MeV), (1958BR1F: 5.6 MeV), (1956BE32: 7 MeV), (1956DO1D, 1958NA09: 14 MeV), (1958CO77: 14.5 MeV) and (1957KH1B: 14.8 MeV): see also (1956HU1A). Optical model effects become apparent at the higher energies; see (1956CU1A; theor.).

In the region beyond the resolved resonances, recent measurements of the total cross section have been made by (1958BR16: $E_n = 7$ to 14 MeV), (1958CO07: $E_n = 13.1$ to 15.6 MeV), (1958VE15, 1958VE21: $E_n = 13.6$ to 14.75 MeV) and (1957KH1A: $E_n = 14.8$ MeV). For a review of the earlier work, see (1955AJ61) and (1957HU1D). Non-elastic cross section measurements are reported by (1956BE32: $E_n = 7$ MeV), (1958BA03: $E_n = 7$ to 14 MeV), (1955TA29: $E_n = 12.7$ and 14.1 MeV), (1955GR21, 1956FL1B, 1957ST1F: $E_n = 14$ MeV) and (1958MA54: $E_n = 21, 26$ and 29 MeV): see also (1947HU03, 1955MA1G, 1957ZA1A). See also (1956LA1C) and (1956KA1B; theor.).
19. (a) \(^{12}\text{C}(n, n')^{12}\text{C}^* \quad E_b = 4.946\)

(b) \(^{12}\text{C}(n, n')^{4}\text{He}^{4}\text{He} \quad Q_m = -7.281\)

In the range \(E_n = 4.4\) to 8 MeV, four resonances are observed in the yield of 4.4 MeV \(\gamma\)-rays, at \(E_n = 6.30, 6.49, 7.6, 7.87\) and 8.15 MeV, corresponding to \(^{13}\text{C}^*(10.76, 10.94, 12.0, 12.21, 12.47)\). The differential cross section at \(90^\circ\) reaches a maximum of 60 mb/sr at 7.87 MeV (1956HA1E, 1958HU18). At \(E_n = 6.58\) MeV, the cross section for production of 4.4 MeV \(\gamma\)-rays is 353 \(\pm\) 59 mb (1956DA23); at 14 MeV, it is 245 \(\pm\) 35 mb (1955BA95). (1955GR21) estimate 160 mb for the inelastic cross section at \(E_n = 14\) MeV to \(^{12}\text{C}\) levels at 9.6 to \(\approx 13\) MeV and 100 to 300 mb as the cross section to the \(^{12}\text{C}\) states at 4.4 and 7.6 MeV. See \(^{12}\text{C}(n, n)^{12}\text{C}\) above, for further references on non-elastic cross sections.

Reaction (b) has been studied for \(E_n = 12.3\) to 20.1 MeV. The cross section is 190 \(\pm\) 50 mb at 12.9 MeV. It goes through a broad maximum of \(\approx 300 \pm 60\) mb at \(\approx 16.5\) MeV and then decreases to 240 \(\pm\) 50 mb at \(E_n = 20.1\) MeV (1955FR35). See also (1955BE1D, 1955BF01, 1958VA1D), (1956SA1E; theor.) and (1955AJ61).

20. \(^{12}\text{C}(n, 2n)^{11}\text{C} \quad Q_m = -18.722 \quad E_b = 4.946\)

See (1952BR61, 1958AS63).

21. \(^{12}\text{C}(n, p)^{12}\text{B} \quad Q_m = -12.593 \quad E_b = 4.946\)

The cross section has been measured from threshold to \(E_n = 17.5\) MeV. At \(E_n = 17.5\) MeV, the cross section is 29.1 \(\pm\) 4 mb (1958KR65, 1959KR1B). See also (1956KR1A, 1956KR1B).

22. \(^{12}\text{C}(n, \alpha)^9\text{Be} \quad Q_m = -5.709 \quad E_b = 4.946\)

See (1955GR21) and \(^9\text{Be}\).

23. \(^{12}\text{C}(d, p)^{13}\text{C} \quad Q_m = 2.719 \quad Q_0 = 2.721 \pm 0.002\) (1957VA11).

Measurements on the proton groups are summarized in Table 13.6. The level assignments were obtained by analysis of angular distributions (with deuterons of energies up to 24 MeV) in terms of direct interaction theories. A careful search with \(E_d = 5\) to 8.5 MeV (\(\theta = 90^\circ\)) reveals no further
Table 13.6: Levels of 13C from 12C(d, p)13C

<table>
<thead>
<tr>
<th>13C* (MeV ± keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.086 ± 6</td>
<td>3.090 ± 10</td>
<td>3.107</td>
<td>3.09 b</td>
<td></td>
</tr>
<tr>
<td>3.686 ± 11</td>
<td>3.684 ± 10</td>
<td>3.699</td>
<td>3.68 b</td>
<td></td>
</tr>
<tr>
<td>3.855 ± 7</td>
<td>[3.681 ± 3]</td>
<td>3.84 b</td>
<td>6.87 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0), (2) d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.470 ± 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.533 ± 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.641 ± 20 f</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.4 ± 300 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.500 ± 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.897 ± 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.759 ± 20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[l_n \quad J^\pi \quad \sigma(\theta)^e \quad \rho_n^2 h \]

<table>
<thead>
<tr>
<th>(l_n)</th>
<th>(J^\pi)</th>
<th>(\sigma(\theta)^e) (mb/sr)</th>
<th>(\rho_n^2 h) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 c</td>
<td>(\frac{1}{2}) , (\frac{3}{2}) c</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>0 c</td>
<td>(\frac{1}{2}) , (\frac{3}{2}) c</td>
<td>103</td>
<td>25</td>
</tr>
<tr>
<td>1 c</td>
<td>(\frac{3}{2}) , (\frac{5}{2}) c</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>2 c</td>
<td>(\Delta \frac{3}{2}) c</td>
<td>152</td>
<td>10</td>
</tr>
<tr>
<td>1.25</td>
<td>(\Delta \frac{3}{2}) c</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≈ 0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>

\[a \pm 10 \text{ to } 50 \text{ keV.} \]
\[b \text{ Energies given for identification only.} \]
\[d (1955MC75). \]
\[e (1955MC75); \text{ differential cross sections at the first maximum or in the forward direction; } \pm 25\%. \]
\[f \Gamma = 70 \pm 15 \text{ keV.} \]
\[g \Gamma = 1.1 \pm 0.3 \text{ MeV.} \]
\[h (1956EL1A, 1956GR37, 1958MC63). \]

Proton proton groups corresponding to levels in the range 0 to 4.9 MeV with intensity greater than 0.5% of the ground state group (1954SP01). At $E_d = 14.8 \text{ MeV}$, all groups show pronounced stripping distributions except that corresponding to 13C*(9.50), for which the distribution is roughly isotropic. The proton spectrum exhibits a conspicuous broad structure attributed to a 13C level at $E_x = 8.4 \text{ MeV}, \Gamma = 1.1 \pm 0.3 \text{ MeV}$. (It seems probable that this level is to be identified with the D$_2$ level of similar width observed in 12C(n, n)12C at $E_x = 8.33 \text{ MeV}$; see Table 13.5.) Only one other level has a measurable width: $E_x = 7.64 \text{ MeV}, \Gamma_{lab} = 70 \pm 15 \text{ keV}$ (compare Table 13.5) (1955MC75). It is of interest that the 7.47 and 7.53 MeV levels do not appear in 12C(n, n)12C (1958W101).

Angular distributions at low energies have been studied by (1954TA1A: $E_d = 0.52$ to 0.84 MeV), by (1956JU1E, 1956JU1F, 1957JU1A: $E_d = 0.60$ to 1.45 MeV), by (1955AL1D, 1955AL1E: $E_d = 1.4$ to 2.0 MeV), by (1956BE1H, 1956MC88: $E_d = 1.86$ to 2.86 MeV for the p$_0$ group - on and off resonances - and $E_d = 2.74$ and 2.89 MeV for the p$_1$ group), by (1954HO48, 1956BO08: $E_d = 3.2$ to 4.4 MeV) and by (1956KO26, 1956VA17: $E_d = 0.26$ to 0.59 MeV). In the range $E_d = 1$ to 6 MeV, the (12C + d) reactions are characterized by numerous strong, overlapping reso-
nances (see 14N); the angular distributions show evidence of both stripping and compound nucleus formation, even below 1 MeV (1956JU1E, 1956KO26, 1956VA17, 1957JU1A). From $E_d = 2$ to 6 MeV, angular distributions of the p_0 group (to 13C$_{g.s.}$) generally show a stripping maximum near 25°, as expected for an $l = 1$ transfer; several of the “resonances” appear most conspicuously at the angle. The p_1-group, 13C*(3.09), show even stronger stripping effects, with a pronounced forward maximum (1956BO08, 1956MC88, 1958MC63). A detailed comparison of distributions for 12C(d, p)13C and 12C(d, n)13N at $E_d = 2.68$ and 3.26 MeV indicates equality of the ground-state reduced widths (1956BE1H, 1958MC63). At $E_d = 9$ MeV, a similar comparison yields $\gamma_2(^{13}$C)/$\gamma_2(^{13}$N) = 0.86 (1956CA1D). See also (1955WI43).

Observed gamma rays are listed in Table 13.7. No γ-rays are observed with $E_\gamma = 3.9$ to 5.8 MeV with intensity $> 10\%$ of the 3.85 MeV γ-ray (1955BE62). An upper limit of 3% is placed on the fraction of cascade transitions from the 3.67 and 3.84 MeV levels via the 3.1 MeV level. The internal conversion coefficient of the 170 keV radiation indicates E1, though M1 is not excluded (1956MA1Q, 1956MA52). The internal pair formation coefficient for the 3.09 MeV level indicates an E1 transition (1952TH24); the angular correlation of internal pairs also indicates E1 (1954GO1E, 1956GO1K, 1958AR1B). Polarization of protons accompanying the formation of 13C$_{g.s.}$ and 13C*(3.1) has been studied by (1956HI1B, 1958BO67, 1958HE47, 1958JU39, 1958JU42). The sense of polarization is correlated with the coupling of l_n and s_n: $P = \pm$ when $j = l \pm \frac{1}{2}$ (1958HE47). See (1954CH1C, 1957SA1C; theor.). See also (1952CA1B, 1954CA1B, 1955KH31, 1956CA1H, 1957SE1C), (1957DA1C; theor.) and 14N.

<table>
<thead>
<tr>
<th>E_γ (MeV ± keV)</th>
<th>E_γ (MeV ± keV)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.86 ± 20</td>
<td>(3.84 ± 30)</td>
<td>(1955BE62)</td>
</tr>
<tr>
<td>3.844 ± 15</td>
<td></td>
<td>(1956MA1Q, 1956MA52)</td>
</tr>
<tr>
<td>0.1695 ± 0.4</td>
<td></td>
<td>(1956MA1Q, 1956MA52)</td>
</tr>
<tr>
<td>(3.76 ± 20)</td>
<td>3.74 ± 30</td>
<td>(1955BE62)</td>
</tr>
<tr>
<td>(3.69 ± 20)</td>
<td>3.675 ± 15</td>
<td>(1956MA1Q, 1956MA52)</td>
</tr>
<tr>
<td>(3.097 ± 5)</td>
<td>3.082 ± 7</td>
<td>(1952TH24)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_γ</th>
<th>E_γ</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncorrected for Doppler shift.</td>
<td>Corrected for Doppler shift.</td>
<td>Doppler shift correction is not required for the 3.86 MeV radiation, but is required for the 3.67 MeV radiation (1956MA1Q, 1956MA52); see 10B(α, p)13C.</td>
</tr>
<tr>
<td>Doppler shift required (1952TH24).</td>
<td>From the proton groups $\Delta E = 170 \pm 3$ keV (1954SP01) and 170 ± 1.5 keV (1956DO41).</td>
<td></td>
</tr>
</tbody>
</table>
24. $^{12}\text{C}(t, d)^{13}\text{C}$

$$Q_m = -1.313$$

Not reported.

25. $^{12}\text{C}(\alpha, ^3\text{He})^{13}\text{C}$

$$Q_m = -15.632$$

Not reported.

26. $^{13}\text{C}(\gamma, n)^{12}\text{C}$

$$Q_m = -4.946$$

The cross section for neutron production has been determined to 38 MeV. The (γ, n) cross section exhibits two peaks at 13.3 ± 1 MeV ($\Gamma = 5 \pm 1$ MeV, $\sigma = 3.3$ mb) and at ≈ 22 MeV ($\sigma \approx 6$ mb, $\Gamma \approx 7$ MeV). The total absorption cross section, $\sigma(\gamma, xn) + \sigma(\gamma, p)$ shows maxima at $E_\gamma = 13.5$ and 25 MeV. The lower resonance is much too large to be explained on a single-particle model (1957CO57). See also (1949SE1B, 1953GO13, 1956CO72).

27. $^{13}\text{C}(\gamma, p)^{12}\text{B}$

$$Q_m = -17.539$$

The yield of β-particles from the ^{12}B decay has been determined to 45 MeV. The cross section shows a broad maximum of 8.8 mb near 25.5 MeV (1956CO72, 1957CO57).

28. $^{13}\text{C}(\gamma, \alpha)^9\text{Be}$

$$Q_m = -10.654$$

See (1953MI31).

29. $^{13}\text{C}(p, p')^{13}\text{C}^*$

Angular distributions of the 3.09 MeV γ-rays are isotropic for $E_p = 3.7$ to 4.2 MeV, consistent with the assignment $J = \frac{1}{2}$ to $^{13}\text{C}^*(3.09)$. Angular distributions of the 3.68 MeV radiation have also been studied near the $E_p = 4.5$ MeV resonance (1957BA29). See also (1952CO1C).

30. $^{13}\text{N}(\beta^+)^{13}\text{C}$

$$Q_m = 2.222$$
See ^{13}N.

31. $^{14}\text{C}(p, d)^{13}\text{C}$ $Q_m = -5.947$

Not reported.

32. $^{14}\text{C}(d, t)^{13}\text{C}$ $Q_m = -1.915$

At $E_d = 14.8$ MeV, triton groups have been observed leading to the ^{13}C states at 0, 3.09, 3.68 and 3.85 MeV (1958Mo97). See ^{14}C.

33. $^{14}\text{C}(^{3}\text{He}, \alpha)^{13}\text{C}$ $Q_m = 12.404$

Not reported.

34. $^{14}\text{N}(n, d)^{13}\text{C}$ $Q_m = -5.319$

At 14 MeV, deuteron groups to the 0 and 3.68 MeV (but not to the 3.09 and 3.84 MeV) states of ^{13}C have been observed (1957Ca07). See also (1952Li24) and ^{14}N.

35. $^{14}\text{N}(p, 2p)^{13}\text{C}$ $Q_m = -7.546$

At $E_p = 185$ MeV, the summed proton spectrum shows two peaks, corresponding to ejection of $p_{1/2}$ and $p_{3/2}$ protons, with binding energies of ≈ 7 and ≈ 15 MeV, $^{13}\text{C}^* = 0$ and ≈ 8 MeV (1958Ma1B, 1958Ty49).

36. $^{14}\text{N}(d, ^{3}\text{He})^{13}\text{C}$ $Q_m = -2.052$

Not reported.

37. $^{14}\text{N}(t, \alpha)^{13}\text{C}$ $Q_m = 12.267$
Table 13.8: 13C states from 15N(d, α)13C

<table>
<thead>
<tr>
<th>(1951MA08)</th>
<th>(1957WA01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C* (MeV ± keV)</td>
<td>13C* (MeV ± keV) a</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.083 ± 5</td>
<td>3.09</td>
</tr>
<tr>
<td>3.677 ± 5</td>
<td>3.68</td>
</tr>
<tr>
<td> </td>
<td>3.85</td>
</tr>
<tr>
<td> </td>
<td>6.87</td>
</tr>
<tr>
<td>7.47, 7.53, 7.64 b</td>
<td> </td>
</tr>
<tr>
<td>8.80 ± 40</td>
<td> </td>
</tr>
<tr>
<td>9.5</td>
<td> </td>
</tr>
<tr>
<td>9.9</td>
<td> </td>
</tr>
</tbody>
</table>

a Level energies for identification purposes only except for 13C*(8.80).

b Not resolved.

c Measured at $\theta = 18^\circ$.

This reaction has been observed at $E_t = 1.9$ MeV (1958JA06).

38. 15N(n, t)13C

$Q_m = -9.903$

Not reported.

39. 15N(p, 3He)13C

$Q_m = -10.668$

Not reported.

40. 15N(d, α)13C

$Q_m = 7.683$

Observed alpha particle groups are displayed in Table 13.8 (1951MA08, 1957WA01). The broad level at 8.4 MeV observed in 12C(d, p)13C does not appear in the present reaction; it is suggested that the direct (d, α) transition is forbidden by the nature of the configurations involved.
(1957WA01). The angular distribution of the ground-state alpha particles at $E_d = 21$ MeV shows a maximum at 70° (c.m.) (1958FI27).

41. $^\text{16}O(n, \alpha)^{13}\text{C}$

$Q_m = -2.203$

See (1951HU1A, 1952LI24) and ^{17}O.

13N

(Fig. 24)

GENERAL:

1. $^\text{13}\text{N}(\beta^+)^{13}\text{C}$

$Q_m = 2.222$

Recent determinations of the half-life give 10.05 ± 0.03 min (1953CH34), 10.08 ± 0.04 min (1955WI43), 10.07 ± 0.06 min (1957NO17), 9.96 ± 0.03 min (1958AR15), 9.96 ± 0.03 min (1958DA09); see also (1957DE22). $E_\beta(\text{max}) = 1.202 \pm 0.005$ MeV (1950HO01), 1.185 ± 0.025 MeV (1954GR66), 1.190 ± 0.003 MeV (1958DA09). The positron spectrum shows no deviation from the allowed shape; it is concluded that the Fierz coefficient in the Fermi interaction is $< 11\%$. Log $ft = 3.66$ (1957DA08, 1958DA09). The positron polarization has been studied by (1957BO65, 1957HA27). The results indicate that the positrons are completely polarized and hence that Fermi transitions as well as G-T transitions exhibit the maximum effect of parity nonconservation.

2. $^\text{9}\text{Be}(^\text{6}\text{Li}, 2n)^{13}\text{N}$

$Q_m = 3.952$

See (1957NO17).

3. $^\text{10}\text{B}(^\text{3}\text{He}, n)^{12}\text{N}$

$Q_m = 1.46$

$E_b = 21.642$

At $E(^\text{3}\text{He}) = 2.54$ MeV, the cross section for formation of the ground state is $5.2^{+2.1}_{-1.6}$ mb. At $E(^\text{3}\text{He}) = 3.60$ MeV, the differential cross section for formation of the ground state at $\theta = 0^\circ$ is 0.73 ± 0.30 mb/sr (1957AJ71).
Table 13.9: Energy levels of 13N

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>J^π</th>
<th>$\tau_{1/2}$ or Γ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$(\frac{1}{2})^-$</td>
<td>$\tau_{1/2} = 10.02 \pm 0.02$ min</td>
<td>β^+</td>
<td>1, 2, 7, 9, 15, 16, 18, 19, 20, 21, 22</td>
</tr>
<tr>
<td>2.365 ± 3</td>
<td>$\frac{1}{2}^+$</td>
<td>$\Gamma = 32 \pm 2$</td>
<td>p, γ</td>
<td>7, 9, 12, 15, 22</td>
</tr>
<tr>
<td>3.507 ± 7</td>
<td>$\frac{3}{2}^-$</td>
<td>63 ± 6</td>
<td>p, γ</td>
<td>7, 9, 12, 15, 22</td>
</tr>
<tr>
<td>3.555 ± 10</td>
<td>$\frac{5}{2}^+$</td>
<td>61</td>
<td>p</td>
<td>12, 15, 22</td>
</tr>
<tr>
<td>6.379 ± 10</td>
<td>$\frac{5}{2}^+$</td>
<td>11</td>
<td>p</td>
<td>12</td>
</tr>
<tr>
<td>6.908 ± 10</td>
<td>$\frac{3}{2}^+$</td>
<td>115</td>
<td>p</td>
<td>12</td>
</tr>
<tr>
<td>7.415 ± 10</td>
<td>$\frac{5}{2}^+$</td>
<td>≈ 85</td>
<td>p</td>
<td>12</td>
</tr>
<tr>
<td>(8.08)</td>
<td>$\frac{3}{2}^+$</td>
<td>(350)</td>
<td>p</td>
<td>12</td>
</tr>
<tr>
<td>22.7 ± 300</td>
<td>≈ 1400</td>
<td>p</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>23.2</td>
<td>400</td>
<td>$p, ^3\text{He}$</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24.5</td>
<td>550</td>
<td>$p, ^3\text{He}$</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24.8</td>
<td>90</td>
<td>$p, ^3\text{He}$</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>25.2</td>
<td>120</td>
<td>$p, ^3\text{He}$</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

4. 10B(3He, p)12C \[Q_m = 19.702 \] \[E_b = 21.642 \]

The yields of the protons to the ground and 4.4 MeV excited states of 12C have been measured for $E(^3\text{He}) = 1.3$ to 5 MeV. Resonances are observed at 2.0, 3.7, 4.1 and 4.6 MeV, with widths of 0.5, 0.7, 0.12 and 0.15 MeV, respectively, corresponding to 13N* (23.2, 24.5, 24.8, 25.2). Angular distributions taken at six energies in the above range tend to be more asymmetric at the higher energies (1956SC01). See also (1956JO1B).

5. 10B(3He, d)11C \[Q_m = 3.206 \] \[E_b = 21.642 \]

See 11C.

6. 10B(3He, α)9B \[Q_m = 12.139 \] \[E_b = 21.642 \]

See 9B.
Table 13.10: Resonances in $^{12}\text{C}(p, \gamma)^{13}\text{N}$

<table>
<thead>
<tr>
<th>E_p (keV)</th>
<th>Γ_{lab} (keV)</th>
<th>σ_{res} (mb)</th>
<th>$\omega\Gamma_{\gamma}$ (eV)</th>
<th>$^{13}\text{N}^*$ (MeV)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>456.8 ± 0.5</td>
<td>39.5 ± 1.0</td>
<td></td>
<td></td>
<td>2.363</td>
<td>(1953HU18)</td>
</tr>
<tr>
<td>456 ± 2</td>
<td>35</td>
<td></td>
<td></td>
<td>(1949FO18)</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>35</td>
<td>127</td>
<td>0.67</td>
<td>(1951SE1B, 1951SE67)</td>
<td></td>
</tr>
<tr>
<td>1697 ± 12</td>
<td>74 ± 9</td>
<td></td>
<td></td>
<td>3.507</td>
<td>(1949VA1A)</td>
</tr>
<tr>
<td>1698 ± 5</td>
<td>70 ± 10</td>
<td>35</td>
<td>1.39</td>
<td>(1951SE1B, 1951SE67)</td>
<td></td>
</tr>
</tbody>
</table>

7. $^{10}\text{B}(\alpha, n)^{13}\text{N}$

$Q_m = 1.065$

Measurements at $E_\alpha = 8$ MeV with a proton recoil telescope and a neutron threshold detector are reported to indicate ^{13}N states at 2.4 ± 0.3, 3.6 ± 0.3, (4.3 ± 0.3) and 5.0 ± 0.3 MeV (1956QU1A). See also (1957BA1K) and ^{14}N.

8. $^{11}\text{B}(^3\text{He}, n)^{13}\text{N}$

$Q_m = 10.179$

Not reported.

9. (a) $^{12}\text{C}(p, \gamma)^{13}\text{N}$

(b) $^{12}\text{C}(p, \gamma'p)^{12}\text{C}$

Two resonances for capture radiation are reported, at $E_p = 0.46$ and 1.70 MeV (Table 13.10). The resonance at $E_p = 1.75$ MeV observed in $^{12}\text{C}(p, p)^{12}\text{C}$ does not appear in the γ-excitation curve (1951SE67). The displacement of the lower level ($^{13}\text{N}^*(2.37)$, $J = \frac{3}{2}^+$) from its mirror in $^{13}\text{C}^*(3.09)$ is ascribed to the large reduced width (1951EH1A, 1952TH1D). The angular distribution of the ground-state radiation from the upper resonance ($^{13}\text{N}^*(3.51)$, $J = \frac{3}{2}^-$) has the form $W(\theta) = 1 - 0.52 \cos^2\theta$ (1951DA1A, 1951DA1B).

The capture cross section at low energy is of interest in connection with stellar energy generation. Measurements have been reported in the range $E_p = 80$ to 360 keV by (1950BA89, 1950HA78, 1957DE22, 1957LA15). At 80 keV, $\sigma = (1.4 \pm 0.4) \times 10^{-5}$ mb; from 80 to 126 keV, the course of the cross section is reasonably well accounted for by extrapolation of the $E_p = 0.46$ MeV resonance (1957LA15; see also (1957DE22)).

From $E_p = 5$ to 11 MeV, the cross section for formation of ^{13}N changes only from 2.5 to 1.8 mb; this small change strongly indicates the predominance of direct capture in this region.
According to (1956RE39), however, the 90° differential cross section for formation of 13N is $< 1 \mu b/sr$ at $E_p = 4.8$ MeV. See also (1956CH1D).

In the range $E_p = 1.2$ to 2.5 MeV, reaction (b) is observed, involving a γ-transition to the 2.37 MeV state. Excitation functions at $\theta = 0°$ and 90° indicate interference between p-wave resonant capture at $E_p = 1.70$ MeV, with $\Gamma_\gamma = 0.04$ eV, and direct p-wave capture (1954WO09). The angular distributions at $E_p = 1.37$ and 1.58 MeV have the form $W(\theta) = (0.02 \pm 0.02) + \sin^2 \theta$ (1955HE1F).

10. 12C(p, n)12N

$Q_m = -18.24 \quad E_b = 1.941$

See (1957ST1D, 1958TA03) and 12N.

11. 12C(p, pn)11C

$Q_m = -18.722 \quad E_b = 1.941$

See (1947CH1A, 1948MC1A, 1958WH34).

12. (a) 12C(p, p)12C

(b) 12C(p, p)12C*

Elastic scattering studies indicate a number of pronounced resonances in the range $E_p = 0$ to 6 MeV; see Table 13.11. The first five excited states correspond in character and approximately in reduced width to those of 13C: see 12C(d, p)13C and 12C(n, n)12C. The relatively large reduced widths of the first and third ($s_{1/2}$ and $d_{5/2}$) excited states indicate a single-particle character (1953JA1B). The small and roughly equal widths of 13N*(6.4, 6.9) suggest that they may comprise a doublet, built upon 12C*(4.4) + p (1956RE39: see also (1953BL1A, 1953MA1D, 1956SC29)). Angular distribution measurements above $E_p = 10$ MeV generally show direct interaction effects: see 12C. Some form of resonance structure may exist near 23 MeV (1955KI43). See also (1956KL55).

The yields of 4.4 MeV gamma rays and inelastic protons from 12C*(4.4) show resonances at $E_p = 5.39$ and 5.93 MeV (1953MA1D, 1956BR27, 1957LI1B). Angular distributions of inelastic protons at $E_p = 6.1$ to 6.9 MeV do not fit direct interaction theory and suggest the effects of still higher compound nucleus levels (1956BR27).

Polarization studies for $E_p < 6$ MeV are reported by (1956GA66, 1956SO1C, 1958WA1D): see also 12C. See also (1955DE50, 1956ER1A, 1956NI1B, 1957GL58; theor.) and (1957GO1D).

13. 12C(p, d)11C

$Q_m = -16.495 \quad E_b = 1.941$
Table 13.11: 13N levels from 12C(p, p)12C and 12C(p, p')12C*

<table>
<thead>
<tr>
<th>E_{res} (MeV ± keV)</th>
<th>13N* (MeV)</th>
<th>$\Gamma_{\text{c.m.}}$ (keV)</th>
<th>l_p</th>
<th>J^π</th>
<th>$\theta^2_{p'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.461 ± 3</td>
<td>2.367</td>
<td>31</td>
<td>0</td>
<td>$\frac{1}{2}^+$</td>
<td>0.54</td>
</tr>
<tr>
<td>1.698</td>
<td>3.508</td>
<td>55</td>
<td>1</td>
<td>$\frac{3}{2}^-$</td>
<td>0.031</td>
</tr>
<tr>
<td>1.748</td>
<td>3.555</td>
<td>61</td>
<td>2</td>
<td>$\frac{5}{2}^+$</td>
<td>0.21</td>
</tr>
<tr>
<td>4.808</td>
<td>6.379</td>
<td>11</td>
<td>2</td>
<td>$\frac{3}{2}^+$</td>
<td>0.0031</td>
</tr>
<tr>
<td>(5.05)</td>
<td>(75)</td>
<td>(0)</td>
<td>(1)</td>
<td>(1)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>5.381 ± 7</td>
<td>6.908</td>
<td>115</td>
<td>2</td>
<td>$\frac{3}{2}^+$</td>
<td>0.012</td>
</tr>
<tr>
<td>5.930 ± 7</td>
<td>7.415</td>
<td>≈ 85</td>
<td>2</td>
<td>$\frac{3}{2}^+$</td>
<td>(0.11)</td>
</tr>
<tr>
<td>6.65</td>
<td>(8.08)</td>
<td>(350)</td>
<td>(2)</td>
<td>($\frac{3}{2}^+$)</td>
<td></td>
</tr>
</tbody>
</table>

- a (1953JA1B). (1954MI05) finds $E_{\text{res}} = 0.462$ MeV, $\Gamma = 32$ keV.
- b (1953JA1B).
- c (1956RE39).
- d (1956RE39): parameters estimated from elastic scattering; $\theta^2_{p'} = 0.2$.
- E_{res} from 12C(p, p')12C* (1957LI1B). See also (1956SC29).
- e (1956SC29): $E_p = 4.8$ MeV, $J = \frac{5}{2}^+$ level not observed.
- f 12C(p, p')12C* (1957LI1B). (1956BR27) finds $E_{\text{res}} = 5.891$ MeV, $\Gamma_{\text{lab}} = 59$ keV. See also (1956SC29).
- g (1956SC29). See, however, (1956BR27).

See 11C.

14. 12C(p, α)9B

$Q_m = -7.563$ \hspace{1cm} $E_b = 1.941$

See 9B.

15. 12C(d, n)13N

$Q_m = -0.286$

Neutron groups have been observed corresponding to excited states of 13N at 2.29 ± 0.12 (1949GR1A), 2.38±0.05 MeV (1953MI10) and 3.48±0.12 (1949GR1A), 3.74±0.05 (1957GR1A), 3.53 ± 0.05 MeV (1953MI10). The angular distributions of the ground state group and the groups corresponding to the 2.37 and (3.51 ± 3.56) MeV states at $E_d = 9.0$ MeV are consistent with $l_p = 1, 0$ and 2. The dimensionless reduced widths of the ground and (3.56) MeV states are
respectively 0.056 and 0.19 (1957CA02: see also 1953MI10). (1958MC63) finds that the reduced widths of the ground states of 13C and 13N are the same, 0.09 ± 0.035 (see also 1956BE1H, 1956CA1D, 1958KA16) and 12C(d, p)13C. In the range $E_d = 2.8$ to 3.7 MeV, a single neutron threshold is observed, at $E_d = 3.09 ± 0.02$ MeV, corresponding to 13N*(2.36 ± 0.02); the slow rise above threshold is attributed to p-wave neutron emission (1955MA76).

Polarization of neutrons has been studied for $E_d = 2.5$ to 3.6 MeV by (1957HA1J). See also (1956BO1F, 1956BO43, 1956DE1D).

16. 12C(3He, d)13N $Q_m = -3.553$

See (1952FR1A, 1958WE1E).

17. 12C(α, t)13N $Q_m = -17.872$

Not reported.

18. 13C(p, n)13N $Q_m = -3.005$

$E_{\text{thresh.}} = 3.2372 ± 0.0016$ (1958BO76).

See also (1950RI59, 1955MA84, 1958BI1B) and 14N.

19. 13C(3He, t)13N $Q_m = -2.240$

See (1952FR1A).

20. 14N(γ, n)13N $Q_m = -10.551$

See 14N.

21. 14N(p, d)13N $Q_m = -8.324$

See 14N.
22. $^{14}\text{N}(d, t)^{13}\text{N}$

At $E_d = 14.8$ MeV, triton groups are observed corresponding to the states at 0, 2.37 and (3.51 ± 3.56) MeV. The cross section for the transition to the 2.37 MeV state is two orders of magnitude smaller than that for the ground state transition. Transitions to $^{13}\text{N}^*(2.37, 3.56)$ are shell-model forbidden (1957WA01).

23. $^{14}\text{N}(^3\text{He}, \alpha)^{13}\text{N}$

$Q_m = 10.027$

Not reported.

24. $^{15}\text{N}(p, t)^{13}\text{N}$

$Q_m = -12.908$

Not reported.

25. $^{16}\text{O}(p, \alpha)^{13}\text{N}$

$Q_m = -5.208$

See (1958WH34).
References

(Closed 1 December 1958)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author’s name and then by two additional characters. Most of the references appear in the National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form 1A, 1B, etc. In response to many requests for more informative citations, we have, when possible, included up to ten authors per paper and added the authors’ initials.

1947CH1A W.W. Chupp and E.M. McMillan, Phys. Rev. 72 (1947) 873
1947HU03 D.J. Hughes, C. Eggler and C.M. Huddleston, Phys. Rev. 71 (1947) 269
1948MC1A E.M. McMillan and R.D. Miller, Phys. Rev. 73 (1948) 80
1948SN1A Snell, Science 108 (1948) 167
1949FO18 W.A. Fowler and C.C. Lauritsen, Phys. Rev. 76 (1949) 314
1949GR1A J.C. Grosskreutz, Phys. Rev. 76 (1949) 482
1949HU41 E.L. Hudspeth and C.P. Swann, Phys. Rev. 76 (1949) 1150
1949VA1A Van Patter, Phys. Rev. 76 (1949) 1264
1950HA07 R.N. Hall and W.A. Fowler, Phys. Rev. 77 (1950) 197
1950HO01 W.F. Hornyak and T. Lauritsen, Phys. Rev. 77 (1950) 160
1950MI1A D.W. Miller, Phys. Rev. 78 (1950) 806
1951DA1A R.B. Day and J.E. Perry Jr., Phys. Rev. 81 (1951) 662; J14
1951EH1A J.B. Ehrman, Phys. Rev. 81 (1951) 412
1951MA08 R. Malm and W.W. Buechner, Phys. Rev. 81 (1951) 519
1951RI1A Ricamo and Zunti, Helv. Phys. Acta 24 (1951) 419
1951RI1B Ricamo, Nuovo Cim. 8 (1951) 893
<table>
<thead>
<tr>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953SH64</td>
<td>E.S. Shire, J.R. Wormald, G. Lindsay-Jones, A. Lundan and A.G. Stanley, Phil. Mag. 44 (1953) 1197</td>
</tr>
<tr>
<td>1953TA06</td>
<td>F.L. Talbott and N.P. Heydenburg, Phys. Rev. 90 (1953) 186</td>
</tr>
<tr>
<td>1954CH1C</td>
<td>W.B. Cheston, Phys. Rev. 96 (1954) 1590</td>
</tr>
<tr>
<td>1954FA1A</td>
<td>Fader and Sperduto, Phys. Rev. 94 (1954) 748; C8</td>
</tr>
<tr>
<td>1954GO1E</td>
<td>Gorodetzky, Armbruster, Chevallier and Gallmann, Compt. Rend. 239 (1954) 1623</td>
</tr>
<tr>
<td>1954MI05</td>
<td>E.A. Milne, Phys. Rev. 93 (1954) 762</td>
</tr>
<tr>
<td>1954ST20</td>
<td>A.G. Stanley, Phil. Mag. 45 (1954) 430</td>
</tr>
<tr>
<td>1955AJ61</td>
<td>F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 27 (1955) 77</td>
</tr>
<tr>
<td>1955AL1D</td>
<td>Alba, Fernandez, Mazari, Serment and Vazquez, Rev. Mex. Fis. 4 (1955) 207</td>
</tr>
<tr>
<td>1955AU1A</td>
<td>T. Auerbach and J.B. French, Phys. Rev. 98 (1955) 1276</td>
</tr>
<tr>
<td>1955BA95</td>
<td>M.E. Battat and E.R. Graves, Phys. Rev. 97 (1955) 1266</td>
</tr>
</tbody>
</table>
1955BR1A R.J. Breen and M.R. Hertz, Phys. Rev. 98 (1955) 599
1955CO57 B.L. Cohen, Phys. Rev. 100 (1955) 206
1955MA1G MacGregor, Ball and Booth, Phys. Rev. 100 (1955) 1793A
1955MA84 J.B. Marion, T.W. Bonner and C.F. Cook, Phys. Rev. 100 (1955) 91
1955RI1B Risser, Price and Class, Phys. Rev. 98 (1955) 1183, RA3
1955WA1A Wapstra, Physica 21 (1955) 367
1955WI43 D.H. Wilkinson, Phys. Rev. 100 (1955) 32
1956HI1B P. Hillman, Phys. Rev. 104 (1956) 176
1956HU1A Hughes and Carter, BNL-400 (1956)
1956JU1E Juric, Physica 22 (1956) 1154A
1956KA1B Kalos and Goldstein, NDA 12-16 (1956)
1956KR1A Kreger, Bolotin and Edelsack, USNRDL TR 81 (1956)
1956KU1A Kurath, Phys. Rev. 101 (1956) 216
1956LA1C Langsdorf, Lane and Monahan, ANL 5567 (1956)
1956NO1A Norbeck, Bull. Amer. Phys. Soc. 1 (1956) 329
1956PA23 E.B. Paul, Physica 22 (1956) 1140A
1956PI1A G.F. Pieper and G.S. Stanford, Phys. Rev. 101 (1956) 672
1956SA1E Sachs, Phys. Rev. 103 (1956) 671
1957BA1H Barker, Phil. Mag. 2 (1957) 780
1957BA1K Barker and Mann, Phil. Mag. 2 (1957) 5
1957BA29 J.K. Bair, H.O. Cohn and H.B. Willard, ORNL-2430 (1957) 26
1957BO65 F. Boehm, T.B. Novey, C.A. Barnes and B. Stech, Phys. Rev. 108 (1957) 1497
1957CA07 R.R. Carlson, Phys. Rev. 107 (1957) 1094
1957CO57 B.C. Cook, Phys. Rev. 106 (1957) 300
1957GO1D Gooding, Bull. Amer. Phys. Soc. 2 (1957) 350
1957GR1A Grismore and Parkinson, Rev. Sci. Instrum. 28 (1957) 245
1957HA1J Haeberli and Rolland, Bull. Amer. Phys. Soc. 2 (1957) 234
1957HU1D Hughes and Schwartz, BNL-325, Suppl. 1 (1957)
1957JA37 N. Jarmie, J.D. Seagrave et al., LA-2014 (1957)
1957LA14 A. Langsdorf Jr., R.O. Lane and J.E. Monahan, Phys. Rev. 107 (1957) 1077
1957LI1B Lidofsky, Weil, Bent and Jones, Bull. Amer. Phys. Soc. 2 (1957) 29
1957MC1B McCormac, Steuer, Bond and Hereford, Phys. Rev. 108 (1957) 116
1957NO14 E. Norbeck Jr., Phys. Rev. 105 (1957) 204
1957NO17 E. Norbeck Jr. and C.S. Littlejohn, Phys. Rev. 108 (1957) 754
1957RO1F Roy, Lagasse, Goes, Achari and de Henau, Compt. Rend. 244 (1957) 2907
1957SA1C J. Sawicki, Phys. Rev. 106 (1957) 172
1957ST1D Stafford, Tornabene and Whitehead, Phys. Rev. 106 (1957) 831
1957ST1F Strizhak, Sov. J. At. Energy 2 (1957) 72
1957ZA1A Zabel, WASH 192 (1957)
1958AR15 S.E. Arnell, J. Dubois and O. Almen, Nucl. Phys. 6 (1958) 196
1958AR1B Armbuster, Ann. Phys. (France) 3 (1958) 88
1958BA03 W.P. Ball, M. MacGregor and R. Booth, Phys. Rev. 110 (1958) 1392
1958BO76 R.O. Bondelid and C.A. Kennedy, NRL Rept. 5083 (1958)
1958BR16 A. Bratenahl, J.M. Peterson and J.P. Steering, Phys. Rev. 110 (1958) 927
1958CO07 J.P. Conner, Phys. Rev. 109 (1958) 1268
1958DA09 H. Daniel and U. Schmidt-Rohr, Nucl. Phys. 7 (1958) 516
1958FR1C French, Univ. of Pittsburgh Tech. Rept. 9 (1958)
1958HA1D Haig, Nucl. Phys. 7 (1958) 429
1958JA06 N. Jarmie and R.C. Allen, Phys. Rev. 111 (1958) 1121
1958MA1B Th.A.J. Maris, P. Hillman and H. Tyren, Nucl. Phys. 7 (1958) 1
1958SW63 D.R. Sweetman, Bull. Amer. Phys. Soc. 3 (1958) 186, K1
1958VA1D Vasilev, Komarov and Popova, JETP (Sov. Phys.) 6 (1958) 1016
1958VE15 J.F. Vervier and A. Martegani, Nucl. Phys. 6 (1958) 260
1959NE1A Neilson, Dawson and Johnson, Rev. Sci. Instrum. 30 (1959) 963