Energy Levels of Light Nuclei

\[A = 4 \]

D.R. Tilley1,2 and H.R. Weller1,3

1Traingle Universities Nuclear Laboratory, Durham, NC 27706, USA
2Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
3Department of Physics, Duke University, Durham, NC 27706, USA

G.M. Hale

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

\textbf{Abstract:} A compilation of information on \(A = 4 \) was published in \textit{Nuclear Physics} A541 (1992), p. 1. Information relating to unbound states in \(^4\text{H} \), \(^4\text{He} \), and \(^4\text{Li} \) is presented and discussed. No firm evidence for bound states of \(^4\text{n} \), \(^4\text{H} \), or \(^4\text{Li} \) has been obtained. This version of \(A = 4 \) differs from the published version in that we have corrected some errors discovered after the article went to press. The introduction and introductory tables have been omitted from this version. Reference key numbers have been changed to the NNDC/TUNL format.

(References closed June 1, 1991)
Table of Contents for $A = 4$

Below is a list of links for items found within the PDF document or on this website.

A. Nuclides: 4n, 4H, 4He, 4Li

B. Tables of Recommended Level Energies:

 Table 4.1: Energy levels of 4H

 Table 4.3: Energy levels of 4He

 Table 4.24: Energy levels of 4Li

C. References

D. Figures: 4H, 4He, 4Li, Isobar diagram

E. Erratum to the Publication: PS or PDF
The stability of ^8He sets an upper limit to the total binding energy of 4n, because the decay $^8\text{He} \rightarrow ^4\text{He} + ^4n$ does not occur. The most precisely determined mass excess of ^8He yields $B(^4n) \leq 3.1$ MeV. Noting that in all known nuclei the proton binding energy increases when two neutrons are added, show that $B(^4n) < -Q$, where Q is the decay energy for $^5\text{H} \rightarrow ^3\text{H} + 2n$. Since $Q > 0$, 4n must be unbound.

If bound 4n exists, a $T = 2$ state should be found in ^4He at $26 < E_x < 29$ MeV. Also a $T = 2$ resonance should occur in $n + ^3\text{H}$ at $6 < E_{\text{cm}} < 9$ MeV. Resonances have been found in $n + ^3\text{H}$ (see ^4H), but there is no evidence to support a suggestion that $B(^4n) < -Q$. No low-lying $T = 2$ states of ^4He have been found (see ^4He); systematics give $E_x(T = 2) \approx 34$ MeV, ≥ 32 MeV (Kurath, quoted in ^4He). All experimental searches for 4n have failed.

Variational calculations of the energy of the 4n system, in which the trial wave function assumes a relative s-wave motion of two di-neutron clusters fail to produce either a bound state or a low-lying resonance, although a similar theoretical technique successfully reproduces the binding energies of ^3H, ^3He and ^4He and the $^2\text{H}(d, d)^3\text{H}$ differential cross section. A K-harmonic approach also finds that the 4n state is absent. A hyperspherical-basis study of $A = 3 - 8$ multineutron systems indicates that these systems have no bound states. However, a similar theoretical study reports that 4n has a resonance state because of the existence of a kinematical barrier.

Arguments based on pairing-energy systematics would require the stability of 4n, if 3n is stable, but see. Suspicion of the stability of 3n has not been confirmed.

In the following reactions, Q-values have been computed assuming $B(^4n) = 0$.

1. $^4\text{He}(\gamma, 2\pi^+)^4n$
 $Q_m \approx -310.0$
 not observed

 The previous compilation notes one experimental search for neutrons from the above reaction with negative results: $\sigma \leq 1.7$ µb.

2. $^4\text{He}(\pi^-, \pi^+)^4n$
 $Q_m \approx -30.9$
 not observed

 Measurements of the $^4\text{He}(\pi^-, \pi^+)^4n$ reaction carried out in search of evidence for 4n and extending from $E_{\pi^-} = 100 - 215$ MeV are summarized in the previous compilation. Neither bound nor unbound 4n was detected in this early work. More recently, the 0^0 momentum spectrum from the double-charge-exchange reaction at $E_{\pi^-} = 165$ MeV was measured in a search for 4n, and an upper limit of 22 nb/sr was set for the cross section. Note, however, that the theoretical study of
reports that the final-state interaction in the four-neutron system is so strong that the tetraneutron could not have been observed in the kinematic region explored in (1984UN02). Pion spectra were also measured (1986KI20) for incident pion energies of 180 and 240 MeV and found to be qualitatively consistent with two sequential single-charge-exchange processes. No evidence for \(^4n \) was obtained. Total cross sections for pion double-charge exchange at 180 and 240 MeV were measured and compared with a phenomenological model in which successive charge-exchange processes complete with quasi-free scattering were included. A very recent search for the tetraneutron was carried out at \(E_{\pi^-} = 80 \) MeV and \(\theta_{\pi^+}^{\text{(lab)}} = 50^\circ - 100^\circ \) (1989GO17) and set an upper limit \(\sigma(\theta) \leq 13 \) nb/sr. Several theoretical studies of pion double-charge exchange on \(^4\text{He}\) have been reported. In (1977GI04) cross sections were calculated for \(E = 0 - 500 \) MeV in a model in which two single pn charge-exchange scatterings occur. In the work of (1980JI03, 1981JI02) the reaction was studied in the framework of a four-body hyperspherical basis method.

3. \(^7\text{Li}(\pi^-, ^3\text{He})^4n\) \(Q_m \approx -106.8 \) not observed

The previous compilation (1973FI04) includes only two experiments involving this reaction and no indication of the formation of \(^4n\). Since that time the only investigation reported (1977BA47) utilized a nuclear emulsion loaded with \(^7\text{Li}\). An upper limit of \(1.2 \times 10^{-3} \) was determined for the relative probability of forming \(^3n\) and \(^4n\) compared to all other \(\pi^- + ^7\text{Li} \) reactions.

4. \(^7\text{Li}(^7\text{Li}, ^{10}\text{C})^4n\) \(Q_m \approx -18.2 \) not observed

A measurement (1988AL11) carried out at \(\theta_{\text{lab}} = 10^\circ \) for 82 MeV \(^7\text{Li}\) ions found no \(^4n\) resonances. An upper limit of 4 nb/sr for the cross section was determined.

5. \(^7\text{Li}(^9\text{Be}, ^{12}\text{N})^4n\) \(Q_m \approx -23.4 \) not observed

A measurement (1988BE02) of the spectrum of outgoing nuclei for incident \(^7\text{Li}\) energies of 72–90 MeV found no evidence of a bound state of the four-neutron system, but an upper limit was reported.

6. \(^7\text{Li}(^{11}\text{B}, ^{14}\text{O})^4n\) \(Q_m \approx -16.7 \) not observed

Incident \(^7\text{Li}\) energies of 48 – 71 MeV were used (1988BE02) to study this reaction. No evidence of \(^4n\) was observed. See also (1986BE44, 1987BO40).

7. \(^9\text{Be}(^9\text{Be}, ^{14}\text{O})^4n\) \(Q_m \approx -17.6 \) not observed
This reaction was studied (1988BE02) for incident 9Be energies of 72 – 90 MeV. No evidence for bound or quasi-stationary states of 4n was obtained.

4H

GENERAL

The stability of the first excited state of 8Li against decay into 4He + 4H (1988AJ01) sets an upper limit for $B(^4$H)≤ 3.53 MeV (1965BA1A). This also sets a lower limit to the β^- decay energy 4H\rightarrowHe of 17.06 MeV. The upper limit of the β^- decay energy would be 20.60 MeV, if 4H is stable against decay into 3H+n. (1965BA1A) give estimates for the expected half-life of the beta decay: if $J^\pi(^4$H)$= 0^-, 1^-, 2^-$, $\tau_{1/2} \geq 10$ min; if $J^\pi(^4$H)$= 0^+, 1^+, \tau_{1/2} \geq 0.03$ sec. Experimentally there is no evidence for any β^- decay of 4H (see reaction 1), nor has particle-stable 4H been observed (see reactions 2–19). Evidence for a particle-unstable state of 4H has been obtained in 7Li(π^-, t)3H+n (see reaction 16) at 8 \pm 3 MeV above the unbound 3H+n mass with a width $\Gamma < 4$ MeV. See also reaction 17. For other theoretical work see (1976JA24, 1983VA31, 1985BA39, 1989GO24).

The level structure of 4H presented here is obtained from a charge-symmetric reflection of the R-matrix parameters for 4Li (see 4Li, GENERAL) after shifting all the p–3He E_λ’s by the internal Coulomb energy difference $\Delta E_C = -0.86$ MeV. The parameters then account well for measurements of the n–3H total cross section (1980PH01) and coherent scattering length (1985RA32), as is reported in (1990HA23). The BW resonance parameters from that analysis for channel radius $a_{nt} = 4.9$ fm are given in Table 4.1 and are shown in Fig. 1. The levels are located substantially lower in energy than they were in the previous compilation (1973FI04), as will be true for all the $T = 1$ levels of the $A = 4$ systems. The 4Li analysis unambiguously determined the lower 1^- level to be predominantly 3P$_1$ and the upper one to be mainly 1P$_1$; that order is preserved, of course, in the 4H levels. In addition to the levels given in Table 4.1, the analysis predicts very broad positive-parity states at excitation energies in the range 14–22 MeV, having $\Gamma \gg E_x$, as well as antibound P-wave states approximately 13 MeV below the 2^- ground state. Parameters were not given for these states in the table because there is no clear evidence for them in the data.

The structure given by the S-matrix poles is quite different, however. The P-wave resonances occur in a different order, and the positive-parity levels (especially for 0^+ and 1^+) are much narrower and lower in energy. It is possible that these differences in the S-matrix and K_R-matrix pole structures, which are not yet fully understood, could explain the puzzling differences that occur when these resonances are observed in the spectra of multi-body final states (see 4Li, GENERAL).

Fig. 1: The energy levels of 4H are plotted on a vertical scale giving the c.m. energy, in MeV, relative to the mass of 3H+n. Horizontal lines representing the levels are labeled by the level energies and values of total angular momentum and parity (J^π). Other horizontal lines mark the threshold energies of the indicated multi-particle sub-systems. A typical thin-target excitation function for n–3H scattering is shown at the right side of the figure, labeled along the vertical axis by laboratory energy (but plotted at the corresponding c.m. values). Numbers at the tops of the vertical arrows indicate laboratory energies (usually the highest) at which the reaction leading to formation of an $A = 4$ nucleus has been studied.

Table 4.1 contains further information on the levels illustrated, including total widths.
Table 4.1: Energy levels of 4H defined for channel radius $a_n = 4.9$ fm. All energies and widths are in the cm system.

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>J^π</th>
<th>T</th>
<th>Γ (MeV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s. a</td>
<td>2$^-$</td>
<td>1</td>
<td>5.42</td>
<td>n, 3H</td>
<td>1, 11</td>
</tr>
<tr>
<td>0.31</td>
<td>1$^-$</td>
<td>1</td>
<td>6.73 b</td>
<td>n, 3H</td>
<td>11, 12</td>
</tr>
<tr>
<td>2.08</td>
<td>0$^-$</td>
<td>1</td>
<td>8.92</td>
<td>n, 3H</td>
<td></td>
</tr>
<tr>
<td>2.83</td>
<td>1$^-$</td>
<td>1</td>
<td>12.99 c</td>
<td>n, 3H</td>
<td>11, 12</td>
</tr>
</tbody>
</table>

a 3.19 MeV above the n + 3H mass.
b Primarily 3P$_1$.
c Primarily 1P$_1$.

1. 4H(β^-)4He

$Q_m \approx 20.6$ not observed

As noted in the previous compilation (1973FI04), all searches for the beta decay of 4H have yielded negative results. No new work has been reported.

2. 3H(n, γ)4H

$Q_m \approx 0$ not observed

The previous compilation (1973FI04) notes that this reaction has not been observed, but cites some work yielding upper limits for the cross section. No new work has been reported.

3. 3H(n, n)3H

Measurements of cross sections, polarization, and analyzing power for 3H(n, n)3H are summarized in Table 4.2. Earlier work is reviewed in the previous compilation (1973FI04). See also (1972SE23) for a summary of early data on this reaction.

A review of progress in four-body scattering and breakup reaction calculations in the integral equation approach is presented in (1987FI03). Calculations of 3H(n, n) scattering carried out in this approach are described in (1976FO13, 1976KH01, 1976TJ01, 1978KR01, 1983LE22, 1986FO07). An R-matrix prediction of n-3H cross sections and scattering lengths from p-3He scattering data is described in (1990HA23). A microscopic calculation for the 4H and 4Li continuum in which structure and reactions were treated on an equal footing was done by (1977BE40). 4H and 4Li level positions and widths were calculated. In (1979FO08) a soluble model of the four-nucleon system was developed using a nonrelativistic field theoretic formalism. A four-body calculation of the 4N system was carried out (1984FO08) to describe low energy phase shifts and cross sections. The pseudostate method in the resonating group formulation was used (1986SH12) to study distortion effects of the three-nucleon cluster in n + t and p + 3He. See also (1989PO23).
Table 4.2: Measurements and summaries (S) of cross sections $\sigma(\theta)$, analyzing power $A(\theta)$ and polarizations $P(\theta)$, for the 3H(n, n)3H reaction

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>Measurement</th>
<th>θ_{cm} (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0, 9.0, 18.0, 19.5, 21.0, 23.0</td>
<td>$\sigma(E, \theta), P_n$</td>
<td>32 – 149</td>
<td>Liquid 3H target.</td>
<td>1972SE23(S)</td>
</tr>
<tr>
<td>14 – 15</td>
<td>$\sigma(E, \theta)$</td>
<td>0, 1, 67, 96</td>
<td>Reviewed, compared existing data. Measured σ in energy interval to study anomaly.</td>
<td>1976PA23(S)</td>
</tr>
<tr>
<td>14.1</td>
<td>$\sigma(E, \theta)$</td>
<td>4 – 40</td>
<td>Measured absolute cross sections. Optical model and Faddeev calculations.</td>
<td>1976SH20</td>
</tr>
<tr>
<td>0.06 – 80</td>
<td>$\sigma(E)$</td>
<td></td>
<td>Gas target. Compared with $p + ^3$He data.</td>
<td>1980PH01</td>
</tr>
<tr>
<td>0.06 – 1.2</td>
<td>$\sigma(E)$</td>
<td></td>
<td>Measured $\sigma(E)$ at low energy, extrapolated to zero energy. Inferred scattering lengths.</td>
<td>1980SE02</td>
</tr>
<tr>
<td>Low energy</td>
<td>bound scattering length b_c</td>
<td></td>
<td>Used neutron interferometer. Deduced singlet and triplet scattering lengths σ_s, σ_t.</td>
<td>1981HA36</td>
</tr>
<tr>
<td>Low energy</td>
<td>bound scattering length b_c</td>
<td></td>
<td>Remeasured b_c with skew-symmetric neutron-interferometer. Deduced σ_s, σ_t.</td>
<td>1985RA32</td>
</tr>
</tbody>
</table>
4. $^3\text{H}(n, d)2n$ \hspace{1cm} Q_m = -6.257

The previous compilation (1973FI04) lists several measurements of the $^3\text{H}(n, d)2n$ reaction and notes that forward-angle deuteron spectra are sharply peaked at high energy indicating a strong final-state interaction between two neutrons.

More recently only one additional measurement has been reported. Differential cross section measurements at $E_n = 14.1$ MeV were carried out (1976SH20) for deuteron angles 4°, 10°, 20°, 30°, and 40°. The measured energy spectra were represented satisfactorily by a Faddeev calculation which took into account the nn final-state interaction.

A soluble model involving four interacting particles and utilizing a field theoretic formalism was discussed in (1976FO13). Total cross sections for $^3\text{H}(n, d)2n$ were calculated. A calculation described in (1982WU03) considered quasi-free scattering and d + n cluster structure, and deduced reaction kinematics and cutoff radius effects.

5. $^3\text{H}(n, p)3n$ \hspace{1cm} Q_m = -8.482

Measurements of proton energy spectra are summarized in the previous compilation (1973FI04). In the only measurement reported since, polarized thermal neutrons were used (1980BOZH), and the measured asymmetry was used to determine the upper limit of the P-odd asymmetry coefficient. See also the review of resonances in three-particle nuclei (1989MO24).

6. $^3\text{H}(d, p)^3\text{H} + n$ \hspace{1cm} Q_m = -2.225

A summary of early measurements of the $^3\text{H}(d, p)$ reaction is given in the previous compilation (1973FI04). Proton spectra show no evidence of formation of ^4H. Observed structure in the proton spectra is attributed to final-state interactions in the $^3\text{H} + n$ system. Upper limits for a bound state are discussed. However the recent work of (1990BL14) on a kinematically-complete measurement of the equivalent $^2\text{H}(t, tp)n$ reaction for $E_t = 35$ MeV finds evidence for a ^3H ground state with $E_{\text{res}} = 3.1$ MeV, $\gamma^2 = 2.3$ MeV. This work includes a review of ^4He ground-state parameters from recent experiments. See also (1973SL03, 1977WE03, 1981SE11, 1982SE08, 1985FR01, 1986BE35, 1987GO25, 1989GR22, 1990AM04, 1990BL14, 1990BR14, 1990BR17). Since the previous compilation (1973FI04), measurements of vector and tensor analyzing power at $E_d = 3 - 6$ MeV and an R-matrix analysis were reported (1980CL1A, 1980DE1A). At $T \approx 300$ K, thermonuclear reaction rates for $^3\text{H}(d, p)$ and several other reactions of interest to astrophysics were calculated (1989SC25). The distribution of relative velocities between particles was described by the Maxwell-Boltzmann distribution. Results were compared with published experimental results.

7. $^3\text{H}(t, d)^3\text{H} + n$ \hspace{1cm} Q_m = -6.257
The previous compilation (1973FI04) cites measurements in which structure was observed in the deuteron spectra from the 3H(t, d) reaction, but the structure was attributed to final-state interactions in the 3He + n system. Other experiments noted in (1973FI04) have determined upper limits for the cross section. No new measurements on this reaction have been reported.

8. (a) 4He(γ, π^+)3H + n \quad Q_m = -160.7
 (b) 4He(γ, π^0)3H + p \quad Q_m = -154.8
 (c) 4He(γ, p)3H \quad Q_m = -19.81

Measurements of reaction (a) cited in the previous compilation (1973FI04) show some evidence for a 3H + n final-state interaction, but other explanations are possible. No new work has been reported. Angular distribution measurements (1989GL06) of reaction (b) were analyzed in terms of quasi-free, exchange, and quasi-elastic reaction mechanisms. Measurements of the asymmetry in angular distributions for reaction (c) induced by polarized photons of energies 40 MeV and 120–125 MeV were reported in (1988GA29, 1989VI05). A theoretical investigation of structure effects in the E3 cross section for reaction (c) is described in (1989BE07). See also the analysis of (1988TE04, 1989VO01).

9. 4He(e$^-$, ν)3H + n \quad Q_m = -20.596

The previous compilation (1973FI04) cites one calculation, but no measurements on this reaction. No new work has been reported.

10. 4He(π^+)3H + n \quad Q_m = 118.460

The previous compilation (1973FI04) cites one measurement, but no evidence for a 3H + n final-state interaction. No new work has been reported.

11. (a) 4He(π^-, γ)4H* \quad Q_m = 115.6
 (b) 4He(π^-, π^-, π^+)4H* \quad Q_m = -163.5
 (c) 4He(π^-, n)3H \quad Q_m = 118.5
 (d) 4He(π^-, 2n)2H \quad Q_m = 112.2
 (e) 4He(π^-, 3n)1H \quad Q_m = 110.0

The previous compilation (1973FI04) discusses measurements (1972BI09) of the energy spectrum of γ-rays from π^- capture which show structure attributed to capture to a $J^g = 2^-$, $E_x = 3.4$ MeV state (apparent g.s. of 4H) and two strongly mixed 1^- levels at $E_x = 5.1$ and 7.5 MeV. No new 4He(π^-, γ)4H*
measurements have been reported. A review of recent data significant in determining the characteristics of the \((\pi^-, \gamma)\) reaction on light nuclei was presented in (1982GM02). A calculation of the total radiative capture rate from \(^4\)He pionic atoms is described in (1988WE01).

Early experimental and theoretical work on reaction (c) is summarized in (1973FI04). More recently, measurements of differential cross sections were reported at \(E_\pi = 100, 200, 290\) MeV (1978KA01), and at \(E_\pi = 285, 428, 525, 575\) MeV (1981OR01, 1982OR06). The \(\pi^-\) absorption was found to proceed by a two-nucleon mechanism with an energy dependence consistent with formation of a \(J = \frac{1}{2}\) resonance in the intermediate state. Measurements of the energy spectra of single neutrons, protons, and deuterons following absorption of stopped \(\pi^-\) in \(^4\)He were reported in (1981CE01). An analysis of the \(^4\)He(\(\pi^-, \gamma\))\(^4\)H reaction at 290 MeV utilizing the effective channel approach was presented in (1981RE01). The reaction was studied in the resonance region within the framework of a \(\Delta\)-hole model (1983HI11).

No new measurements of reactions (d) or (e) have been reported. However, a cluster-model study of \(^4\)He(\(\pi^-, 2n\))\(^2\)H was reported in (1986GE08), and in (1987GE06) it was suggested that measurements carried out for pionic capture at rest could yield information on the D-state of \(^4\)He.

\[12. \quad ^4\text{He}(n, p)^3\text{H} + n \quad Q_m = -19.814 \]

Experimental work cited in the previous compilation (1973FI04) showed structure in the proton spectra from the \(^4\)He(n, p)\(^3\)H + n reaction that was interpreted as indicating an excitation of the giant resonance \(1^-\) states in \(^4\)H. It was noted that the \(2^-\) ground state of \(^4\)H does not appear to be populated appreciably. No new work on this reaction has been reported.

\[13. \quad ^6\text{Li}(\gamma, 2p)^3\text{H} + n \quad Q_m = -23.514 \]

The previous compilation (1973FI04) cites no reported measurements, but notes upper limits for the production cross section of \(^4\)H in earlier reviews. No new work has been reported.

\[14. \quad \begin{align*}
(a) & \quad ^6\text{Li}(\pi^-, d)^3\text{H} + n \quad Q_m = 117.0 \\
(b) & \quad ^6\text{Li}(\pi^-, np)^3\text{H} + n \quad Q_m = 114.8
\end{align*} \]

Measurements of coincident charged-particle spectra discussed in the previous compilation (1973FI04) show structure which has been interpreted either in terms of a final-state interaction in \(^3\)H + n or in terms of levels in \(^4\)H. The yield for reaction (a) is stated to be \((1.0 \pm 0.5) \times 10^{-4}\) of all possible \(\pi^- + ^6\)Li reactions. Early measurements of neutron-proton energy-summed coincident spectra and n–p angular distributions from reaction (b) are also cited in (1973FI04). More recently, measurements of energy spectra versus angle for reactions (a) and (b) were carried out (1983HE17) for stopped pions. The quasi-deuteron mechanism was found to be the dominant process in the reaction. Other measurements for reactions (a) and (b) with stopped pions were reported in (1985DO19) and the results discussed in terms of sequential reaction mechanisms as well as cluster absorption. Angular correlations of the cross section for reaction (b) were measured.
(1986YO06) at $E_\pi = 70$ MeV, and the components of the two-nucleon absorption cross section were extracted. See also (1987KO47).

A calculation of the energy spectra and angular correlations of single and correlated spectra for absorption of stopped pions was described in (1981CH03).

15. $^7\text{Li}(\gamma, 2p)^4\text{H} + n \quad Q_m \approx -33.582 \quad \text{not observed}$

The previous compilation (1973FI04) lists no observations of the $^7\text{Li}(\gamma, 2p)^4\text{H} + n$ reaction, but cites experimental work in which upper limits for the production cross section of ^4He were set as revealed by its beta decay. No new measurements have been reported.

16. $^7\text{Li}(-\pi, t)^3\text{H} + n \quad Q_m = 116.0$

The previous compilation (1973FI04) states that no evidence for a particle-stable state of ^4H has been found, but notes that charged-particle spectra for π^- capture at rest indicate structure which is interpreted as a $^3\text{H} + n$ final-state interaction. Other measurements are cited, and proposed states in the unbound $^3\text{H} + n$ system are discussed. More recently the charged particles from the breakup of ^7Li following π^- capture have been identified in coincidence (1979ME13), and strong evidence for a particle-unstable ^4H state is obtained. The energy of the resonance was found to be 8 ± 3 MeV above the unbound $^3\text{H} + n$ mass with a width $\Gamma < 4$ MeV. A review of previous experimental searches for particle-unstable ^4H is included.

17. $^7\text{Li}(n, \alpha)^3\text{H} + n \quad Q_m = -2.468$

No evidence for a particle-stable state had been obtained at the time of the previous compilation (1973FI04). Upper limits ($\sigma \leq 2.2$ mb) were quoted. A recent measurement (1986KN06) of the ^4He production cross section for an average neutron energy of 14.95 MeV gave $\sigma = (0.336 \pm 0.016)$ b. Measurements of coincident energy spectra of alpha particles were reported in (1986MI11, 1986MI14) for $E_n = 14.6$ MeV, and it was suggested that the observed structure might be attributed to states of ^4H. See also the measurements of (1986SH33).

18. $^9\text{Be}({}^7\text{Li, }{}^4\text{H})^{12}\text{C} \quad Q_m \approx 3.233 \quad \text{not observed}$

The previous compilation (1973FI04) notes one particle-identification measurement on this reaction with no ^4H particle groups detected. No new work has been reported.

19. $^{10}\text{B}({}^7\text{Li, }{}^{13}\text{N})^4\text{H} \quad Q_m \approx -1.409 \quad \text{not observed}$

The previous compilation (1973FI04) cites one measurement which determines an upper limit on the cross section and concludes that $B(^4\text{H}) \leq 0.16$ MeV. No new work has been reported.
44He

GENERAL

Ground state. Due to non-central forces, the wave function for the $J^\pi = 0^+$ ground state of 4He can be a positive-parity mixture of three 1S_0, six 3P_0, and five 5D_0 orthogonal states (1967BE74). Of course, the symmetric S-wave component is the dominant part of the wavefunction, with significant D-wave and almost negligible P-wave contributions. Since the D-state admixture can be inferred from measurements such as the tensor analyzing powers for 2H(d, γ)4He (reaction 1), it has been the subject of much experimental and theoretical attention since the previous compilation (1973FI04), despite confusion stemming from the fact that in some cases the results refer to only part of the full D-state probability as calculated in (1988CA19, 1990CH06, 1991AR01).

Recent variational and Green function Monte Carlo (GFMC) calculations [(1988CA19), (1991CA35)] using realistic nucleon-nucleon potentials have been highly successful in reproducing the ground-state properties of light nuclei. These calculations for 4He give D-state probabilities ranging from 15–17.5%, depending on the potential model (including three-body forces) used, and P-wave probabilities that are much smaller (≈ 1%). Other theoretical and experimental estimates of the D-state percentage are considerably lower, but these inferences can be complicated by the presence of more than one multipole and other D-state effects (see the discussion for reaction 1).

The latest GFMC calculation (1991CA35), using a truncated version of the Argonne V14 NN interaction (1984WI05), overbinds 4He by 0.9 MeV, whereas most variational calculations underbind it by more than 1 MeV. In both cases, three-body forces contribute at least 3 MeV to the binding energy. When the GFMC calculation is corrected perturbatively for the terms in the NN interaction (1984WI05) that could not be included, the binding energy decreases by almost exactly enough to agree with the experimental value, 28.296 MeV. This energy results from a cancellation of large kinetic-energy and two-nucleon potential-energy terms, so that the three-body forces, though small in comparison to the two-body forces, make a significant contribution to the binding energy. Since the nuclear forces are assumed to be charge-independent, the small amount of repulsive Coulomb energy (0.75 MeV) implies high isotopic purity of the $T = 0$ ground state.

Recent calculations (1991CA35) of the charge density give form factors that are in reasonable agreement with electron-scattering experiments. For momentum transfers greater than about 4.5 fm$^{-1}$, the variational calculation follows the data somewhat better than does the GFMC calculation. The Fourier transforms of the proton-pair distributions have also been calculated and compared with measurements of the Coulomb sum. The comparison is quite good for both variational and GFMC calculations when the experiments are corrected for the finite energy range of the measured sums.

Excited states:

The unbound excited-state level structure presented here is based on the comprehensive, Coulomb-corrected, charge-independent R-matrix analysis of (1989HA2A). This analysis takes its isospin-1 parameters from an analysis of p–3He scattering data (see 4Li, GENERAL), but with the eigenenergies shifted by the internal Coulomb energy difference $\Delta E_C = -0.64$ MeV and the p–3H and n–3He reduced-width amplitudes scaled by the isospin Clebsch-Gordan coefficient $\sqrt{\frac{3}{2}}$. The isospin-0 parameters are then varied to fit the experimental data for the reactions among the two-body channels p+3H, n+3He, and d+2H, at energies corresponding to excitations in 4He below approximately 29 MeV. In this fit, the $T = 0$ nucleon-trinucleon reduced-width amplitudes are constrained by the isospin relation.
Fig. 2: The energy levels of 4He are plotted on a vertical scale giving the c.m. energy, in MeV, relative to its ground state. Horizontal lines representing the levels are labeled by the level energies and values of total angular momentum, parity, and isospin (J^π, T). Also shown are threshold energies and typical thin-target excitation functions for some of the reactions in the 4He system. See Fig. 1 for further details about notation and Table 4.3 for more information about the levels, including partial and total widths.
\[\gamma_{n^3\text{He}}^{(T=0)} = -\gamma_{p^3\text{H}}^{(T=0)} \]

and a small amount of internal Coulomb isospin mixing is introduced by allowing

\[\gamma_{dd}^{(T=1)} \neq 0, \]

which is necessary to reproduce the differences between the two branches of the \(d + d \) reaction (reactions 3 and 4).

Although the \(^4\text{He} \) analysis is not yet complete, the predicted levels are sufficiently stable that we feel it is worthwhile to report them as preliminary results. The BW resonance parameters at channel radii \(\alpha_{pt} = a_{n^3\text{He}} = 4.9 \text{ fm} \) and \(a_{dd} = 7.0 \text{ fm} \) are given in Table 4.3, and are shown in Fig. 2. These states have relatively pure isospin, except in the cases noted below. As the previous compilation (1973FI04) pointed out, the general features of the level structure at excitation energies below 30 MeV can be understood in terms of Wigner’s supermultiplet theory in which the degenerate [1] states are lowered and the [15] states are raised by an attractive particle-hole interaction. The P-wave [15] levels having \(T = 1 \) and \(T = 0 \) are much more interspersed in the present scheme than in the previous compilations, however, leading to significant isospin mixing in those states. In addition, several new \(T = 0 \) levels that have essentially \(d + d \) character appear, some of which were anticipated by a prediction of Sergeyev (1972SE02).

The first three \(T = 0 \) excited states (0+, 0−, 2−) of Table 3.0.2 (which were fairly well established) in (1973FI04). Above about 22 MeV excitation energy, differences begin to occur. There is no evidence in the analysis of the \(^4\text{He} \)-system reactions for a separate 0+ or 1+, \(T = 0 \) level at \(E_x = 25.5 \text{ MeV} \) as has been seen in the \(\alpha + ^4\text{He}^* \) final states of reactions 28 and 32. It is possible that the anomaly seen in these reactions is due to a shadow pole associated with the 0+ excited state at \(E_x = 20.21 \text{ MeV} \), or that the true position of the 0+ state is several MeV higher, as is indicated by the position of the S-matrix pole (see discussion below).

Nested among a series of four negative-parity, \(T = 1 \) levels in the range \(E_x = 23 - 26 \text{ MeV} \) (which were at least 3 MeV higher in (1973FI04)) is a new 1−, \(T = 0 \) level at \(E_x = 24.25 \text{ MeV} \) that has important effects on the \(d + d \) reactions at low energies. Isospin mixing between this state and the \(^3\text{P}_1, T = 1 \) level at \(E_x = 23.64 \text{ MeV} \) causes significant differences in the p-wave part of the \(d + d \) reactions, as have been observed in muon-catalyzed (1984BA1W) and polarized (1981AD07) \(d + d \) fusion experiments. The 1−, \(T = 0 \) level was seen by (1981GR16) in their \(^2\text{H}(d, p)^3\text{H} \) analyzing-power data, but no evidence of their proposed 4+ level at \(E_x = 24.6 \text{ MeV} \) was found by (1989HA2A) in fitting their measurements.

The remaining \(T = 0 \) levels at \(E_x = 27 - 30 \text{ MeV} \) are primarily \(d + d \) states, except for the 1+ level at \(E_x = 28.31 \text{ MeV} \). The \(^5\text{S}_2 \) level at \(E_x = 27.42 \text{ MeV} \) is interesting on two accounts: it marks the first appearance of a state from the [20] representation, and it probably corresponds to a resonance that had been seen by (1966LE1A) in \(^6\text{Li}(d, \alpha)^4\text{He}^* \) spectra, but was later withdrawn by (1968BA20) when they failed to see it in \(d + d \) elastic scattering measurements. The effect of the broad resonance can be seen in \(d + d \) elastic scattering excitation functions measured by (1969WI01), however. Because of its width, this state causes the \(^5\text{S}_2 \) transitions of the \(d + d \) reactions to be important even near the \(d + d \) threshold, in contradiction to the earlier theoretical picture that only the \(^1\text{S}_0 \) transitions were important due to Pauli exclusion of the quintet \(d + d \) S-waves.

The series of \(^3\text{P}_J \) levels concentrated near \(E_x = 28.5 \text{ MeV} \) are clearly the ones from the [15] representation predicted by (1972SE02). These broad levels are not apparent in the data, but they are required primarily by the cross-section and analyzing-power measurements for \(d + d \) elastic scattering. The 1− level in this sequence has been seen in the decay of \(^4\text{He}^* \) in the final states of reactions 25, 28, and 32. The \(^1\text{D}_2 \)
Table 4.3: Energy levels of 4He defined for channel radii $a_p = a_n = 4.9$ fm, $a_d = 7.0$ fm. All energies and widths are in the c.m. system.

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>J^π</th>
<th>T</th>
<th>Γ_p (MeV)</th>
<th>Γ_n (MeV)</th>
<th>Γ_d (MeV)</th>
<th>Γ (MeV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0$^+$</td>
<td>0</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.50</td>
<td>p</td>
<td>16, 22, 24, 28, 31</td>
</tr>
<tr>
<td>20.21</td>
<td>0$^+$</td>
<td>0</td>
<td>0.64</td>
<td>0.20</td>
<td>0.00</td>
<td>0.84</td>
<td>p, n</td>
<td>24</td>
</tr>
<tr>
<td>21.01</td>
<td>0$^-$</td>
<td>0</td>
<td>1.26</td>
<td>0.75</td>
<td>0.00</td>
<td>2.01</td>
<td>p, n</td>
<td>24, 29</td>
</tr>
<tr>
<td>21.84</td>
<td>2$^-$</td>
<td>0</td>
<td>2.64</td>
<td>2.37</td>
<td>0.00</td>
<td>5.01</td>
<td>p, n</td>
<td></td>
</tr>
<tr>
<td>23.33</td>
<td>2$^-$</td>
<td>1</td>
<td>3.44a</td>
<td>2.76a</td>
<td>0.00</td>
<td>6.20</td>
<td>p, n, (\gamma)</td>
<td></td>
</tr>
<tr>
<td>23.64</td>
<td>1$^-$</td>
<td>1</td>
<td>3.08a</td>
<td>2.87a</td>
<td>0.15</td>
<td>6.10</td>
<td>p, n, d</td>
<td>3, 4</td>
</tr>
<tr>
<td>25.28</td>
<td>0$^-$</td>
<td>1</td>
<td>4.12</td>
<td>3.85</td>
<td>0.00</td>
<td>7.97</td>
<td>p, n</td>
<td></td>
</tr>
<tr>
<td>25.95</td>
<td>1$^-$</td>
<td>1</td>
<td>6.52b</td>
<td>6.14b</td>
<td>0.00</td>
<td>12.66</td>
<td>p, n, (\gamma)</td>
<td>7</td>
</tr>
<tr>
<td>27.42</td>
<td>2$^+$</td>
<td>0</td>
<td>0.25</td>
<td>0.23</td>
<td>8.21c</td>
<td>8.69</td>
<td>p, n, d</td>
<td>6, 28, 32</td>
</tr>
<tr>
<td>28.31</td>
<td>1$^+$</td>
<td>0</td>
<td>4.72</td>
<td>4.66</td>
<td>0.51</td>
<td>9.89</td>
<td>p, n, d</td>
<td></td>
</tr>
<tr>
<td>28.37</td>
<td>1$^-$</td>
<td>0</td>
<td>0.07</td>
<td>0.08</td>
<td>3.77</td>
<td>3.92</td>
<td>(p, n), d</td>
<td>(3, 4), 6, 28</td>
</tr>
<tr>
<td>28.39</td>
<td>2$^-$</td>
<td>0</td>
<td>0.02</td>
<td>0.02</td>
<td>8.71</td>
<td>8.75</td>
<td>(p, n), d</td>
<td>(3, 4), 6</td>
</tr>
<tr>
<td>28.64</td>
<td>0$^-$</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>4.89</td>
<td>4.89</td>
<td>d</td>
<td>6</td>
</tr>
<tr>
<td>28.67</td>
<td>2$^+$</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>3.78d</td>
<td>3.78</td>
<td>d, (\gamma)</td>
<td>6, 21</td>
</tr>
<tr>
<td>29.89</td>
<td>2$^+$</td>
<td>0</td>
<td>0.04</td>
<td>0.04</td>
<td>9.64e</td>
<td>9.72</td>
<td>(p, n), d</td>
<td>28</td>
</tr>
</tbody>
</table>

a Primarily 3P_1.
b Primarily 3P_1.
c Primarily 5S_2.
d Primarily 1D_2.
e Primarily 5D_2.
resonance that was previously thought to be at 33 MeV is at $E_x = 28.67$ MeV, and another 2^+ resonance, primarily in the 5D_2 $d + d$ channel, gives a second [20] state at $E_x = 29.89$ MeV.

Estimated uncertainties on the parameters given for 4He in Table 4.3 are as follows: At excitation energies below 26 MeV, the positions are uncertain by 20 keV or less, except for the $(1^-, T = 0)$ level at 24.25 MeV, which is uncertain by 150 keV. At excitation energies between 26 and 30 MeV, the uncertainties in the positions are generally less than 90 keV, with that of the $(1^-, T = 0)$ level at 28.37 MeV less than 10 keV. The widths of the levels (partial and total) are generally known to about 10%.

The uncertainties in the BW resonance parameters are usually far less than the changes that occur when the resonance parameters are derived from the poles of the S-matrix. A significant difference between these parameters and the BW parameters of Table 4.3 is in the position of the 0^+ state. The S-matrix poles are located at least 3 MeV higher in excitation energy than is the pole of K_R, meaning that the 0^+ state is no longer the first excited state of 4He. This might explain the great difficulty shell-model calculations (1977BE02, 1988CE05) have in obtaining the excitation energy of the 0^+ state as low as the “traditional” position it has occupied between the p^{-3}H and n^{-3}He thresholds. Other differences involve the ordering of the P-wave levels, and the appearance of low-lying, positive-parity, $T = 1$ levels.

Table 4.4: Measurements and summaries (S) of cross sections and analyzing powers for the reaction $^2\text{H}(d, \gamma)^4\text{He}$

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Measurement</th>
<th>θ_γ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 – 12.5</td>
<td>$\sigma(\theta)$</td>
<td>0 – 132</td>
<td>Fit to $\sigma(\theta)$ indicated E2 transition $^1\text{D}_2 \rightarrow ^1\text{S}_0$</td>
<td>1973PO01</td>
</tr>
<tr>
<td>0.163</td>
<td>$\sigma(E_\gamma)$</td>
<td></td>
<td>Compared with plasma thermal distribution calculations.</td>
<td>1984CE03</td>
</tr>
<tr>
<td>376</td>
<td>$\sigma(\theta)$</td>
<td>73, 91</td>
<td>Compared to $^4\text{He}(\gamma, d)$ measurements.</td>
<td>1984SI01</td>
</tr>
<tr>
<td>9.7</td>
<td>$\sigma(\theta), T_{20}$</td>
<td>45 – 140</td>
<td>Measured T_{20} as ^4He D-state signature.</td>
<td>1984WE14</td>
</tr>
<tr>
<td>0.05 – 0.160</td>
<td>Γ_γ/Γ_p</td>
<td>0 – 180</td>
<td>Compared with direct-capture calculations.</td>
<td>1985WI08</td>
</tr>
<tr>
<td>10</td>
<td>$\sigma(\theta), A_y, A_{yy}$</td>
<td>25 – 155</td>
<td>Found evidence for non-E2 radiation.</td>
<td>1986ME02</td>
</tr>
<tr>
<td>10</td>
<td>$\sigma(\theta), iT_{11}, T_{20}, T_{21}, T_{22}$</td>
<td>25 – 155</td>
<td>Model-independent analysis, extracted specific T-matrix elements.</td>
<td>1986ME16</td>
</tr>
<tr>
<td>0.7 – 14.9</td>
<td>$\sigma(E, \theta)$</td>
<td>40 – 140</td>
<td>Looked for D-state effects in (d, γ) at low energies.</td>
<td>1986WE07</td>
</tr>
<tr>
<td>0.05 – 0.500</td>
<td>$\sigma(\theta), \sigma(E)$</td>
<td>0 – 90</td>
<td>Determined $S(E)$, and implied evidence for $^5\text{S}_2 \rightarrow ^5\text{D}_0$ amplitude.</td>
<td>1987BA58</td>
</tr>
<tr>
<td>1.2</td>
<td>$\sigma(\theta), A_y, A_{yy}$</td>
<td>55 – 140</td>
<td>Model calculation used to study evidence for E2, E1, M2 radiation.</td>
<td>1988LA14</td>
</tr>
<tr>
<td>2.5</td>
<td>$\sigma(\theta), iT_{11}, T_{20}, T_{22}$</td>
<td>25 – 155</td>
<td>Studied role of odd-parity multipoles interfering with E2.</td>
<td>1987MEZV</td>
</tr>
<tr>
<td>0.3 – 30</td>
<td>A_y, A_{yy}</td>
<td>130</td>
<td>Compared data to result of resonating group calculations.</td>
<td>1988WE15</td>
</tr>
<tr>
<td>95</td>
<td>$\sigma(\theta), A_y, A_{yy}$</td>
<td>55 – 149</td>
<td>Results indicate reaction dominated by $^1\text{D}_2</td>
<td>E2</td>
</tr>
<tr>
<td>1.2, 14.7,</td>
<td>$E_d \leq 0.8$</td>
<td>$\sigma(\theta), A_y, A_{yy}, T_{20}$</td>
<td>30 – 14</td>
<td>Transition matrix analysis. Compared to MCRGM.</td>
</tr>
<tr>
<td>5.4 – 14.7</td>
<td>A_y, A_{yy}</td>
<td>130</td>
<td>Studied ^4He D-state.</td>
<td>1990LA16</td>
</tr>
</tbody>
</table>

1. $^2\text{H}(\text{d}, \gamma)^4\text{He}$

$Q_m = 23.847$

$E_0 = 23.847$

The previous compilation (1973FI04) reported measurements of the $^2\text{H}(\text{d}, \gamma)^4\text{He}$ reaction from $E_d = 0.8 - 482$ MeV. Measurements and summaries since 1973 are presented in Table 4.4.

The early measurements of (1973PO01) at $E_d = 6.05, 8.96$, and 11.67 MeV gave $\sigma(\theta) \approx \sin^2 2\theta$, and it was concluded that the process proceeded through an E2 transition by $^1\text{D}_2 \rightarrow ^1\text{S}_0$. Measurements at 376 MeV (1984SI01), however, corroborate deviations reported in the inverse reaction by (1976AR05) from the $\sin^2 2\theta$ angular dependence. The cross section results are consistent with time-reversal invariance.

A measurement (1984WE14) of tensor analyzing power T_{20} at $E_d = 9.7$ MeV gave a non-zero isotropic result which was used in connection with a heuristic model calculation assuming E2 radiation to imply a 4.8% D-state admixture in the two-deuteron wave function of ^4He. Earlier evidence for the ^4He D-state was provided in a study (1975PL01) of phase shifts for $p + ^4\text{He}$ elastic scattering. Calculations reported in (1985SA04) examined the $^2\text{H}(\text{d}, \gamma)^4\text{He}$ analyzing powers for $E_d < 20$ MeV, and led to the conclusion that the tensor analyzing powers depend linearly on the asymptotic D/S ratio ρ. Using wave functions with phase shifts obtained from resonating group calculations, they found good agreement with the T_{20} data of (1984WE14) for $-0.5 < \rho < -0.4$. These large values of ρ were superseded by later, more detailed calculations (see below). Measurements of vector and tensor analyzing powers at $E_d = 10$ MeV reported in (1986ME02, 1986ME16) indicated the presence of multipoles other than E2, and arguments are presented that the reaction cannot be used to determine the D-state admixture in ^4He unless the deuteron D-state and other tensor force effects in the entrance channel are taken into account. Calculations of (1986TO11) considered M1, E1, M2, and E2 transitions and obtained agreement with the results of (1986ME02, 1986ME16) using ^4He wave functions which were obtained from variational calculations (1986SC03) and which indicated a value for the ^4He D-state parameter (1986TO11) $D_2 \approx 0.2$ fm2. The energy dependence of vector and tensor analyzing powers at 130° from 0.3 to 50 MeV (1988WE15) indicates that A_{yy} (130°) is sensitive to ^4He D-state components and has its maximum value near $E_d = 30$ MeV. Some of these results are reviewed in (1987GR08).

A recent measurement (1989PI06) of cross sections and analyzing powers at intermediate energy ($E_d = 95$ MeV) indicated the dominance of the $(^1\text{D}_2|E2|^1\text{S}_0)$ transition involving the S-state component of ^4He.

Experiments on the $^2\text{H}(\text{d}, \gamma)^4\text{He}$ reactions at low bombarding energies ($50 - 150$ keV) relevant to astrophysical processes were reported in (1985W108). (This reaction had been proposed earlier (1984CE03) as a temperature diagnostic for plasmas). The Γ_γ/Γ_p ratio was measured, and it was noted that a D-state component in the ^4He wave function is a possible explanation for the result obtained. The measured cross section for E_d between 0.7 and 4.5 MeV and angular distributions of cross sections at $E_d = 1.38, 2.05, 9.6$ and 15 MeV (1986WE07) were interpreted to indicate that the ^4He D-state has large effects on the energy and angle dependence of the low-energy capture cross sections. In particular it was shown that the ratio $\sigma(90^\circ)/\sigma(135^\circ)$ increased at low energies in such a way as to imply an asymptotic D- to S-state ratio $\rho = -0.2 \pm 0.05$. Measurements of $\sigma(E)$ and $\sigma(\theta)$ for $E_{c.m.} = 50 - 500$ keV (1987BA58) were interpreted to indicate that the $^5\text{S}_2 \rightarrow ^5\text{D}_0$ amplitude is dominant for $E_{c.m.} < 200$ keV. The indicated astrophysical
S-factor (1984FO1A) is 32 times larger than previously estimated and may affect inhomogeneous big-bang nucleosynthesis models.

Theoretical studies (1987AS03) of the 2H(d, γ)4He reaction based on a microscopic description of the nuclear wave function reproduce the data for $E_d < 3$ MeV and indicate a 5–7% D-state admixture in the 4He ground state. The study reported in (1987BL12) finds that conclusions about D-state components based on simple potential model analysis of experimental data are very sensitive to the parametrization of the nucleus-nucleus potential and may be misleading. The phenomenological study of 2H(d, γ)4He (1987PI08) allows for the D-state component of the colliding deuterons and concludes that it is important in estimating the effects of D-state components in 4He. However, a more detailed calculation including these same effects (1988AR11) has shown that the value of $\rho \approx -0.4$ suggested in (1987PI08) is too large and should be -0.2 as proposed in (1986WE07). The difficulty of extracting D-state properties in 4He is demonstrated in the work of (1988WA02), using a microscopic multi-channel resonating-group model. This model was used by (1988LA14, 1990LA16) in the analysis of measurements of cross sections and vector and tensor analyzing powers at $E_d = 1.2$ MeV to conclude that the cross section consists of nearly equal contributions of E2, E1, and M2 radiation, and that the tensor analyzing power is primarily due to the large E1/M2 strength. The results of this calculation are compared with experimental data on A_y and A_{yy} for $E_d(\text{lab}) = 0.3 - 50$ MeV. Good agreement was obtained with A_{xy}, but A_y was overpredicted at low energies ($1 - 2$ MeV). See also (1990WE03). This model predicts a D-state probability of 2.2% in 4He, but this is only the two-deuteron part of the D-state.

An extensive review of the manifestations of the D-State in 4He and other light nuclei is presented in (1988WE20). It is worth noting that the most recent calculations of (1988CA19), which use the Green function Monte Carlo method, indicate a total D-state probability in 4He ranging from 12 to 17.5%, depending on the details of the NN interaction assumed. A variational Monte Carlo calculation (1991AR01) of the reaction for $E_d \leq 500$ keV indicated that at these energies the reaction proceeds through the D-states in the deuteron and the alpha particle, and that the contribution of the 2H or 4He D-states can either add to produce a large cross section or cancel. A recent review of non-spherical components of 4He and other light nuclei is presented in (1990EI01).

2. (a) 2H(d, π^0)4He
 \[Q_m = -111.1 \]

(b) 2H($d, 2\pi^0$)4He
 \[Q_m = -246.1 \]

(c) 2H($d, \pi^+\pi^-$)4He
 \[Q_m = -255.3 \]

Measurements of the charge-symmetry-breaking reaction (a) reported in (1987BA15) established an upper limit of $\sigma(\theta) \approx 0.8 \times 10^{-6} \mu b/\text{sr}$ at $E_d = 0.8$ GeV, $\theta_{\text{c.m.}} \approx 100^\circ$. An historical synopsis of experiments and theoretical estimates of reaction (a) is also presented. An earlier measurement reported in (1974BA2H) gave an upper limit $\sigma(\theta) \approx 1.9 \times 10^{-5} \mu b/\text{sr}$ at $E_d = 1.89$ GeV, $\theta_{\text{c.m.}} \approx 79^\circ$. See also ($1981$EG03). A theoretical calculation (1982CH27) assuming various charge-symmetry-breaking mechanisms gave $0.1 \times 10^{-6} \mu b/\text{sr}$ for $\sigma(\theta)$ at 0° in the region of the $\Delta(3, 3)$ resonance. More recently $\sigma(\theta)$ at 0° was estimated (1986CO01) to be $\approx 0.8 \times 10^{-6} \mu b/\text{sr}$ at $E_d = 1.95$ GeV assuming virtual η and η' production and $\pi^0\eta$ and $\pi^0\eta'$ mixing. See also (1976BA1A, 1985BA1X). For references to earlier work see (1973FI04).
3. $^2\text{H(d, n)}^3\text{He}$

\[Q_m = 3.269 \quad E_h = 23.847 \]

Measurements and summaries of cross sections, polarizations, analyzing powers, and polarization transfer coefficients are presented in Table 4.5. Summaries and discussions of earlier works are given in the previous compilation (1973FI04). Several experiments which have a bearing on possible excited states in ^4He have been reported. Measurements of $\sigma(E, \theta)$ at $70 - 150$ keV (1975PO04) indicate no evidence for a resonance near the dd threshold in ^4He. Measurements of $\sigma(\theta)$ made at lab energies of $300 - 700$ keV (1973YI01) were expanded in even powers of $\cos \theta$ and indicate some evidence for a state in ^4He at 23.9 MeV, but do not differentiate between suggested assignments of 2^+ or 1^-. A measurement of $P_n(\theta)$ (1976TO03) is discussed in relation to possible f-wave admixtures on the 2^+ state in ^4He at 22.1 MeV. Measurements of $\sigma(E, \theta)$ between 18 and 26 MeV (1980JO07) and Legendre polynomial fits provide no evidence of a proposed level in ^4He near 30 MeV.

Several measurements of the $^2\text{H(d, n)}^3\text{He}$ cross section have been made at low energies ($E_d < 1$ MeV) that are relevant to plasma physics or astrophysics. (See Table 4.5). Recent work reported in (1987KR18) with windowless gas targets at $E_{\text{c.m.}} = 2.98 - 162.5$ keV extend into the plasma fusion region and deduce the astrophysical factor $S(E)$ and present polynomial fits. Another measurement of $S(E)$ at 125 keV is reported in (1986BR20).

Several experimental studies related to the use of the reaction for a source of monoenergetic neutrons have been carried out and are included in Table 4.5. See especially the work reported in (1978DR08), which establishes an absolute scale for $\sigma(\theta)$ for $E_d = 6 - 17$ MeV. Extensive tables of cross sections and Legendre coefficients are presented. See also (1972DI05, 1973SA20, 1973WE19, 1981PA26). Analyzing power measurements are reported in (1972DU02, 1972GR28, 1972HA49, 1972SM04, 1972SP05, 1974SA07, 1975GA07, 1976TO03, 1983GU03). Polarization transfer measurements are described in (1973SA20, 1974SA07, 1975LI08, 1984KL05). See also the recent review (1990DR10) of accelerator-based monoenergetic neutron source reactions, including $^2\text{H(d, n)}$, for fusion-related applications.

Measurements of observables for the mirror reactions $^2\text{H(d, n)}^3\text{He}$ and $^2\text{H(d, p)}^3\text{H}$ and the implications of possible differences on the question of charge-symmetry violations are described in (1972GR28, 1973YI01, 1975PO04, 1978KO06, 1979DR01, 1979KO23, 1980BI08, 1981AD04). See also the compilations of (1987FI03, 1987GR08).

Theoretical work described in (1972SE25, 1972SE25) concludes that the different anisotropy observed for the (d, n) and (d, p) angular distributions at low energies can be explained by new negative-parity $T = 0$ levels with small nucleon and single-particle deuteron widths. Analysis (1987KO21) of polarization data for the (d, p) and (d, n) reactions indicates no evidence for a $J^\pi = 1^-$ level in ^3He at 24.1 MeV.

Analyzing powers and polarizations for $^2\text{H(d, n)}^3\text{He}$ and $^2\text{H(d, p)}^3\text{H}$ were calculated (1980BE21) in a generalized R-matrix methodology framework, and the differences predicted were an order of magnitude smaller than those reported by (1979DR01). The (d, p) and (d, n) reactions were also studied (1973FI10) at energies below 200 keV, and the relationship between an “R-matrix approach” and a “direct approach” to the reaction were discussed. Soluble four-body models have been used (1976FO13, 1979FO08, 1983SO05) to predict the (d, n) cross section. A four-nucleon K-matrix approach is discussed in (1985SO07). See also (1976SA02). The parameterization of polarization observables in terms of matrix elements for $^2\text{H} + d$ reactions is given in (1982AD04). The mirror reactions $^2\text{H(d, n)}^3\text{He}$ and $^2\text{H(d, p)}^3\text{H}$ were studied (1990VA04) in a multichannel resonating group framework, and the parameters of $J^\pi = 0^+, 0^-, 1^-, 2^-$ resonances in ^4He are established. An analysis of all available data on these mirror fusion reactions was carried out (1990LE23) to extract reaction matrix elements for $E_{\text{d}} \leq 500$ keV. The effect of the $^2\text{H(d, n)}$ reaction rate on predicted abundances of light isotopes from primordial nucleosynthesis is investigated in (1991RI03).
Table 4.5: Measurements and summaries (S) of cross sections $\sigma(\theta)$ and analyzing powers $A(\theta)$ for 2H(d, n)3He

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4</td>
<td>iT_{11}</td>
<td>10 – 140</td>
<td>Compared with 2H(d, p)3H to check charge symmetry.</td>
<td>1972BL02</td>
</tr>
<tr>
<td>12, 14, 16, 18</td>
<td>$\sigma(\theta), \sigma(E_n, 0^\circ)$</td>
<td>0 – 65</td>
<td>Looked for evidence of resonances in 4He.</td>
<td>1972DI05</td>
</tr>
<tr>
<td>10.8</td>
<td>P_n</td>
<td>35 – 60</td>
<td>Looked for excited states in 4He.</td>
<td>1972DU02</td>
</tr>
<tr>
<td>10.0, 11.5</td>
<td>$iT_{11}, T_{20}, T_{21}, T_{22}$</td>
<td>95 – 156</td>
<td>Discussed usefulness of reaction for polarized n source.</td>
<td>1972GR28</td>
</tr>
<tr>
<td>16, 18, 20, 22</td>
<td>P_n</td>
<td>45</td>
<td>Discussed usefulness of reaction for polarized n source.</td>
<td>1972HA49</td>
</tr>
<tr>
<td>1.96 – 6.2</td>
<td>$\sigma(E, \theta)$</td>
<td>0 – 15, 0 – 180</td>
<td>2H(d, n)3He, t.o.f. Measured 2H(d, 3He)n.</td>
<td>1972SC28</td>
</tr>
<tr>
<td>0.87 – 5.00</td>
<td>P_n</td>
<td>10 – 150</td>
<td>Compared with 2H(d, p)3H.</td>
<td>1972SM04</td>
</tr>
<tr>
<td>6, 8, 10, 12, 14</td>
<td>P_n</td>
<td>10 – 90</td>
<td>Compared with 2H(d, p)3H.</td>
<td>1972SP05</td>
</tr>
<tr>
<td>0.3 – 0.9</td>
<td>P_n</td>
<td>46</td>
<td>Studied polarimeter errors.</td>
<td>1973DA15</td>
</tr>
<tr>
<td>3.3 – 14.9</td>
<td>K_z^z</td>
<td>0</td>
<td>Studied use of 2H(\vec{d}, \vec{n}) as reaction source.</td>
<td>1973SA20</td>
</tr>
<tr>
<td>18.6</td>
<td>$\sigma(E_d, E_n)$</td>
<td>3.5 – 32</td>
<td>Studied use of reaction as high intensity n source.</td>
<td>1973WE19</td>
</tr>
<tr>
<td>0.3 – 0.7</td>
<td>$\sigma(E, E_{^3\text{He}}, \theta)$</td>
<td>20 – 160</td>
<td>Measured relative 2H(d, n), 2H(d, p) cross sections.</td>
<td>1973YI01</td>
</tr>
<tr>
<td>13.9 – 15.25</td>
<td>$\sigma(E_d, E_n, \theta)$</td>
<td>0 – 130</td>
<td>Provided observables needed for use of 2H(\vec{d}, \vec{n}) as source reaction.</td>
<td>1975AZ02</td>
</tr>
<tr>
<td>1.1 – 5.45</td>
<td>P_n</td>
<td>27 – 105</td>
<td>Provided observables needed for use of 2H(\vec{d}, \vec{n}) as source reaction.</td>
<td>1975GA07</td>
</tr>
<tr>
<td>1 – 15</td>
<td>K_y^y, A_{zz}</td>
<td>0</td>
<td>Provided observables needed for use of 2H(\vec{d}, \vec{n}) as source reaction.</td>
<td>1975LI08</td>
</tr>
<tr>
<td>0.07 – 0.15</td>
<td>$\sigma(E, \theta)$</td>
<td>15 – 165</td>
<td>No evidence for resonance near dd threshold.</td>
<td>1975PO04</td>
</tr>
<tr>
<td>0.052 – 0.692</td>
<td>P_n</td>
<td>52 – 53</td>
<td>Used new type of He recoil polarimeter.</td>
<td>1975SI16</td>
</tr>
<tr>
<td>2.44</td>
<td>P_n</td>
<td>45, 55</td>
<td>Agreed with (1975GA07).</td>
<td>1976TO03</td>
</tr>
<tr>
<td>0.035 – 0.275</td>
<td>P_n</td>
<td>45</td>
<td>No evidence for resonance at 100 keV.</td>
<td>1977AL08</td>
</tr>
<tr>
<td>50 – 85</td>
<td>$\sigma(\theta)$</td>
<td>12.5 – 45</td>
<td>Measured 2H(d, n) and 2H(d, p).</td>
<td>1978AL26</td>
</tr>
<tr>
<td>6 – 17</td>
<td>$\sigma(\theta)$</td>
<td>$\approx 0 – 180$</td>
<td>Established absolute scale for $\sigma(\theta)$ by calibrated t.o.f. system.</td>
<td>1978DR08(S)</td>
</tr>
<tr>
<td>2.5 – 11.5</td>
<td>$iT_{11}, T_{20}, T_{21}, T_{22}$</td>
<td>20 – 160</td>
<td>Measured for 2H(d, n), 2H(d, p). Reported differences.</td>
<td>1978KO06</td>
</tr>
</tbody>
</table>
Table 4.5: Measurements and summaries (S) of cross sections $\sigma(\theta)$ and analyzing powers $A(\theta)$ for 2H(d, n)3He (continued)

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5, 17.0</td>
<td>$A_y, A_{xx}, A_{yy}, A_{xz}$</td>
<td>70 – 130</td>
<td>Measured 2H(d, n) and 2H(d, p).</td>
<td>1979BR18</td>
</tr>
<tr>
<td>0.5 – 5.5</td>
<td>$A_{zz}, A_y, A_{xz}, A_{xx}, A_{xx-yy}$</td>
<td>0, 0 – 160</td>
<td>Compared with 2H(d, p). Found differences.</td>
<td>1979DR01</td>
</tr>
<tr>
<td>0.100 – 0.500</td>
<td>P_n</td>
<td>45 – 130</td>
<td>Used improved small angle Mott-Schwinger scattering Polarimeter.</td>
<td>1979GA05</td>
</tr>
<tr>
<td>13.6, 24.3</td>
<td>$\sigma(\theta)$</td>
<td>0</td>
<td>Used gas target proton recoil telescope.</td>
<td>1979GO21</td>
</tr>
<tr>
<td>4 – 13</td>
<td>$iT_{11}, T_{20}, T_{21}, T_{22}$</td>
<td>wide range</td>
<td>Measured for 2H(d, n), 2H(d, p). Report evidence for CS violation.</td>
<td>1979KO23</td>
</tr>
<tr>
<td>300 – 1250</td>
<td>$\sigma(E_d, \theta)$</td>
<td>0 – 60</td>
<td>Phenomenological analysis of baryonic exchange mechanism.</td>
<td>1980BI08</td>
</tr>
<tr>
<td>10</td>
<td>$K_y', K_x', K_x', K_y', K_{xy}, A_y, A_{xx}, A_{yy}, A_{zz}$</td>
<td>0 – 180</td>
<td></td>
<td>1974SA07</td>
</tr>
<tr>
<td>0.290 – 0.460</td>
<td>P_n</td>
<td>24.5 – 90</td>
<td>Detected recoils.</td>
<td>1980GA03</td>
</tr>
<tr>
<td>18 – 26</td>
<td>$\sigma(E_d, \theta)$</td>
<td>20 – 90</td>
<td>Detected recoils. Studied 2H(d, n) and 2H(d, p).</td>
<td>1981AD04</td>
</tr>
<tr>
<td>0.06 – 0.485</td>
<td>$A_y, A_{xx}, A_{xz}, A_{xx-yy}$</td>
<td>0</td>
<td>Used Proton recoil telescope.</td>
<td>1981PA26</td>
</tr>
<tr>
<td>3 – 6</td>
<td>$\sigma(\theta)$</td>
<td>0</td>
<td>Measured $P_n(\theta)$ at small angles to explore properties of reaction for source of polarized neutrons.</td>
<td>1981TO15</td>
</tr>
<tr>
<td>8.0</td>
<td>P_n</td>
<td>0 – 20</td>
<td>Reported technique to correct for background from breakup neutrons.</td>
<td>1982GR26</td>
</tr>
<tr>
<td>6.4, 8.03</td>
<td>$\sigma(\theta)$</td>
<td>0</td>
<td>Used high pressure 3He ion chamber to measure n spectra from 2H plasma.</td>
<td>1983GU03</td>
</tr>
<tr>
<td>5.5 – 11.5</td>
<td>A_y</td>
<td>0 – 150</td>
<td>Used NE213 and t.o.f. simultaneously.</td>
<td>1984KL05</td>
</tr>
<tr>
<td>0.14</td>
<td>$\sigma(E_d, E_n)$</td>
<td></td>
<td></td>
<td>1986AN32</td>
</tr>
<tr>
<td>52</td>
<td>P_n, A_y, K_y'</td>
<td>60 – 160</td>
<td>Used liquid 4He as scintillator in n polarimeter for $E_n = 3 – 18$ MeV.</td>
<td>1987IE02</td>
</tr>
<tr>
<td>11</td>
<td>$\sigma(E_d, E_n)$</td>
<td></td>
<td></td>
<td>1987KR18</td>
</tr>
<tr>
<td>0.125</td>
<td>$S(E)$, anisotropy versus E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>P_n</td>
<td>0 – 85.4</td>
<td>Used windowless gas target. Deduced $S(E)$.</td>
<td>1987KR18</td>
</tr>
<tr>
<td>0.0298 – 0.1625</td>
<td>$\sigma(E, \theta)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4.5: Measurements and summaries (S) of cross sections $\sigma(\theta)$ and analyzing powers $A(\theta)$ for 2H(d, n)3He (continued)

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001 – 19</td>
<td>$\sigma(E_n, \theta)$</td>
<td>0, 90</td>
<td>Studied background problems.</td>
<td>1989BO41</td>
</tr>
<tr>
<td>0.02 – 0.117</td>
<td>$\sigma(E, \theta)$</td>
<td>20 – 130</td>
<td>2.0% accuracy. R-matrix analysis.</td>
<td>1990BR04</td>
</tr>
<tr>
<td>18</td>
<td>P_n</td>
<td>15 – 75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The 2H(d, n)3He reaction at very low energies ($E_d(c.m.) < 55$ keV) is calculated in a one-step reaction model and discussed in (1988AB03). An extended elastic model is applied in (1989SC25, 1989SC36) to calculate reaction rates for very low energies ($T \approx 300$ K). Branching ratios in (d, n) and (d, p) reactions at low energies are estimated in a second-order DWBA calculation in (1990KO26). The fusion of polarized deuterons is considered in (1984HO10) and it is argued that a “neutron lean” d–3H fusion reactor is unlikely to actually be so. On the other hand, the DWBA calculation of (1986ZH05) indicates that such a reactor may be feasible.

4. 2H(d, p)3H

$Q_m = 4.033$
$E_b = 23.847$

Measurements and summaries of cross sections, polarizations, analyzing powers, and polarization transfer coefficients are given in Table 4.6. Earlier work is reviewed in the previous compilation (1973FI04). For a review of recent measurements of polarization observables for the 2H(d, p)3H reaction and a comparison with model calculations, see (1987GR08).

Recent measurements at low energies (1987KR18) have provided more accurate determinations of the astrophysical factor $S(E)$. See also (1985JA16, 1986BR20).

A considerable number of experiments have examined the cross section and polarization observables for differences between the charge-symmetric reactions 2H(d, p)3H and 2H(d, n)3He. Measurements of vector polarization at 1 MeV (1987KO22) for both reactions give differences outside of the experimental uncertainties. Analyzing power measurements for both reactions for deuteron energies between 60 and 485 keV (1981AD04) are presented in contour plots which are very similar for the two reactions. Differential cross sections measured for (d, p) and (d, n) at 13.2 MeV (1979OK01) coincide closely. Precision polarization transfer measurements at 10 MeV (1974GR30) and for energies between 6 and 15 MeV (1973CL05) are compared with (d, n) values and show little or no differences within uncertainties. On the other hand, measurements of vector and tensor analyzing powers for $E_d = 1.5 – 15.5$ MeV are interpreted (1979KO23) to indicate strong evidence for charge-symmetry violation. Measurements of these observables at $E_d < 5.5$ MeV (1979DR01) and at $E_d = 2.5 – 11.5$ MeV (1978KO06, 1978KO26) show significant differences between the two reactions, while measurements at 13.39 and 17.00 MeV (1979BR18) indicate smaller differences at these higher energies.

Polarization measurements below 1 MeV (1985KO20) indicate that $P^y(\theta)$ is a slowly varying function of E_d, and that the $l = 1$ barrier penetration factor is sufficient to describe the energy dependence. Cross section measurements between 70 – 150 keV (1975PO04) indicate no evidence for a resonance near the $d + d$ threshold. Tensor analyzing power data measured in the same region are discussed along with other available data and fail to provide conclusive evidence for a resonance. Cross section data measured between
300 – 400 keV (1973YI01) indicate the need for a state in 4He at 23.9 MeV but do not distinguish between 2^+ and 1^-. Measurements (1981GR16) of the cross section and tensor analyzing power for $E_d = 1 – 13$ MeV are fitted with Legendre polynomials and give clear evidence (1987GR08) for a 1^- level at 24.1 MeV and strong indications of a 4^+ level at 24.6 MeV.

Table 4.6: Measurements and summaries (S) of cross sections, polarizations, and polarization transfers for 2H(d, p)3H

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1, 9.8</td>
<td>$A^y_0, A^0_{zz}, A^0_{zz}$</td>
<td>0</td>
<td>Studied reaction mechanism.</td>
<td>1972DU18</td>
</tr>
<tr>
<td>3.0 – 11.5</td>
<td>$\sigma(\theta), iT_{11}, T_{20}, T_{21}, T_{22}$</td>
<td>7.5 – 160</td>
<td>Looked for 4He resonance.</td>
<td>1972GR28</td>
</tr>
<tr>
<td>1.96 – 6.20</td>
<td>$\sigma(E, \theta)$</td>
<td>10 – 150</td>
<td>Sought improved accuracy, absolute σ.</td>
<td>1972SC28</td>
</tr>
<tr>
<td>6 – 15</td>
<td>K^y_0, K^y_{yz}</td>
<td>0</td>
<td>Compared with (d, n) (six energies).</td>
<td>1973CL05</td>
</tr>
<tr>
<td>0.3 – 0.7</td>
<td>$\sigma(E, E_p, \theta), \sigma(E, E^3_{He}, \theta)$</td>
<td>20 – 160</td>
<td>Detected all charged particles. Compared with (d, n), looked for 4He state.</td>
<td>1973YI01</td>
</tr>
<tr>
<td>10</td>
<td>P^y_0, K^y_0, K^y_{yz}</td>
<td>21 – 82</td>
<td>Cooled 2H target; He polarimeter.</td>
<td>1974GR30</td>
</tr>
<tr>
<td>0.09 – 0.190</td>
<td>Tensor analyzing power versus E_d</td>
<td></td>
<td>Explored anomaly near $E_d = 100$ keV.</td>
<td>1974GU22</td>
</tr>
<tr>
<td>13.6</td>
<td>$\sigma(E_d, \theta)$</td>
<td>20.9 – 146</td>
<td>Accurate to <1% error.</td>
<td>1974JA15</td>
</tr>
<tr>
<td>12</td>
<td>$A_y(E_d, \theta)$</td>
<td></td>
<td>Polynomial fits. Explored possible resonance in 4He.</td>
<td>1974NE13</td>
</tr>
<tr>
<td>12.6</td>
<td>$A_x(\theta)$</td>
<td></td>
<td>Compared A_y, P_y.</td>
<td>1974ZA06</td>
</tr>
<tr>
<td>0.7 – 0.150</td>
<td>$\sigma(E_d, \theta)$</td>
<td>15 – 160</td>
<td>Measured (d, p), (d, n). Looked for 4He state.</td>
<td>1975PO04</td>
</tr>
<tr>
<td>50 – 85</td>
<td>$\sigma(E_d, \theta)$</td>
<td>12.5 – 45 (lab)</td>
<td>PWBA analysis.</td>
<td>1978AL26</td>
</tr>
<tr>
<td>2.5 – 11.5</td>
<td>$iT_{11}, T_{20}, T_{21}, T_{22}$</td>
<td>20 – 160</td>
<td>Compared (d, p), (d, n). Possible CSB.</td>
<td>1978KO06</td>
</tr>
<tr>
<td>13.39, 15.50</td>
<td>$A_y, A_{xx}, A_{yy}, A_{xz}$</td>
<td>20 – 150</td>
<td>Explored asymmetry about 90°.</td>
<td>1979BR18</td>
</tr>
<tr>
<td>17.00</td>
<td>A_{zz}</td>
<td>0</td>
<td>Measured, compared (d, p), (d, n).</td>
<td>1979DR01</td>
</tr>
<tr>
<td>0.5 – 5.5</td>
<td>A_{xx}</td>
<td>0</td>
<td>Compared (d, p), (d, n). Explored possible CSB.</td>
<td>1979KO23</td>
</tr>
<tr>
<td>4.0 – 13</td>
<td>$iT_{11}, T_{20}, T_{21}, T_{22}$</td>
<td>5 – 160</td>
<td>Compared (d, p), (d, n). Possible CSB.</td>
<td>1979KO23</td>
</tr>
</tbody>
</table>
Table 4.6: Measurements and summaries (S) of cross sections, polarizations, and polarization transfers for $^2\text{H}(d, p)^3\text{H}$ (continued)

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Measurement</th>
<th>$\theta_{\text{c.m.}}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2</td>
<td>$\sigma(\theta)$</td>
<td>12 − 90</td>
<td>DWBA analysis, compared (d, p), (d, n).</td>
<td>1979OK01</td>
</tr>
<tr>
<td>300 − 1250</td>
<td>^4He</td>
<td>0 − 60</td>
<td>Baryon exchange interpretation.</td>
<td>1980BI08</td>
</tr>
<tr>
<td>0.120 − 0.5</td>
<td>$\sigma(E_d, E_p)$</td>
<td>90, 135</td>
<td>Information for ion-beam analysis.</td>
<td>1980MO03</td>
</tr>
<tr>
<td>0.6 − 0.485</td>
<td>A_y, A_{xz}, A_{xx-yy}</td>
<td>20 − 150 (lab)</td>
<td>Compared (d, p), (d, n). Extrapolated to low E.</td>
<td>1981AD04</td>
</tr>
<tr>
<td>1 − 13</td>
<td>$\sigma(E_d, \theta), iT_{11}$</td>
<td>5 − 160 (lab)</td>
<td>Found evidence for levels in ^4He.</td>
<td>1981AD07</td>
</tr>
<tr>
<td>0.02 − 0.117</td>
<td>$\sigma(E_d, \theta)$</td>
<td></td>
<td>Extracted $S(E)$.</td>
<td>1985GR16</td>
</tr>
<tr>
<td>0.250 − 0.975</td>
<td>P^y</td>
<td>15 − 85 (lab)</td>
<td>Analyzed in term of barrier penetration parameters.</td>
<td>1985KO20</td>
</tr>
<tr>
<td>0.125</td>
<td>$S(E)$</td>
<td></td>
<td>Measured $S(E)$, studied H fusion reactions.</td>
<td>1986BR20</td>
</tr>
<tr>
<td>1 − 24</td>
<td>$\sigma(E_d, \theta), T(\theta), A(\theta)$</td>
<td></td>
<td>Reviewed new pol. observables, evidence for levels in ^4He.</td>
<td>1987GR08(S)</td>
</tr>
<tr>
<td>0.975</td>
<td>P^y</td>
<td>15 − 100</td>
<td>Precision measurements. Compared with (d, n) to examine CSB.</td>
<td>1987KO22</td>
</tr>
<tr>
<td>0.0298 − 0.1625</td>
<td>$\sigma(E_d, \theta)$</td>
<td></td>
<td>Windowless gas target. Deduced $S(E)$.</td>
<td>1987KR18</td>
</tr>
<tr>
<td>0.02 − 0.117</td>
<td>$\sigma(E, \theta)$</td>
<td>20 − 130</td>
<td>2.0% accuracy. R-matrix analysis.</td>
<td>1990BR04</td>
</tr>
</tbody>
</table>

A review of recent progress in theoretical studies of four-body scattering and breakup including the (d, p) and (d, n) reactions focusing on the integral-equation approach is presented in (1987FI03). Calculations of this type are reported in (1977BA46, 1977PE13, 1982BL15, 1983OS05, 1984BA17, 1984FO08, 1985SO07, 1986FO07, 1989FO13, 1990FO02).

Calculations (1980BE21) within the framework of a generalized R-matrix methodology compare the analyzing powers and polarizations for the (d, p) and (d, n) reactions. See also (1977BE02). A number of theoretical studies and analyses related to possible states in ^4He were carried out. Microscopic multi-channel calculations reported in (1981HO04) propose an additional low-lying $1^− T = 0$ level, but rule out a $d + d$ threshold level and find no evidence for a 1^+ level around 25.5 MeV. A calculation reported in (1990VA04) for (d, n) and (d, p) establishes the parameters of resonances in ^4He with $J^\pi = 0^+, 0^-, 1^-, 2^-$. An R-matrix approach (1987KO21) used to analyze (d, p) and (d, n) polarization data finds no evidence for a 1^- level at 24.1 MeV. Theoretical arguments (1972SE02) are used to suggest $T = 0$ states in ^4He. Criteria for analysis of polarized deuteron reactions, and signatures of excited states and level parameters are derived in (1975SE07). See also (1974NE13, 1982AD04). A method for empirical continuation of polarization observables for $^3\text{H}(d, p)$ is presented in (1989BO32). See also the study of three-body Coulomb effects in one-particle transfer reactions (1990KA17). Calculations related to the (d, p) and (d, n) reaction...
at low energies include \((1987AS05)\), which examines the effect of electron screening at fusion energies. An elastic model for subbarrier fusion for the \(^2\text{H}(d, n)\) and \(^2\text{H}(d, p)\) reactions is applied at very low energies in \((1989SC25, 1989SC36)\). Branching ratios for these reactions at very low energies are estimated in second order DWBA in \((1990KO26)\). See also \((1973FI10, 1981AD07)\). An analysis of all available data on these mirror fusion reactions was carried out \((1990LE23)\) to extract reaction matrix elements for \(E_d \leq 500\) keV. The effect of the \(^2\text{H}(d, n)\) reaction rate on predicted abundances of light isotopes from primordial nucleosynthesis is investigated in \((1991RI03)\).

5. (a) \(^2\text{H}(d, npd)\) \(Q_m = -2.225\) \(E_b = 23.847\)
 (b) \(^2\text{H}(d, 2n2p)\) \(Q_m = -4.449\) \(E_b = 23.847\)

Measurements and summaries of particle spectra from the breakup reactions (a) and (b) reported since 1973 are presented in Table 4.7. Earlier work is reviewed in \((1973FI04)\).

The dp and dn spectra obtained for \(E_d = 6 - 13\) MeV and reported in \((1972VA04, 1972VA05)\) are dominated by a broad peak associated with \(d\)-nucleon quasi-free scattering (QFS). A simple quasi-free scattering model predicts general behavior, but not the magnitude of the cross section. Spatial localization effects were considered in \((1973VO06)\) in a phenomenological explanation of the peaks in some coincidence spectra. Quasi-free scattering was analyzed \((1976DJ01)\) in terms of the modified single-impulse approximation (MSIA). The final-state interaction (FSI) coincidence spectra agreed with the triplet np enhancement factor. See also \((1972BU03)\). Work reported in \((1972AN02)\) indicates a ratio of peak cross sections for nd and pd quasi-free scattering that is constant and close to one. Energy spectra at \(E_d = 12\) MeV are explained \((1982JE04)\) with a superposition of triplet np FSI and QFS. It is reported in \((1978KL07)\) that the angular distribution of np pairs with zero relative energy can be predicted absolutely from \(dd\) elastic scattering. No evidence of isospin non-conservation is found. The measured nd and pd angular distributions are identical. FSI studies reported in \((1973CH05)\) give no indication of any contribution from the (isospin forbidden) \(^1\text{S}_0\) pn final state. Proton-deuteron coincidence spectra were used in \((1972VO13)\) to test the Trieman-Yang criterion. The results indicate that the one-pole graph is not sufficient to describe the reaction. Three-body breakup energy spectra for \(E_d = 60\) MeV \((1982FU10)\) show large forward-angle enhancements and can be reproduced by calculations in the single-scattering four-body model.

Absolute cross sections for the four-body breakup reaction \((b)\) were measured \((1975WA09)\), and evidence for a double final-state interaction was obtained. Plane-wave analysis of measurements made at \(E_d = 34.7\) MeV \((1978AL21)\) under the two-spectator condition gave an experiment/theory ratio of about 0.14. At 80 MeV \((1978LE01)\) analysis indicated that, in addition to the double-spectator process, the process of double spin-flip excitation is important. (See also \((1985KO01)\)). However, good fits to these same data were obtained \((1981WA29)\) by assuming final-state interactions between both final np pairs and ignoring the double-spectator process. Measurements at 15.7 MeV are reported in \((1987ZH11)\) and interpreted to indicate evidence for a \(^3\text{He}\) resonant state with a breakup energy of 0.45 MeV.

A review of quasi-free processes in few-body systems is presented in \((1974SL04)\). See also \((1973SL04)\) for a critical analysis of models. Off-energy-shell corrections to nucleon-deuteron scattering amplitudes are explored in \((1972DU12)\). Absolute magnitudes and shapes for QFS processes in reaction \((a)\) are correctly predicted by the use of Eckart cluster-model wave functions. A possible explanation of the collinearity effect involving rescattering is examined in \((1976RE08)\). Calculation of the three-body breakup cross section in the Alt, Grassberger and Sandhas (AGS) formalism reported in \((1986MD02)\) gives good agreement at low
energies for the shapes but not the magnitudes. Agreement with the magnitudes improves at higher energies. Coulomb effects in quasi-free scattering are explored (1987BA27) by the use of exact three-body scattering theory for Coulomb-like potentials. Four-body AGS calculations for reaction (a) are extended (1988MD01) to regions where final state interactions are important.

Table 4.7: Measurements and summaries (S) of particle spectra from the $^2\text{H} + ^2\text{H}$ reaction

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Particle detected</th>
<th>θ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>dp, dn coin.</td>
<td>$\theta_n = -\theta_d$</td>
<td>Compared QFS in d + d, p + d processes.</td>
<td>1972AN02</td>
</tr>
<tr>
<td>27.5</td>
<td>dn coin.</td>
<td>3 angular conditions</td>
<td>Studied quasi-free processes, MSIA analysis.</td>
<td>1972BU03</td>
</tr>
<tr>
<td>11.3 (pol)</td>
<td>n</td>
<td>$0 - 60^\circ$ (lab)</td>
<td>Searched for spin dependent effects in 3-body final state.</td>
<td>1972PO02</td>
</tr>
<tr>
<td>10</td>
<td>pn</td>
<td>$\theta_n = 0$</td>
<td>QFS model analysis. Compared with p + d process.</td>
<td>1972VA04</td>
</tr>
<tr>
<td>6 – 13</td>
<td>np, nd, pd coin.</td>
<td>$\theta_1 = -\theta_2$</td>
<td>Studied dominance of Nd QFS processes.</td>
<td>1972VA05</td>
</tr>
<tr>
<td>20</td>
<td>pd coin.</td>
<td></td>
<td>Conditions chosen to enhance nd QFS, test Trieman-Yang criterion.</td>
<td>1972VO13</td>
</tr>
<tr>
<td>27.5</td>
<td>pn coin.</td>
<td>$\theta_p = \theta_n$</td>
<td>Conditions chosen to enhance np FSI.</td>
<td>1973CH05</td>
</tr>
<tr>
<td>23.15</td>
<td>pp coin.</td>
<td>small pp</td>
<td>Absolute σ, looked for double FSI, nn, pp relative energy spectra.</td>
<td>1975WA09</td>
</tr>
<tr>
<td>50 – 85</td>
<td>pd coin.</td>
<td>2 angle pairs</td>
<td>Angles chosen to study both QFS and FSI.</td>
<td>1976DJ01</td>
</tr>
<tr>
<td>34.7</td>
<td>pp coin.</td>
<td>symmetric angle pairs, $\theta_p = 34.8^\circ$</td>
<td>Studied two-spectrum quasi-free processes.</td>
<td>1978AL21</td>
</tr>
<tr>
<td>52</td>
<td>pd, nd coin.</td>
<td></td>
<td>Studied angular dependence of np FSI, pd and nd QFS.</td>
<td>1978KL07</td>
</tr>
<tr>
<td>80</td>
<td>pp coin.</td>
<td>symmetric angle pairs θ_p</td>
<td>Geometry chosen to emphasize double spectator processes.</td>
<td>1978LE01</td>
</tr>
<tr>
<td>60</td>
<td>d, p energy spectra</td>
<td>forward angles</td>
<td>Compared with single scattering 4-body model.</td>
<td>1982FU10</td>
</tr>
<tr>
<td>12</td>
<td>dp coin.</td>
<td>3 dp angle pairs</td>
<td>Compared with triplet np FSI and 4-body model.</td>
<td>1982JE04</td>
</tr>
<tr>
<td>108</td>
<td>pp, pn, coin.</td>
<td>correlated np pairs</td>
<td>Studied two-spectator QFS processes.</td>
<td>1985KO01</td>
</tr>
<tr>
<td>50</td>
<td>pp, pd coin.</td>
<td>several angle pairs</td>
<td>Studied use of QFS to measure effective radius r_{nn}.</td>
<td>1987GO13</td>
</tr>
<tr>
<td>15.7</td>
<td>pp coin.</td>
<td>24.1, 49.7, 19.9, 52.2, 17.8, 53.7, 15.2, 56.3, 12.8</td>
<td>Measured resonant-particle spectrum. Deduced resonant spectrum of intermediate state.</td>
<td>1987ZH11</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td>Measured A_y.</td>
<td>1989FU12</td>
</tr>
<tr>
<td>5.3 – 13.3</td>
<td>n</td>
<td></td>
<td>Measured neutron yield.</td>
<td>1990CA36</td>
</tr>
<tr>
<td>12</td>
<td>n</td>
<td></td>
<td>Measured $\sigma(\theta, E)$.</td>
<td>1990FEZZ</td>
</tr>
</tbody>
</table>

6. $^2\text{H}(d, d)^2\text{H}$

$E_d = 23.847$
Measurements and summaries (S) of cross sections and analyzing powers are presented in Table 4.8. Summaries and discussions of earlier work can be found in the previous compilation (1973FI04). As noted there, the cross section has no pronounced structure below $E_d = 40$ MeV ($E_x = 24 - 44$ MeV in 4He). In the very low energy region, $E_d = 80 - 360$ keV, measurements of the cross section (1975MA43, 1975NI06) provided no evidence for a resonance near the $d + d$ threshold. Similarly, the cross section measured at $E_d = 9.8 - 36$ MeV (1985NE04) showed a smooth pattern with no indications of resonances. Measurements of vector and tensor analyzing powers at $E_d = 6 - 11.5$ MeV (1972GR29) show a vector component which is small but non-zero and changes sign between 6.0 and 10.0 MeV, and tensor components which increase monotonically with energy. No resonance-like behavior is observed, but arguments are made that the sign change of iT_{11} suggests a broad resonance near $E_x = 28$ MeV in 4He. (See also (1972ME20)). At $E_d = 50$ MeV the vector analyzing power maximum is 0.32 at about $\theta_{\text{c.m.}} = 60^\circ$.

Since the earlier compilation on the $A = 4$ system, a considerable amount of theoretical work on 2H(d, d)2H elastic scattering has been done. A number of these calculations involved resonating group methodologies. A resonating group method (RGM) with imaginary potential was applied (1972CH20) to $d + d$ scattering. Comparison to experiments at $6.9 - 19.9$ MeV gave good agreement with cross section data. Calculations (1975ME25) of $d + d$ near threshold with the RGM using exact deuteron wave functions evaluated with a Malfliet-Tjon two-nucleon potential were found to predict no resonance, in agreement with experiment (1975MA43). Microscopic multichannel calculations for $A = 4$ from the first breakup threshold to $E_{\text{c.m.}} = 10$ MeV carried out (1981HO04) in the framework of a refined resonating-group model gave agreement with the well-established resonance structure, but ruled out a dd threshold resonance. An additional low-lying broad $1^- T = 0$ resonance was proposed. The work reported in (1985UO01) used single-channel RGM with a central-force NN potential having a soft repulsive core. The calculated (d, d) scattering phase shifts and cross sections for $E_d < 20$ MeV agree very well with experiment. The ground and even-parity excited states and the scattering problems for the 4He system were examined (1986KA21) within the framework of the multichannel resonating group method and good agreement with experiment was obtained. See also the partial amplitude calculations with resonating group methods of (1987IS06).

A study of $d + d$ elastic scattering in the helicity formalism for polarized beam is reported in (1972LI01) and includes a phase-shift analysis. A study for the case of non-conservation of channel spin is reported in (1972PH07). Expressions for σ and P are given in terms of phase shifts. The work of (1976FO13) applies a solvable model involving four identical particles to $A = 4$ scattering and reactions. A microscopic K-matrix approach is applied to the four-nucleon problem (1977BA46), and satisfactory agreement with experiment is obtained for all reactions except 2H(d, d). Work reported in (1979FO08) uses a nonrelativistic field theoretic formalism to develop a solvable model of the four-nucleon system and predicts the correct shape for the (d, d) cross section, but the magnitude is much too small. The work of (1983OS05) uses a four-body solvable model involving intermediate quasiparticle states and calculates cross sections for E_d between 6.1 and 51.5 MeV for (d, p), (d, n), and (d, d). Good agreement with experiment is obtained. In (1984FO08) a two-body separable T-matrix between pairs is used to solve the four-body equations and one-parameter models are developed to describe low-E phase shifts and cross sections for reactions and scattering. The four-body equations of Alt, Grassberger, and Sandhas (AGS) are solved (1986FO07), and contributions of p-wave $(3 + 1)$ subamplitudes to the 4He binding energy and scattering observables below the four-body breakup threshold are studied. See also the calculation of tensor analyzing powers in (1989FO13). A review of progress in four-body scattering and breakup in the integral equation approach is presented in (1987FI03). Calculations of (d, d) cross sections with a three-body formalism including Coulomb interactions are reported in (1986AG03).
Table 4.8: Measurements and summaries (S) of cross sections $\sigma(\theta)$ and analyzing powers $A(\theta)$ for $^2\text{H}(d, d)^2\text{H}$

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Measurement</th>
<th>$\theta_{\text{c.m.}}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0, 8.0, 10.0, 11.5</td>
<td>iT_{11}, T_{20}, T_{21}, T_{22}</td>
<td>20 – 62.5 (lab)</td>
<td>Studied results for resonances in ^4He.</td>
<td>1972GR29</td>
</tr>
<tr>
<td>10.0</td>
<td>iT_{11}, T_{20}, T_{21}, T_{22}</td>
<td>25 – 100</td>
<td>Measured recoils in coin.</td>
<td>1972ME20</td>
</tr>
<tr>
<td>1.96 – 6.2</td>
<td>$\sigma(E, \theta)$</td>
<td>10 – 150</td>
<td>Accuracy 1.7 – 3.4%. Polynomial fits.</td>
<td>1972SC28</td>
</tr>
<tr>
<td>1690</td>
<td>$\sigma(\theta)$</td>
<td>small angles</td>
<td>Obtained dd scattering amplitude. Deduced f_{dd}.</td>
<td>1974DU04</td>
</tr>
<tr>
<td>12.305</td>
<td>$\sigma(\theta)$</td>
<td>10 – 150 (lab)</td>
<td>$\Delta \sigma = 0.5 – 1.0%$.</td>
<td>1974JA15</td>
</tr>
<tr>
<td>0.08 – 0.36</td>
<td>$\sigma(E)$</td>
<td>90</td>
<td>Searched for resonance in ^4He near dd threshold.</td>
<td>1975MA43</td>
</tr>
<tr>
<td>0.045 – 0.300</td>
<td>$\sigma(E, \theta)$</td>
<td>68, 90</td>
<td>Searched for resonance in ^4He near dd threshold.</td>
<td>1975NI06</td>
</tr>
<tr>
<td>52</td>
<td>iT_{11}</td>
<td>30 – 150</td>
<td>Measured (d, d), (d, p).</td>
<td>1977BE44</td>
</tr>
<tr>
<td>50 – 85</td>
<td>$\sigma(E, \theta)$</td>
<td>12.5 – 45, 2.5° steps</td>
<td>PWBA analysis.</td>
<td>1978AL26</td>
</tr>
<tr>
<td>13.2</td>
<td>$\sigma(E, \theta)$</td>
<td>12 – 90</td>
<td>Optical-model analysis with Majorana exchange term.</td>
<td>1979OK01</td>
</tr>
<tr>
<td>$p_d = 2.38 – 12$ GeV$/c$</td>
<td>A_y</td>
<td>75 – 120</td>
<td>Momentum transfer $-t = 0.005 – 0.054$ (GeV$/c)^2$.</td>
<td>1989AV02</td>
</tr>
<tr>
<td>1650, 2000, 2290</td>
<td>$\sigma(E, \theta)$</td>
<td>small angles</td>
<td>Measured missing-mass spectra.</td>
<td>1984CO29</td>
</tr>
<tr>
<td>9.8 – 36</td>
<td>$\sigma(E, \theta)$</td>
<td>20 – 90</td>
<td>Searched for dibaryonic resonances.</td>
<td>1985NE04</td>
</tr>
<tr>
<td>191, 395</td>
<td>iT_{11}, T_{20}, T_{22}</td>
<td>30 – 150</td>
<td>Discussed applications to intermediate-energy deuteron polarimeters.</td>
<td>1986GA18</td>
</tr>
</tbody>
</table>
In (1977BE02) a new model for ^4He which treats structure and reaction aspects on an equal footing in a dynamical R-matrix methodology is presented. Results are given for the spectrum of resonances obtained within the model and for (d, d) elastic scattering. See also (1980BE18) which presents detailed results obtained with this model. Comparisons are made with data and resonating group and field theoretic approaches, noting that none of these models provides a complete description. A potential description of dd scattering is presented in (1990DU05).

Table 4.9: Measurements and summaries (S) of cross sections $\sigma(\theta)$ and analyzing powers $A(\theta)$ for $^3\text{H}(p, \gamma)^4\text{He}$

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 − 16 (pol)</td>
<td>$\sigma(E, \theta)$, A</td>
<td>45 − 135</td>
<td>Determined singlet and triplet $E1$, $E2$ amplitudes.</td>
<td>1978KIZQ</td>
</tr>
<tr>
<td>0.46, 0.50, 0.62, 0.77, 0.93</td>
<td>$\sigma(E, \theta)$, $P_\gamma(90^\circ)$</td>
<td>0 − 135 (lab)</td>
<td>Analyzed in terms of $E1$, $M1$, $E2$.</td>
<td>1980DE32</td>
</tr>
<tr>
<td>17 − 31</td>
<td>Fore-aft asymmetry</td>
<td>55, 125</td>
<td>Fitted with expression including 2^+ resonance.</td>
<td>1980MC06</td>
</tr>
<tr>
<td>8 − 30</td>
<td>$\sigma(E, \theta)$</td>
<td>21 − 144</td>
<td>Tabulated σ, Legendre expansion coefficients.</td>
<td>1982MC03</td>
</tr>
<tr>
<td>8.34, 13.6</td>
<td>$\sigma(E, 90^\circ)$</td>
<td>90</td>
<td>Compared with other $^3\text{H}(p, \gamma)$, $^4\text{He}(\gamma, p)$, $^4\text{He}(\gamma, n)$ data.</td>
<td>1983CA14</td>
</tr>
<tr>
<td>0.045 − 146</td>
<td>$\Gamma_\gamma/\Gamma_\alpha$</td>
<td></td>
<td>Compared with cluster model calculations.</td>
<td>1984CE08</td>
</tr>
<tr>
<td>9.0 (pol)</td>
<td>$\sigma(\theta)$, A</td>
<td>30 − 150</td>
<td>E1, E2 analysis. Studied $^3\text{D}_2$ amplitude.</td>
<td>1985WA28</td>
</tr>
<tr>
<td>227, 300, 375</td>
<td>$\sigma(\theta)$, A</td>
<td>54 − 118</td>
<td>Compared with (γ, p) inverse reaction to search for TRI violation.</td>
<td>1986TH05</td>
</tr>
<tr>
<td>2 − 15</td>
<td>$\sigma(90^\circ)$ absolute</td>
<td>90</td>
<td>Examined $\sigma(\gamma, p)/\sigma(\gamma, n)$. Found ratio ≈ 1.1.</td>
<td>1990FE06</td>
</tr>
</tbody>
</table>

The work of (1985KU19) applies nuclear collision theory (including many-body correlations induced by the short-range repulsion and medium-range attraction of the NN interaction) to (d, d) elastic scattering. Phase shifts are calculated and compared to RGM results. In (1988BE06) it is shown that the polarizability of the deuteron has a negligible effect on the total inelastic cross section at very low energies. Collective excitation of ^4He in $d + d$ scattering at energies ≈ 30 MeV is studied in (1990FI06). An analysis of (d, d) scattering data at 1.65, 2.00, and 2.29 GeV in the framework of a Glauber NN multiple-scattering model is described in (1984BA68). See also (1989ET04). An integral formula for calculating Glauber multiple-scattering amplitudes is derived in (1990TA27). A geometric model is applied to high-energy $d+d$ collisions.
7. $^3\text{H}(p, \gamma)^4\text{He}$

Measurements of cross sections and analyzing powers are summarized in Table 4.9. Summaries and discussions of earlier work can be found in the previous compilation (1973FI04). As noted there, the total cross section is mostly E1 and has a broad peak near $E_p \approx 4$ MeV, but no fine structure in the measured energy range. The broad peak is attributed to the presence of two 1^-, $T = 1$ levels in ^4He. The determination (1978KIZQ) of the singlet E1 strength distribution indicates that the lower of the two levels (at 27.4 MeV) contains the larger fraction of the singlet E1 strength. Measurements (1980MC06) of the fore-aft asymmetry in the angular distribution were interpreted as providing evidence for a 2^+ level at 40 MeV in ^4He with $\Gamma_{\text{c.m.}} = 3.5$ MeV. An E1, E2 analysis of the differential cross section and analyzing power measurements of (1978KIZQ) confirmed the dominant singlet E1 character of the outgoing radiation, but also indicated an anomalously large $^3\text{D}_2$ contribution to the E2 strength. See also (1980DE32, 1985WA28). However, measurements of (1989WA03) showed that the inclusion of a small M1 strength (0.5 – 1% of the total capture cross section) in the analysis gave better fits and eliminated the need for a large $^3\text{D}_2$ contribution. The absolute cross section for $^3\text{H}(p, \gamma)$ has been studied extensively along with that of the mirror reaction $^3\text{He}(n, \gamma)$ to test isospin mixing, and there are many discrepancies in the published results. Accurate measurements of the $^3\text{H}(p, \gamma)^4\text{He}$ cross section at 8.34 and 13.6 MeV are reported in (1983CA14) and earlier published results are reviewed. However, a new result (1990FE06) gives considerably lower cross sections in agreement with the recent monoenergetic $^4\text{He}(\gamma, p)^3\text{H}$ results of (1988BE38). These new results bring the (γ, p)-to-(γ, n) ratio for ^4He into agreement with standard model predictions. [See sects. 14 and 21.] The whole range of experimental and theoretical evidence bearing on the $\sigma(\gamma, p)/\sigma(\gamma, n)$ ratio is summarized in a separate discussion at the end of sect. 21. Measurements of the cross section and analyzing power at intermediate energies 227, 300, and 375 MeV were carried out (1986TH05) and compared with the inverse photodisintegration reaction, and no violation of time-reversal invariance was found. Analysis of these results with DWIA methods indicated that meson exchange currents are important at these energies. See also the review of capture on light nuclei of (1985CA42).

Theoretical calculations of (1981HA10, 1983HA21) done within the framework of recoil corrected continuum shell model (RCCSM) determine $\sigma(\gamma, p)/\sigma(\gamma, n)$, and it is concluded that the value near 2 that was indicated by some experiments cannot be obtained within standard theoretical assumptions. However, the authors of (1988WA20) conclude that calculations done within the framework of a microscopic multichannel resonating group model demonstrated that all types of experimental data except for the integrated (n, γ) cross section can be reproduced. Calculations of the $^3\text{H}(p, \gamma)$ cross section at intermediate energies were done at 156 MeV by (1973BA27) within the framework of a direct reaction peripheral model. Calculations for $\sigma(\theta)$ at 30 – 100 MeV described in (1978GA13) are discussed in terms of information about the effects of meson exchange currents and NN correlations at forward and backward angles. Calculations at 40 and 140 MeV are presented in (1976HE12).

8. $^3\text{H}(p, n)^3\text{He}$

Measurements of cross sections and analyzing powers are summarized in Table 4.10. Summaries and discussions of earlier work can be found in the previous compilation (1973FI04). Legendre polynomial...
Table 4.10: Measurements and summaries (S) of cross sections $\sigma(\theta)$, analyzing powers $A(\theta)$, polarizations $P(\theta)$, and polarization transfers $K(\theta)$ for the 3H(p, n)3He reaction

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 − 12 (pol)</td>
<td>A</td>
<td>45</td>
<td>Compared with $P(E, \theta)$.</td>
<td>1972HA33</td>
</tr>
<tr>
<td>8.94, 13.55</td>
<td>K_y^γ, $K_x^{x'}$, $K_z^{x'}$, P</td>
<td>15 − 120</td>
<td>Compared with R-matrix calculations.</td>
<td>1972HA36</td>
</tr>
<tr>
<td>6 − 16</td>
<td>$\sigma(\theta)$</td>
<td>0 − 140</td>
<td>Determined relative and absolute $\sigma(\theta)$.</td>
<td>1972MC23</td>
</tr>
<tr>
<td>2.238</td>
<td>$\sigma(E_n)$</td>
<td>$\theta(^3\text{He}) = 10^\circ$</td>
<td>Measured neutron flux for $E_n = 250$ keV.</td>
<td>1972PA41</td>
</tr>
<tr>
<td>1.5 − 5.0</td>
<td>P_n</td>
<td>5 − 110 (lab)</td>
<td>Legendre polynomial expansion, contour map.</td>
<td>1972SM03</td>
</tr>
<tr>
<td>1.3 − 2.9</td>
<td>A</td>
<td>30 − 140</td>
<td>Legendre polynomial expansion, contour map.</td>
<td>1974BR09</td>
</tr>
<tr>
<td>4 − 15</td>
<td>$K_z^{x'}$</td>
<td>0, 15 − 100</td>
<td>Compared with R-matrix calculations.</td>
<td>1974JA03</td>
</tr>
<tr>
<td>6.00, 9.96, 13.55</td>
<td>A</td>
<td>0.3 − 130</td>
<td>Compared with $P(\theta)$ and R-matrix calculations.</td>
<td>1974JA06</td>
</tr>
<tr>
<td>5.97, 9.9</td>
<td>$K_x^{x'}$, $K_z^{x'}$, K_y^γ, P_n</td>
<td>0 − 100</td>
<td>Compared with R-matrix calculations.</td>
<td>1974JA20</td>
</tr>
<tr>
<td>9.5</td>
<td>$\sigma(E, \theta)$</td>
<td>15 − 135</td>
<td>Measured relative yield.</td>
<td>1975MO36</td>
</tr>
<tr>
<td>1.7 − 3.9</td>
<td>A_y, P_y^γ</td>
<td>10 − 60</td>
<td>Compared A_y, P_y^γ. Checked CSB.</td>
<td>1976DO07</td>
</tr>
<tr>
<td>6 − 17</td>
<td>$\sigma(\theta)$</td>
<td>$\approx 0 − 180$</td>
<td>Established absolute scale for $\sigma(\theta)$ by calibrated t.o.f. system.</td>
<td>1978DR08(S)</td>
</tr>
<tr>
<td>1245, 1800</td>
<td>$\sigma(\theta)$</td>
<td>$0.003 <</td>
<td>t</td>
<td>< 0.493$ (GeV/c)2</td>
</tr>
<tr>
<td>1.75 − 4.0</td>
<td>A_y</td>
<td>45, 20 − 150</td>
<td>Compared with $P(E, \theta)$ R-matrix calculations.</td>
<td>1981DO10(S)</td>
</tr>
<tr>
<td>2.0 − 3.8</td>
<td>P_y^γ</td>
<td>45, 15, 50</td>
<td>Established 4He level order.</td>
<td>1981TO12(S)</td>
</tr>
<tr>
<td>318</td>
<td>$d\sigma/dt$</td>
<td>$0.01 <</td>
<td>t</td>
<td>< 0.06$ (GeV/c)2</td>
</tr>
<tr>
<td>9.77 − 14.77</td>
<td>$d^2\sigma/d\Omega dE$</td>
<td>0</td>
<td>Studied 3H breakup contributions.</td>
<td>1982TH07</td>
</tr>
<tr>
<td>0.4 − 15.5</td>
<td>$\sigma(E)$</td>
<td>20 − 140</td>
<td>Described technique for calibrating t.o.f. spectrometer.</td>
<td>1985HO12</td>
</tr>
<tr>
<td>1.125</td>
<td>E_n, ϕ_n</td>
<td>0</td>
<td>Used 3He(p, n) as neutron source to study 20Al(n, p).</td>
<td>1986TR02</td>
</tr>
<tr>
<td>2.05, 3.37</td>
<td>$\sigma(E_p, E_n)$</td>
<td>0, 90</td>
<td>Studied neutron background.</td>
<td>1989BO41</td>
</tr>
</tbody>
</table>
expansions of $\sigma(\theta)$ and $P(\theta)$ are given for $E_p = 1.5 - 5.0$ MeV in (1972SM03) and for $E_p = 1.3 - 2.9$ MeV in (1974BR09). Contour maps of $P(\theta)$ are presented. A number of measurements relating to the use of $^3\text{H}(p, n)$ as a source of polarized and unpolarized neutrons have been made. See especially (1978DR08) in which an absolute scale for $\sigma(\theta)$ is established. Relative and absolute differential cross sections for $E_p = 6 - 16$ MeV are given in (1972MC23). See also (1972PA41) for measurements of flux density for $E_n = 250$ keV, and (1982TH07, 1989BO41) for measurements of tritium breakup contributions. Practical aspects of accelerator-based neutron source reactions including $^2\text{H}(p, n)$ are reviewed in (1990DR10). Neutron polarizations and polarization transfer coefficients have been measured over a wide range of angles and energies (1972HA36, 1972SM03, 1974JA03, 1974JA20, 1976DO07, 1981TO12).

The analyzing power measurements of (1972HA33, 1974JA06) were compared with neutron polarization data, and it was found that above 4 MeV the two quantities were essentially equal, but below 4 MeV the observed differences in the magnitudes exceeded those predicted by charge-independent R-matrix calculations based on the level parameters of (1968WE14). Similar conclusions were drawn from the polarization-transfer coefficient measurements presented in (1972HA36, 1974JA20). However, remeasurement of P^y, and further measurements of A_y between 2 and 4 MeV resolved the discrepancies (1981DO10, 1981TO12), and it was concluded that there are no anomalously large differences between P and A outside the uncertainties of predictions of present models. A review of existing data and discussions of charge-independent R-matrix calculations is included in (1981DO10). The calculations establish the order of the lowest p-wave $T = 0$ levels in ^3He as $J^\pi = 0^-, 2^-, 1^-$. The reported differences between polarization and analyzing power were investigated in (1974AR01) and related to $^3\text{P}_2 \leftrightarrow ^3\text{F}_2$ transitions enhanced in the region of the 2^- state. They were also calculated (1977BE28) within the framework of a generalized R-matrix method. See also the recoil-corrected continuum shell-model calculations of (1983HA21). Microscopic calculations of the ^4He continuum were carried out by a coupled-channels method (1975RA31, 1976RA13, 1977DO03, 1980RA17), by a K-matrix approach (1977BA46), and within the framework (1980BE18) of a dynamical R-matrix formalism. Excited states of ^4He are discussed as are comparisons with $^3\text{H}(p, n)$ and other reaction data. See also the [3N + N] cluster-model study of (1981FU08). Calculations of elastic scattering and charge exchange at intermediate energies using Glauber multiple scattering theory are reported for $E_p = 156$ MeV (1973NA06) and for 415 and 600 MeV (1981BI08). A microscopic, momentum space optical potential is used in the calculations of (1986LA02). The results are compared with data at 415 and 600 MeV, and the sensitivity to the removal of meson exchange currents from nuclear densities is discussed. A generalized potential description of the $p + ^3\text{H}$ interaction is described in (1990DU11).

9. $^3\text{H}(p, p)^3\text{H}$

$E_b = 19.814$

Measurements of cross sections and analyzing powers for $^3\text{H}(p, p)^3\text{H}$ are summarized in Table 4.11. Summaries and discussions of earlier work including a discussion of the general behavior of the cross section and analyzing power as a function of energy can be found in the previous compilation (1973FI04).

Several multichannel resonating group calculations have been carried out (1981FU08, 1981HO04, 1982HO05, 1983FI14, 1986KA21). The [3N + 1] cluster model is found (1981FU08) to explain the general properties of the ^4He excited states. Using microscopic multichannel calculations, the investigation of (1981HO04) finds the well-established resonance structure, rules out the dd threshold resonance, and predicts a low-lying $J^\pi = 1^-, T = 0$ resonance. However, no evidence for a 0^- or 1^+ state near $E_x = 25.5$ MeV is found. This

35
same work identifies the observed differences in 2H(d, \vec{p})3H and 2H(d, \vec{n})3He as resulting from Coulomb effects alone, and explains the differences between the 3H(p, \vec{p})2H and 2H(d, \vec{n}) data of (1978HA38) as resulting from the odd spin-orbit component of the nucleon-nucleon force. Microscopic calculations of the resonance states in 4He were carried out by (1984CA20) using a modified R-matrix method and a variational approach, and by (1980BE18) within the framework of a dynamical R-matrix methodology. See also (1977BE53). Momentum distributions of single nucleon, two-nucleon cluster relative motion, etc. were reported in (1988MO09). Scattering and reactions in the $A = 4$ systems within a K-matrix formalism were studied (1980BA55). A coupled channels treatment was applied to interpret the positive- (1980RA17) and negative-parity (1975RA31) resonances in 4He. See also (1978RA01). The Amado model was used (1977AA01) to investigate D-phase anomalies in 3H(p, p)3H for $E_p = 4 - 12$ MeV. All possible couplings of p–3H and n–3He were considered in a calculation of S-matrix elements by (1972HE15). A two-dimensional integral equation solution of the $A = 4$ system was used (1978KR01) to calculate the 4He binding energy and n–3He and p–3H phase shifts. See also (1977PE13) and the review (1987FI03) of four-body scattering in the integral equation approach. Cross sections for intermediate energies were calculated by diffraction multiple-scattering theory by (1978PE20, 1976LE32), and by the Glauber formalism (1973NA06, 1976FR12, 1979ME08, 1981BI08). A generalized potential description of the p–3H interaction is presented in (1990DU11). Collective excitations of 4He are included in a study (1990FI06) of the structure of the continuum spectra in p + 3H scattering at ≈ 30 MeV.

10. 3H(p, d)2H

\[Q_m = -4.033 \quad E_b = 19.814 \]

Measurements of the 3H(p, d)2H reaction published prior to 1972 are reported in the previous compilation (1973FI04), and some possible evidence of time-reversal invariance violation is discussed. More recently, measurements of angular distributions of the analyzing power for 3H(\vec{p}, d)2H at eight energies from 6.7 to 14.7 MeV were reported in (1972HA14, 1972HA50). It is noted that by reciprocity these analyzing powers are the same as proton polarizations of the 2H(d, \vec{p})3H reaction. Comparisons were made with the mirror reaction 2H(d, \vec{n})3He, and good agreement is found when the reactions are compared at the same exit-channel energies. It is concluded that these results give no evidence for violations of charge symmetry. One additional measurement for the 3H(p, d)2H reaction was reported in (1974JA15). Differential cross sections for $E_p = 13.600$ MeV for $\theta_{lab} = 15 - 55^\circ$ were measured with an accuracy better than 1%.

Calculations of differential cross sections for the 3H(p, d)2H reaction were carried out (1986KA21) in a multichannel resonating group approximation, and good agreement with experiment was obtained.

11. (a) 3H(d, n)4He

\[Q_m = 17.589 \quad E_b = 16.696 \]

(b) 3H(d, n)3He + n

\[Q_m = -2.988 \]

(c) 3H(d, n)3H + 1H

\[Q_m = -2.225 \]

Measurements of cross sections and analyzing powers for 3H(d, n) reactions are summarized in Table 4.12. Earlier work is reviewed and discussed in the previous compilation (1973FI04). As noted there, the neutron spectrum from reaction (a) indicates no excited states in 4He between 1 and 13 MeV excitation. The properties of the neutron distributions from reactions (b) and (c) are also described.
Table 4.11: Measurements and summaries (S) of cross sections $\sigma(\theta)$, analyzing powers $A(\theta)$, and polarizations $P(\theta)$, for the $^3\text{H}(p, p)^3\text{H}$ reaction

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$19 - 57$</td>
<td>$\sigma(\theta), P(\theta)$</td>
<td></td>
<td>Deduced phase shifts. Compared with $p + ^3\text{He}$.</td>
<td>1972DA08</td>
</tr>
<tr>
<td>$19, 30$</td>
<td>$\sigma(\theta), A(E, \theta)$</td>
<td>$20 - 160$</td>
<td>Uncertainties ≈ 0.005. Parametrized in terms of phase shifts.</td>
<td>1972DA10</td>
</tr>
<tr>
<td>$9.4 - 10.7, 12.0, 13.4, 14.7$</td>
<td>A</td>
<td>$25 - 160$</td>
<td>Uncertainties ≈ 0.005. Parametrized in terms of phase shifts.</td>
<td>1972HA51</td>
</tr>
<tr>
<td>$6.7, 7.4, 8.0$</td>
<td>A</td>
<td>$110 - 160$</td>
<td></td>
<td>1972HA51</td>
</tr>
<tr>
<td>13.6</td>
<td>$\sigma(\theta)$</td>
<td>$12 - 50$</td>
<td>Uncertainties $< 1%$.</td>
<td>1974JA15</td>
</tr>
<tr>
<td>600</td>
<td>$\sigma(\theta)$</td>
<td>$0.08 <</td>
<td>t</td>
<td>< 0.45(\text{GeV}/c)^2$</td>
</tr>
<tr>
<td>$4.15 - 12.00$</td>
<td>$\sigma(\theta), A$</td>
<td>$\approx 30 - 160$</td>
<td>Phase-shift analysis. Contour plots. Related to ^4He levels.</td>
<td>1976KA12</td>
</tr>
<tr>
<td>1.245</td>
<td>$\sigma(\theta)$</td>
<td>$0.045 <</td>
<td>t</td>
<td>< 0.686(\text{GeV}/c)^2$</td>
</tr>
<tr>
<td>$318 (E_t = 2.5 \text{ GeV})$</td>
<td>$\sigma(\theta)$</td>
<td>$0.02 <</td>
<td>t</td>
<td>< 0.15(\text{GeV}/c)^2$</td>
</tr>
</tbody>
</table>
Table 4.12: Measurements and summaries (S) of cross sections $\sigma(\theta)$, analyzing powers $A(\theta)$, and polarizations $P(\theta)$, for 3H(d, n) reactions

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Measurement</th>
<th>$\theta_{\text{c.m.}}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>P_n</td>
<td>30</td>
<td>Measured with He gas scatterer.</td>
<td>1972RY01</td>
</tr>
<tr>
<td>1 – 5</td>
<td>P_n</td>
<td>10 – 110</td>
<td>Legendre polynomial expansion of σP, Contour map.</td>
<td>1972SM05</td>
</tr>
<tr>
<td>5 – 15.7</td>
<td>$\sigma(\theta)$</td>
<td>0</td>
<td>Obtained absolute $\sigma(\theta)$. Improved accuracy.</td>
<td>1973MC05</td>
</tr>
<tr>
<td>5.5 – 13</td>
<td>$\sigma(E_p)$ for 3He(d, p)pt</td>
<td>60</td>
<td>Studied states in $A = 5$ involving coupling to 0^+ state in 4He.</td>
<td>1974SC04</td>
</tr>
<tr>
<td>8 – 16</td>
<td>$\sigma(\theta, E_d)$</td>
<td>0 – 145 (lab)</td>
<td>Polynomial expansion. Compared with cluster model.</td>
<td>1975MA28</td>
</tr>
<tr>
<td>3.5 – 12.8</td>
<td>A_{zz}</td>
<td>0</td>
<td>Calculated P_x from A_{zz} for use of 3H(d, n) as n source reaction.</td>
<td>1976LI15</td>
</tr>
<tr>
<td>0.7</td>
<td>P_n</td>
<td>0 – 50 (lab)</td>
<td>Used liquid He polarimeter.</td>
<td>1978CA13</td>
</tr>
<tr>
<td>7 – 16.5</td>
<td>$\sigma(\theta)$</td>
<td>0</td>
<td>Established absolute scale. Analyzed new data along with previous data.</td>
<td>1978DR08</td>
</tr>
<tr>
<td>0.24 – 6.75</td>
<td>A_{zz}</td>
<td>0</td>
<td>Measured 3H(d, n) along with 3He(d, p). Studied charge symmetry.</td>
<td>1980DR01</td>
</tr>
<tr>
<td>0.333</td>
<td>4He yield</td>
<td>90</td>
<td>Used Si detector to measure 4He to obtain neutron yield.</td>
<td>1980GA25</td>
</tr>
<tr>
<td>3 – 10</td>
<td>$\sigma(\theta)$ evaluated</td>
<td>0, 180</td>
<td>Improved evaluation of $\sigma(0)$, $\sigma(180)$ by including 4He particle excitation functions.</td>
<td>1981DR05(S)</td>
</tr>
<tr>
<td>37.1</td>
<td>P_n (inferred from A_y for 4He(\bar{n}, d))</td>
<td>38.6</td>
<td>Studied TRI and charge symmetry.</td>
<td>1982SA05</td>
</tr>
<tr>
<td>0.02 – 0.05</td>
<td>E_n, $\sigma(E_n)$</td>
<td>0</td>
<td>Measured 2H energy loss in solid Ti-T target.</td>
<td>1984TS09</td>
</tr>
<tr>
<td>3.0</td>
<td>$\sigma(E_n)$</td>
<td>85 – 150</td>
<td>Presented calibration procedure for fast neutron to.f. spectrometer.</td>
<td>1985HO12</td>
</tr>
<tr>
<td>0 – 0.275</td>
<td>$\sigma(d, \gamma)/\sigma(d, n)$</td>
<td>0</td>
<td>Measured branching ratio. Integrated over resonance 0 – 275 keV.</td>
<td>1986MO05</td>
</tr>
<tr>
<td>1, 1.5, 2</td>
<td>$\sigma(\theta, E_d)$</td>
<td>0 – 150 (lab)</td>
<td>Presented Legendre polynomial fits.</td>
<td>1987LI07</td>
</tr>
</tbody>
</table>
Table 4.12: Measurements and summaries (S) of cross sections $\sigma(\theta)$, analyzing powers $A(\theta)$, and polarizations $P(\theta)$, for 3H(d, n) reactions (continued)

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 − 200</td>
<td>$\sigma(E_d)$</td>
<td></td>
<td>Studied reaction as neutron source.</td>
<td>1989GA21</td>
</tr>
</tbody>
</table>

Experiments bearing on the question of possible charge-symmetry breaking include the 3H(d, \vec{n})4He polarization measurements of (1972SM05) and the 3H(\vec{d}, n)4He and 3He(\vec{d}, p)5He analyzing power measurements of (1980DR01). In the latter work the authors note large differences for the two reactions for E_d below 1.65 and above 4 MeV. Comparisons of the analyzing powers for the inverse reactions 4He(\vec{n}, d)3H and 4He(\vec{p}, d)3He are reported in (1982SA05) to be consistent with charge symmetry.

Relatively few calculations for reaction (a) have been carried out. For early work see the previous compilation (1973FI04). More recently, the work described in (1972SE09, 1975SE07, 1977SE09) derives criteria for a simplified analysis of measurements with polarized deuterons involving $A_{yy}(\theta)$ in the vicinity of isolated resonances. See also the multichannel resonating group calculations of (1990BL08). A nondynamical calculation of polarization observables for E_d below 1 MeV in terms of (l, s, j) matrix elements is described in (1986KO21). A new method for determination of the nuclear vertex constants from charged particle-transfer reactions is used to analyze $\sigma(\theta)$ for reaction (a) at E_d = 15 MeV. See also (1990KA22). Analytical approximations to the cross section for the purpose of calculation of resonant thermonuclear reaction rates are discussed in (1987GU25). See also the $T \approx 300$ K reaction rate calculations of (1989SC25) and those of (1989AB21).

12. (a) 3H(t, n)5He $\quad Q_m = 10.438 \quad E_b = 12.306$
(b) 3H(t, 2n)4He $\quad Q_m = 11.332$

These reactions are reviewed by (1988AJ01). Early measurements of neutron spectra are noted in the previous compilation (1973FI04). No new work has been reported on reaction (a). A measurement of the 0° differential cross section for 3H(t, 2n)4He at E_t = 160 keV and angular distributions at 55 − 80 keV were reported in (1977SE11). A resonating group method was used to calculate the energy dependence for the cross section and astrophysical factor in (1989VA20).

13. (a) 4ΛH(π^-)3H + 1H $\quad Q_m = 35.744$
(b) 4ΛH(π^-)4He $\quad Q_m = 34.981$
(c) 4ΛH(π^+)3He + n $\quad Q_m = 55.559$

Early work on three-body decays (a) and (c) was summarized in the previous compilation (1973FI04). More recently, extensive reviews of experimental and theoretical work on hypernuclei were presented in
A theoretical study (1985LY1A) found that the polarization of the protons and Tritons in reaction (a) is largely determined by the strong interaction in the p-^3H system. The two-body decay (b) was used (1988TA29, 1989TA16, 1989TA19) in measurements of the formation probability of ^3H from K^- absorption at rest on light nuclei. Theoretical studies of ^3H production, structure, and decay are reported in (1982KO13, 1984CO1E, 1986DZ1B, 1987YA1M, 1988MA09, 1989TA17, 1989WA25). Calculations of Coulomb effects and charge-symmetry breaking for A = 4 hypernuclei are described in (1985BO17). A four-body calculation of the 0^+ − 1^+ binding energy difference is reported in (1988GH1F). Non-mesonic decays are discussed in (1985TA1E, 1986SZ1A, 1990LY1B). Evidence for the existence of a Σ-nucleus bound state formed in a (K^-, π^-) reaction on ^4He was reported in (1989HA39). See also (1990HA08, 1990HA11). The possibility of forming doubly strange Ξ hypernuclei is considered in (1983DO1B).

14. \(^3\text{He}(n, \gamma)^4\text{He}\)
\[Q_m = 20.578\]
\[E_0 = 20.578\]

Measurements for the \(^3\text{He}(n, \gamma)^4\text{He}\) reaction made since the previous compilation (1973FI04) are listed in Table 4.13. Measurements of the thermal neutron capture cross section were reported in (1973BO34, 1979SU05, 1980AL05, 1989WO10, 1991WE06). The results are listed in Table 4.14 below. Experimental and theoretical results for neutron radiative capture on light nuclei including \(^3\text{He}\) are reviewed in (1981SH25). Calculations (1981TO03) including meson-exchange currents were able to account satisfactorily for the thermal neutron cross section. A recent Monte Carlo variational calculation in which the scattering-length dependence was deduced was reported in (1990CA28). The results indicate that the cross section is almost entirely due to exchange currents.

Shell model calculations including two-body meson exchange currents are reported for both \(^3\text{He}(n, \gamma)^4\text{He}\) and the weak \(^3\text{He}(p, e^+\nu)^4\text{He}\) reaction (1991WE06).

Doubly radiative neutron capture cross sections were calculated and reported in (1976LE27). Cross sections in the 0 – 70 keV region are reported in (1979AL25), and are shown to be in general agreement with an E1 direct capture calculation. At higher energies (\(E_n = 6.0 – 17\) MeV) the detailed-balanced cross sections of (1981WA18) confirmed the reported \(^4\text{He}(\gamma, n)\) cross section (see the section on the \(^4\text{He}(\gamma, n)\) reaction) which, when combined with the previously reported \(^4\text{He}(\gamma, p)\) cross section, implied a \((\gamma, p)\)-to-\((\gamma, n)\) ratio of 1.6 to 1.9 in the 23 – 33 MeV excitation region of \(^4\text{He}\). Additional information on the capture process in this energy region is provided by the polarized neutron capture cross sections and analyzing powers of (1982WE05). Calculations carried out within the framework of the recoil-corrected continuum shell model (1981HA10, 1983HA21) indicated that standard theoretical assumptions were unlikely to account for the reported large \((\gamma, p)\)-to-\((\gamma, n)\) ratio. On the other hand, the microscopic multichannel resonating group model calculations of (1988WA20) imply that the effect of the Coulomb force on thresholds for the two mirror channels can account for the observed differences in measured observables in the 23 – 33 MeV excitation region of \(^4\text{He}\), excluding the “anomalous” \((\gamma, p)\)-to-\((\gamma, n)\) ratio. For additional related information see sect. 7 on \(^3\text{H}(p, \gamma)\) and sect. 21 on \(^4\text{He}(\gamma, n)\), \(^4\text{He}(\gamma, p)\). The whole range of experimental and theoretical evidence bearing on the \(\sigma(\gamma, p)/\sigma(\gamma, n)\) ratio is summarized in a separate discussion at the end of sect. 21.

The measured values for the thermal neutron capture cross section of the \(^3\text{He}(n, \gamma)^4\text{He}\) reaction are listed in Table 4.14.

The two latest measurements (1989WO10, 1991WE06) are in excellent agreement, but disagree with the result of (1980AL05). It should be noted, however, that the results of (1989WO10) rely heavily upon
Table 4.13: Measurements and summaries (S) of cross sections $\sigma(\theta)$, analyzing powers $A(\theta)$, and polarizations $P(\theta)$, for $^3\text{He}(n, \gamma)^4\text{He}$ reaction

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>Measurement</th>
<th>$\theta_{\text{c.m.}}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal energies</td>
<td>$\sigma_{n\gamma}$</td>
<td></td>
<td>Compared with direct E1 calculation.</td>
<td>1973BO34</td>
</tr>
<tr>
<td>0.001 − 0.070</td>
<td>$\sigma(E_n)$</td>
<td>45</td>
<td>Measured (n, $\gamma\gamma$)/(n, γ) ratio.</td>
<td>1976LE27</td>
</tr>
<tr>
<td>Thermal energies</td>
<td>$\sigma(n, \gamma), \sigma(n, \gamma\gamma)$</td>
<td>45</td>
<td>Used pulsed reactor, t.o.f. Estimated admixture of ^4He “mixed-symmetry” state.</td>
<td>1979SU05</td>
</tr>
<tr>
<td>Thermal energies</td>
<td>$\sigma(n, \gamma)$</td>
<td>90</td>
<td>Compared detailed-balanced results to existing $^4\text{He}(\gamma, n)$ and $^4\text{He}(\gamma, p)$ cross sections.</td>
<td>1980AL05</td>
</tr>
<tr>
<td>6.0 − 17.0</td>
<td>$\sigma(E_n, \theta)$</td>
<td>30 − 140</td>
<td>Deducing b_k coefficients, compared with continuum shell model.</td>
<td>1981WA18</td>
</tr>
<tr>
<td>9.0</td>
<td>$\sigma(\theta), A_y$</td>
<td>30 − 140</td>
<td>Activation measurement.</td>
<td>1982WE05</td>
</tr>
<tr>
<td>24.5</td>
<td>$\sigma_{n\gamma}$</td>
<td></td>
<td>Deduced astrophysical factor.</td>
<td>1989WE07</td>
</tr>
<tr>
<td>Thermal energies</td>
<td>$\sigma_{n\gamma}$</td>
<td></td>
<td>Carried out shell-model calculations.</td>
<td>1989WO10</td>
</tr>
<tr>
<td>Thermal, 0.0245</td>
<td>$\sigma_{n\gamma}$</td>
<td></td>
<td>Discussed Solar HEP-neutrino implications.</td>
<td>1991WE06</td>
</tr>
</tbody>
</table>

Table 4.14: Measured values for the thermal neutron capture cross section for the $^3\text{H}(n, \gamma)^4\text{He}$ reaction

<table>
<thead>
<tr>
<th>Refs.</th>
<th>$\sigma_{n\gamma}^{(th)}(\mu\text{b})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973BO34</td>
<td>60 ± 30</td>
</tr>
<tr>
<td>1979SU05</td>
<td>60 ± 12</td>
</tr>
<tr>
<td>1980AL05</td>
<td>27 ± 9</td>
</tr>
<tr>
<td>1989WO10</td>
<td>54 ± 6</td>
</tr>
<tr>
<td>1991WE06</td>
<td>55 ± 3</td>
</tr>
</tbody>
</table>
the $^3\text{He}(p, \gamma)^4\text{He}$ cross section at $E_p = 3.82$ MeV (1970ME07). If the lower value reported for this cross section in (1990FE06) is used, the $\sigma^{(\text{th})}_{n\gamma}$ cross section becomes 40 ± 4 µb, which agrees (within error) with that of (1980AL05).

A neutron-capture cross section at 24.5 keV was measured by (1991WE06) to be $\sigma_{n\gamma} (24.5 \text{ keV}) = 9.1 \pm 0.8$ µb. The thermal-neutron-capture cross section has been used to estimate the astrophysical S-factor for the $^3\text{He}(p, e^+\gamma)^4\text{He}$ reaction (1989WO10, 1991WE06). The results indicate that about 10% of the solar-neutrino flux in the Davis experiment can be ascribed to the high-energy $^3\text{He} + p$ neutrinos. The double photon decay cross sections are also given in (1980AL05) and (1979SU05).

15. $^3\text{He}(n, n)^3\text{He}$

Measurements of cross sections, polarizations and analyzing powers for the $^3\text{He}(n, n)^3\text{He}$ reaction are summarized in Table 4.15. Earlier work is reviewed in the previous compilation (1973FI04). More recent experiments are reviewed in (1978SU1A, 1981GR1A). See also the discussions in (1983HA20, 1985KL03, 1988JA06) of the experimental and theoretical developments relating to $^3\text{He}(n, n)^3\text{He}$ and the $A = 4$ system.

A variety of theoretical approaches have been used to describe n–^3He scattering. At thermal energies, the complex incoherent scattering length for ^3He was estimated (1975SE06) on the basis of effective range theory and a Breit-Wigner analysis. Low-energy n–^3He scattering was studied in the integral equation approach (1976KH01, 1976TJ01) and scattering lengths were calculated. Higher energy observables for nucleon reaction channels in ^4He were calculated by recoil-corrected continuum shell model techniques (1979HA22), and excellent agreement with experiment was reported. Proton and neutron polarization differences in $^3\text{He}(\vec{n}, n)^3\text{He}$ and $^3\text{H}(\vec{p}, p)^3\text{H}$ were analyzed (1977BE53) in the framework of a dynamical R-matrix model methodology, and quantitative agreement with experiment was obtained. Several resonances are predicted in the vicinity of a narrow resonance near $E_x = 37$ MeV suggested by the phase-shift analysis of (1976LI03). The R-matrix methodology is used to construct a detailed theoretical model of ^4He (1980BE18). Scattering results and phase-shift calculations are presented and discussed and are also compared with resonating group and field-theoretic models. Cluster-model calculations of ^4He excited states based on (trinucleon + nucleon) (1976IO01, 1981FU08) as well as (trinucleon + nucleon) and $d + d$ clusters (1983FI14) have been carried out. Collective and cluster degrees of freedom are included in a study (1990FI06) of the structure of the continuum spectra of ^4He in the ≈ 30 MeV region. The ground and even-parity states were examined within the framework of a multichannel resonating group model approach (1986KA21), and agreement with the elastic scattering and polarization observables was reported. Multichannel resonating group calculations for $A = 4$ from the first breakup threshold to 10 MeV are presented (1981HO04), and reported to predict the established resonance structure and provide evidence bearing on other possible states. Multichannel resonating-group calculations, which include distortion effects due to the coupled deuteron cluster, were used (1986KA21) to examine the ground and even-parity excited states and the scattering problem of the ^4He system.

16. (a) $^3\text{He}(n, p)^2\text{H}$

(b) $^3\text{He}(n, p)^2\text{H} + n$

(c) $^3\text{He}(n, p)^1\text{H} + 2n$

\begin{align*}
Q_m &= 0.764 \\
Q_m &= -5.494 \\
Q_m &= -7.718 \\
E_b &= 20.578
\end{align*}
Table 4.15: Measurements and summaries (S) of cross sections $\sigma(\theta)$, analyzing powers $A(\theta)$, and polarizations $P(\theta)$, for the 3He(n, n)3He reaction

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>P_n</td>
<td>40 – 120</td>
<td>Measured asymmetry, differential polarization.</td>
<td>1972HO04</td>
</tr>
<tr>
<td>7.9, 12.0, 13.6, 14.4, 23.7</td>
<td>$\sigma(E, \theta)$</td>
<td>26 – 139</td>
<td>Deduced σ_{el}, limits for σ_{tot}, $\sigma_{n,2n}$ + $\sigma_{n,pn}$. Compared with charge-symmetric reaction.</td>
<td>1974DR01</td>
</tr>
<tr>
<td>8.0, 12.0, 17.1</td>
<td>P_n</td>
<td>47 – 148</td>
<td>Compared with 3H(\vec{p}, p). Phase-shift analysis for 3He(n, n) for $1 < E < 23.7$ MeV.</td>
<td>1976LI03</td>
</tr>
<tr>
<td>2.43, 3.00</td>
<td>$A_y(\theta)$</td>
<td></td>
<td>Obtained singlet and triplet scattering lengths.</td>
<td>1977DR05</td>
</tr>
<tr>
<td>0.001 – 0.200</td>
<td>σ_{total}, $\sigma_{n,n}$</td>
<td></td>
<td></td>
<td>1981AL09</td>
</tr>
<tr>
<td>1.67, 2.43, 3.0, 3.4, 7.8</td>
<td>$A_y(\theta)$</td>
<td></td>
<td>Compared with predictions of R-matrix analysis.</td>
<td>1982DR09</td>
</tr>
<tr>
<td>1.5 – 40</td>
<td>$\sigma(E)$</td>
<td>26 – 161</td>
<td>Compared with 3H(n, n), 3He(p, p).</td>
<td>1985KL03(S)</td>
</tr>
<tr>
<td>3.7 – 10.0, 15.3, 22.0</td>
<td>$A_y(E, \theta)$</td>
<td>50 – 160</td>
<td>Improved precision, phase-shift analysis.</td>
<td>1986KL04(S)</td>
</tr>
<tr>
<td>15 – 50</td>
<td>$A_y(E, \theta)$</td>
<td></td>
<td></td>
<td>1988JA06(S)</td>
</tr>
<tr>
<td>0.95 – 2.0</td>
<td>$A_y(E, \theta)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Early work on reaction (a) is summarized in the previous compilation (1973FI04). It is noted there that the reaction proceeds almost 100% through the 1S_0 resonance at $E_n = -0.25$ to -1.0 MeV, and that the proton spectra from reactions (b) and (c) reveal no clear indication of an n–d, three-nucleon or two-nucleon final-state interaction.

A more recent measurement (1975WI04) of the 3He(n, p)3H total cross section at $E_n = 3.5$ MeV gives $\sigma_{total} = 422 \pm 58$ mb. The cross section was measured (1982BO19) in the energy range $E_n = 0.15 – 150$ keV with an accuracy of 2–3%, and the departure from the $1/\nu$ law was investigated. Measurements of the P-odd asymmetry in 3He(n, p)3H were made (1981VE08), and an upper limit was obtained. Little theoretical work on reaction (a) has been reported since the previous compilation (1973FI04). A resonating-group model calculation was carried out (1976IO01) involving the groupings n+3He and p+3H. Total cross sections were calculated and compared with experiment at 1, 3, 5, 6, and 14.4 MeV. The contribution of the triangle diagram for the 3He(n, p) reaction was investigated in a K-Matrix scattering calculation reported in (1984BA17).
17. (a) 3He(n, d)2H
\[Q_m = -3.27 \]
\[E_b = 20.578 \]
(b) 3He(n, d)1H + n
\[Q_m = -5.494 \]
(c) 3He(n, 2n2p)
\[Q_m = -7.718 \]

Reactions (a), (b), and (c) are reviewed in the previous compilation (1973FI04). No new work has been reported.

18. (a) 3He(d, p)4He
\[Q_m = 18.353 \]
\[E_b = 16.387 \]
(b) 3He(d, np)3He
\[Q_m = -2.225 \]
(c) 3He(d, 2pt)
\[Q_m = -1.461 \]
(d) 3He(d, p2d)
\[Q_m = -5.494 \]

Table 4.16: Measurements and summaries (S) of cross sections $\sigma(\theta)$, analyzing powers $A(\theta)$, polarizations $P(\theta)$, and transfer coefficients for 3He(d, p)4He

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.99, 2.81, 3.94, 6.0</td>
<td>P</td>
<td>5.7 – 148.5</td>
<td>Legendre polynomial fits. Contour map.</td>
<td>1973CL13</td>
</tr>
<tr>
<td>4 – 14</td>
<td>$K_\alpha^\prime, K_\beta^\prime$</td>
<td>0</td>
<td>Compared with 3H(d, n) results and R-matrix parameterization.</td>
<td>1973HA51</td>
</tr>
<tr>
<td>8.0</td>
<td>$P_{\nu}^\prime, K_\alpha^\prime, K_\beta^\prime, K_\gamma^\prime, K_\delta^\prime$, $K_{\alpha\beta}^\prime, K_{\alpha\gamma}^\prime, K_{\alpha\delta}^\prime$</td>
<td>15, 30, 45, 60</td>
<td>Compared with 3H(d, n) results and R-matrix parameterization.</td>
<td>1973HA51</td>
</tr>
<tr>
<td>12</td>
<td>Left-right asymmetry</td>
<td>20 – 130</td>
<td>Polarized 3He target.</td>
<td>1974BE67</td>
</tr>
<tr>
<td>0.344, 0.065, 0.727</td>
<td>$iT_{11}, T_{20}, T_{21}, T_{22}$</td>
<td>25 – 160</td>
<td>Polynomial fit. Tabulates coefficients.</td>
<td>1974GA21</td>
</tr>
<tr>
<td>10.0</td>
<td>$\sigma(\theta)$</td>
<td>120 – 168 (lab)</td>
<td>Accuracy < 1%.</td>
<td>1974JA15</td>
</tr>
<tr>
<td>6.6 – 15.8</td>
<td>A_{zz}</td>
<td>0</td>
<td>Studied reaction as \vec{d} polarization analyzer.</td>
<td>1974TR02</td>
</tr>
<tr>
<td>0.34 – 11.60</td>
<td>T_{20}</td>
<td>0</td>
<td>Absolute calibration.</td>
<td>1976SC15</td>
</tr>
<tr>
<td>9.28</td>
<td>A_{yy}</td>
<td>23.6</td>
<td>Found maximum $A_{yy} = 1$.</td>
<td>1976GR08</td>
</tr>
<tr>
<td>8.5 – 10.5</td>
<td>A_y, A_{yy}</td>
<td>12 – 32</td>
<td>Found maximum $A_{yy} = 1$.</td>
<td>1976GR10</td>
</tr>
<tr>
<td>6.44</td>
<td>iT_{11}</td>
<td>29</td>
<td>Presented absolute standard for d induced vector analyzing powers.</td>
<td>1977ST06</td>
</tr>
<tr>
<td>0.24 – 6.75</td>
<td>A_{zz}</td>
<td>0</td>
<td>Compared A_{zz} for 3He(d, p), 3H(d, n).</td>
<td>1980DR01</td>
</tr>
<tr>
<td>3 – 6.75</td>
<td>T_{20}</td>
<td>0</td>
<td>Discussed consistency of absolute calibration data below 6.75 MeV.</td>
<td>1980GR14</td>
</tr>
<tr>
<td>15 – 40</td>
<td>$\sigma(\theta), iT_{11}$</td>
<td>15 – 165</td>
<td>Polynomial expansion, DWBA analysis.</td>
<td>1981RO13</td>
</tr>
<tr>
<td>4 – 12</td>
<td>P_x, P_{xx}</td>
<td></td>
<td>Described design, calibration and performance of \vec{d} polarimeter.</td>
<td>1982GR25</td>
</tr>
</tbody>
</table>
Table 4.16: Measurements and summaries (S) of cross sections \(\sigma(\theta)\), analyzing powers \(A(\theta)\), polarizations \(P(\theta)\), and transfers coefficients for \(^3\text{He}(d, p)^4\text{He}\) (continued)

<table>
<thead>
<tr>
<th>(E_d) (MeV)</th>
<th>Measurement</th>
<th>(\theta_{c.m.}) (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 30</td>
<td>(\sigma(E_d, \theta)), (iT_{11}, T_{20}, T_{21}), (T_{22}, A_y, A_{yy}, A_{xx})</td>
<td>Reviewed polarization measurements (A = 4 - 6).</td>
<td>1987GR08(S)</td>
<td></td>
</tr>
<tr>
<td>15 – 100</td>
<td>(iT_{11}, T_{20}, T_{21}, T_{22})</td>
<td>Discussed design construction and calibration of high efficiency (d) polarimeter.</td>
<td>1987GR30</td>
<td></td>
</tr>
<tr>
<td>0.0695 – 0.1418</td>
<td>(\sigma(E_d, \theta))</td>
<td>Windowless gas target, deduced (S(E)).</td>
<td>1987KR18</td>
<td></td>
</tr>
<tr>
<td>0.0059 – 0.0416</td>
<td>(\sigma(E_d))</td>
<td>Measured (^3\text{He}(d, p)) and (^2\text{H}(^3\text{He}, p)), studied effects of electron screening.</td>
<td>1988EN03</td>
<td></td>
</tr>
<tr>
<td>9.25 – 19.0</td>
<td>Polarimeter analyzing power</td>
<td>Developed polarimeter based on (^3\text{He}(d, p)).</td>
<td>1988SA40</td>
<td></td>
</tr>
<tr>
<td>10 – 16</td>
<td>(A_y, A_{yy}, A_{xx}, A_{zz}) 0, 25</td>
<td>Described polarimeter based on (^3\text{He}(d, p)).</td>
<td>1989AB17</td>
<td></td>
</tr>
<tr>
<td>0.006 – 0.042</td>
<td>(\sigma(E_d))</td>
<td>Studied effect of electron screening.</td>
<td>1989SC10</td>
<td></td>
</tr>
<tr>
<td>1 – 13</td>
<td>(iT_{11}, T_{20}, T_{21}, T_{22}) 10 – 170</td>
<td>High-precision measurement.</td>
<td>1990BI13</td>
<td></td>
</tr>
</tbody>
</table>

Reactions (a) to (c) are reviewed by (1988AJ01). Early measurements of single and coincident charged-particle spectra are summarized in (1973FI04) and a discussion of evidence bearing on excited states of \(^4\text{He}\) is presented. Measurements of cross sections, analyzing powers, polarizations, and polarization transfer coefficients are summarized in Table 4.16. See also (1986HE16). Polarization observables for the \(^3\text{He}(d, p)^4\text{He}\) reaction and other reactions relating to \(A = 4 - 6\) were reviewed in (1987GR08). A considerable number of measurements of vector and tensor analyzing powers have demonstrated the suitability of reaction (a) as an analyzer of deuteron polarization (1973HA51, 1973KA08, 1974GA21, 1974TR02, 1976GR08, 1976GR10, 1977ST06, 1980DR01, 1980GR14, 1981RO13, 1988SA40, 1989AB17). See also the related theoretical work (1976SE03, 1977SE09, 1978SE01). Design and calibration of polarimeters based on reaction (a) have been presented in (1980ST1A, 1982GR25, 1987GR30).

Distorted-wave calculations for reaction (a) are presented and discussed in (1975NE11). See also (1989BO22). Off-diagonal interaction spin dependence is discussed in (1975YA12). An estimate of cross sections for reaction (a) at intermediate energies in terms of the \((p, \pi^+)\) cross section is discussed in (1980WI02). The single-resonance contribution to the cross section and reaction rate at thermonuclear energies is studied (1987GU25), and the effect of electron screening on low-energy fusion cross sections is discussed in (1987AS05).

Measurements of the breakup reactions (b), (c), and (d) are summarized in Table 4.17. A discussion of these reactions is included in the review of quasi-free processes and few-body systems of (1974SL04). Calculations for reaction (c) in the region of small proton-tritium relative energies are presented in (1984DU10).

19. (a) \(^3\text{He}(t, d)^4\text{He}\)
 \[Q_m = 14.320 \quad E_b = 15.796 \]

 (b) \(^3\text{He}(t, d)^3\text{He} + n\)
 \[Q_m = -6.257 \]

 (c) \(^3\text{He}(t, d)^3\text{H} + ^1\text{H}\)
 \[Q_m = -5.494 \]

 (d) \(^3\text{He}(t, d)^2\text{H}\)
 \[Q_m = -9.526 \]
Table 4.17: Measurements and summaries (S) of particle spectra from $^3\text{He} + \text{d}$ breakup reactions

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Particles detected</th>
<th>θ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.92</td>
<td>p, ^3He (coin.), p, ^3H (coin.)</td>
<td>$\theta_p = 60, \theta(^3\text{He}) = 30$</td>
<td>Studied FSI, discussed effects of ^4He states.</td>
<td>1972NI02</td>
</tr>
<tr>
<td>27.5</td>
<td>p, n (coin.)</td>
<td>$10 - 35$ (lab), $\theta_n = \theta_p$</td>
<td>Studied pn FSI.</td>
<td>1973CH05</td>
</tr>
<tr>
<td>23.5 c.m.</td>
<td>^3H</td>
<td>$10 - 180$</td>
<td>Measured absolute energy spectra. Deduced ^3He range parameter.</td>
<td>1975RU04</td>
</tr>
<tr>
<td>15.0</td>
<td>p, ^3He (coin.), p, ^3He (coin.)</td>
<td>± 30</td>
<td>Measured A_y, A_{yy}, A_{xx}.</td>
<td>1976ME13</td>
</tr>
<tr>
<td>$E_d = 22.3, 33, E(^3\text{He}) = 30, 33.5, 52.5$</td>
<td>d, d (coin.), p, ^3H (coin.), p, d (coin.), p, ^3H (coin.)</td>
<td>$10 - 65$</td>
<td>Studied quasi-free scattering and quasi-free reaction processes.</td>
<td>1977SL04</td>
</tr>
<tr>
<td>60</td>
<td>d, d</td>
<td>$15 - 64$</td>
<td>Measured $\sigma(E, \theta_1, \theta_1)$ in QFS region. Studied multiple scattering effects. PWIA analysis.</td>
<td>1985OK03</td>
</tr>
</tbody>
</table>

Reactions (a) through (d) are reviewed in the previous compilation (1973FI04). For reaction (a) measurements of analyzing powers $A_y(\theta)$ for $E_t = 9.02, 12.86$, and 17.02 MeV at $\theta_{c.m.} = 16^\circ - 159^\circ$ as well as measurements of $A_y(E)$ at 90° for $E_t = 9.02 - 17.27$ MeV were reported in (1977HA42). Marked deviations from the antisymmetric shape predicted by a simple particle-transfer model incorporating charge symmetry were observed. Possible charge asymmetry effects in this reaction were also discussed in (1978FE07, 1978FE08). See also (1988RA31). No new work has been reported on reactions (b) through (d).

20. (a) $^3\text{He}(^3\text{He}, 2p)^4\text{He}$ $Q_m = 12.86$ $E_b = 11.489$
(b) $^3\text{He}(^3\text{He}, 2p)^3\text{H} + ^1\text{H}$ $Q_m = -6.954$

Measurements on reaction (a) reported since the previous compilation (1973FI04) include spectra and differential cross sections at beam energies of 9.11, 7.88, and 6.9 MeV (1972DE46) and at $E_{c.m.} = 16$ MeV (1974RO01). The total cross section was measured for $E_{c.m.} = 30 - 150$ keV (1974DW01), and the astrophysical factor $S(E)$ was measured at $E_{c.m.} = 17.9 - 342.5$ keV.

Total cross section measurements for $^3\text{He} + ^3\text{He}$ at 17.9, 21.7, and 24.0 MeV were reported in (1987BR02). See also (1985SI12).

Calculations to determine the NN scattering parameters from final-state interactions in reaction (a) were described in (1974DE18). Calculations of a diproton production mechanism in reaction (a) were reported in (1976MC04), and the effects of electron screening on cross sections for low-energy fusion reactions, including reaction (a), were studied in (1987AS05, 1989BE08). An extended elastic model was applied to calculate the reaction rate at astrophysical energies in (1989SC25, 1990SC15). The astrophysical S-factor is calculated with the two-channel approximation of the RGM in (1989VA20).

Triton spectra from reaction (b) are discussed in the previous compilation (1973FI04).
21. (a) $^4\text{He}(\gamma, \pi^0)^4\text{He}$ \hspace{1cm} $Q_m = -134.97$
(b) $^4\text{He}(\gamma, n)^3\text{He}$ \hspace{1cm} $Q_m = -20.578$
(c) $^4\text{He}(\gamma, p)^3\text{H}$ \hspace{1cm} $Q_m = -19.814$
(d) $^4\text{He}(\gamma, n\pi^0)^3\text{He}$ \hspace{1cm} $Q_m = -155.55$
(e) $^4\text{He}(\gamma, p\pi^-)^3\text{He}$ \hspace{1cm} $Q_m = -158.85$
(f) $^4\text{He}(\gamma, d)^2\text{H}$ \hspace{1cm} $Q_m = -23.847$
(g) $^4\text{He}(\gamma, np)^2\text{H}$ \hspace{1cm} $Q_m = -26.071$
(h) $^4\text{He}(\gamma, 2p2n)$ \hspace{1cm} $Q_m = -28.296$

Measurements of photonuclear cross sections for ^4He are summarized in Table 4.18. Earlier experimental and theoretical work is summarized and discussed in the previous compilation (1973FI04). Measurements and analyses of reaction (a) for energies near threshold are reported in (1980AR06, 1981AR10, 1988AR08), and for energies near the $\Delta(1232)$ resonance in (1985AN14). Measurements at GeV energies in the region of small momentum transfers are reported in (1982AL09). See also (1978AL08). A number of calculations have been made with the Δ-isobar model (1981OS1A, 1981SA01, 1983KO02) and in the distorted wave impulse approximation (1983GI02, 1983LE12, 1985KA22, 1986LE07, 1987CH24, 1987LE13). Impulse approximation calculations in the resonance region were reported in (1978TR03, 1979GA18). Screening corrections were calculated (1978ST21). Momentum-dependent terms in the operator and a two-nucleon exchange production mechanism were discussed in (1977VE05), and calculations near threshold were reported. Rescattering corrections were calculated in (1976OS03). A discussion and comparison of the various methods of calculating the amplitudes of partial reactions are presented in (1983TR02) for energies in the nucleon resonance region.

Reactions (b) and (c) have cross sections which are similar in shape at all energies as pointed out in the previous compilation (1973FI04), but there has been considerable disagreement among the results of the measurements of each. The whole range of experimental and theoretical evidence bearing on the $\sigma(\gamma, p)/\sigma(\gamma, n)$ ratio is summarized in a separate discussion at the end of this section. The absolute measurement of $\sigma(\theta)$ for reaction (c) described in (1991JO04) includes useful evaluative discussions of existing experimental and theoretical work. See also (1978AR1B, 1978AR26, 1980AR20, 1984GU18). A considerable amount of theoretical work has been done on reactions (b) and (c) with a great deal of it related to the question of the $\sigma(\gamma, p)/\sigma(\gamma, n)$ ratio (1974CH50, 1974GA10, 1974GA32, 1974ST08, 1980BE42, 1981AR21, 1981HA10, 1983BE13, 1983DE31, 1983HA21, 1984BA73, 1984GU18, 1985QU01, 1986CA05). See also (1974GA32, 1974NO10, 1974RA18, 1975GU23, 1976FI11, 1976NO06, 1977DE26, 1979GU13, 1980AR04, 1980BO13, 1980RA17, 1986CH05, 1988TE04, 1989VO01). A method for estimating the polarization of final particles in reactions (b) and (c) is developed in (1990GU21).

Structure effects in the E3 cross section for reaction (c) were investigated in (1989BE07). A review of progress on four-body scattering and breakup, in the integral equation approach, is presented in (1987FI03).

Reaction (d) was studied in two investigations reported in (1982AN16, 1984AN04). The experimental results were analyzed satisfactorily by means of impulse-approximation calculations involving a reaction amplitude described by the sum of two pole diagrams with a virtual neutron and a ^3He nucleus. No recent work has been reported on reaction (e). Cross sections were measured in the energy region of the $\Delta(1236)$ resonance (1972AR23). An impulse-approximation calculation in terms of quasi-free nucleons in ^4He was reported in (1972LE24).
Only a few measurements have been done for reaction (f), and those reported since the previous compilation (1973FI04) are listed in Table 4.18. Cluster-model calculations for energies of a few MeV above threshold are reported in (1974ST08). A low-energy theorem is applied to cross section calculations in (1981GO15). See also the review presented in (1978AR26). Comparisons of the cross section data with calculations were reported in (1980AR04, 1980GU25) to provide evidence for a 2^+ state in 4He at $E_\gamma = 30–35$ MeV.

Measurements for reaction (g) reported since the previous compilation and listed in Table 4.18 have been carried out for photon energies from 28 – 400 MeV with cloud chambers and with combinations of magnetic spectrometers and neutron detectors. Relative cross sections for reactions (b), (c), (f), (g), and (h) were obtained (1977BA35) from threshold to $E_\gamma \approx 80$ MeV, and it was concluded that the main mechanism for reaction (g) in this energy region is two-nucleon absorption. Similar measurements at 30 – 40 MeV (1979BA47) were used to study clustering effects, and the results suggested that the most important mechanism for reaction (h) is photoabsorption from a quasid euteron correlated with another quasi deuteron, both of which decompose. See also the review of (1985HO27). Theoretical calculations of reactions (b), (c), and (g) utilizing the quasideuteron mechanism are reported in (1974NO10, 1976NO06, 1984CH09). See also (1982AR11).

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E_γ (MeV)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4He(γ, π^0)4He</td>
<td>1500 – 4500</td>
<td>Developed apparatus. Measured $\sigma(E, \sigma)$.</td>
<td>1978AL08</td>
</tr>
<tr>
<td></td>
<td>1 – 10 (above threshold)</td>
<td>Measured relative yields for 1H, 2H, 3He, 4He targets. DWBA analysis.</td>
<td>1980AR06</td>
</tr>
<tr>
<td></td>
<td>139 – 153</td>
<td>Analyzed $\sigma(E, \theta)$ data, deduced yields.</td>
<td>1981AR10</td>
</tr>
<tr>
<td></td>
<td>1500 – 4500</td>
<td>Measured $\sigma(\theta)$ versus momentum, deduced Ω meson trajectory.</td>
<td>1982AL09</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>Measured $\sigma(\theta)$ for 4He recoils versus recoil energy.</td>
<td>1982AN16</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td>Measured $\sigma(\theta)$ near $\Delta(1232)$ resonance.</td>
<td>1984TI04</td>
</tr>
<tr>
<td></td>
<td>190 – 430</td>
<td>Measured $\sigma(\theta)$ near $\Delta(1232)$ resonance.</td>
<td>1985AN14</td>
</tr>
<tr>
<td></td>
<td>138 – 155</td>
<td>Measured pion yields, deduced $\sigma(E)$, s-wave threshold amplitudes.</td>
<td>1988AR08</td>
</tr>
<tr>
<td></td>
<td>179</td>
<td>Measured σ_{total}.</td>
<td>1989JA07</td>
</tr>
<tr>
<td></td>
<td>< 30</td>
<td>Measured $\sigma(E, E_n)$ at 90°.</td>
<td>1972BE06</td>
</tr>
<tr>
<td></td>
<td>30.0 – 51.8</td>
<td>Determined $\sigma(E)$ for (γ, n) and (γ, p) in same apparatus (mag. spectrometer).</td>
<td>1972DO03</td>
</tr>
<tr>
<td></td>
<td>24 – 120</td>
<td>Determined $\sigma(E)$ for (γ, n) and (γ, p) under same physical conditions.</td>
<td>1973AR07</td>
</tr>
<tr>
<td>$E_x = 22 – 37$</td>
<td>Measured $\sigma(E)$ at 98°. Compared results for liquid and gas targets.</td>
<td>1973IR02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 – 10 (above threshold)</td>
<td>Measured $\sigma(E, \theta)$. Confirmed 2^+ state at ≈ 35 MeV.</td>
<td>1973MA57</td>
</tr>
<tr>
<td></td>
<td>20 – 120</td>
<td>Measured σ_{total}. Determined energy moments.</td>
<td>1974AR18</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Measured $\sigma(\gamma, n)$ versus beam intensity.</td>
<td>1974IR02</td>
</tr>
<tr>
<td></td>
<td>270 – 400</td>
<td>Measured $\sigma(E)$ at 90°, 120° in region of $\Delta(1236)$ resonance.</td>
<td>1975AR01</td>
</tr>
</tbody>
</table>
Table 4.18: Measurements and summaries (S) of photonuclear cross sections on 4He (continued)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E_γ (MeV)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4He(γ, n)3He</td>
<td>$27 - 30$</td>
<td>Measured σ_{total} and $\sigma(E, \theta)$. Determined E1, E2 amplitudes, phases.</td>
<td>1975AR13</td>
</tr>
<tr>
<td></td>
<td>$22 - 32$</td>
<td>Measured $\sigma(E, \theta)$. Determined E1, E2 contributions, obtained σ_{total}.</td>
<td>1975IR01</td>
</tr>
<tr>
<td></td>
<td>$E_{\text{th}} - 150$</td>
<td>Determined E1, E2 cross sections.</td>
<td>1976AR17</td>
</tr>
<tr>
<td></td>
<td>$< E_x = 80$</td>
<td>Measured σ_{total} and $\sigma(E, \theta)$ for (γ, n) and (γ, p). Used cloud chamber.</td>
<td>1977BA35</td>
</tr>
<tr>
<td></td>
<td>$31 - 51$</td>
<td>Measured $\sigma(\gamma, p)/\sigma(\gamma, n)$ ratio at 90° by detecting 3H and 3He recoils.</td>
<td>1979PH04</td>
</tr>
<tr>
<td></td>
<td>$21 - 47$</td>
<td>Measured $\sigma(E)$ with gas target. Used monoenergetic photons. Compared with other measurements.</td>
<td>1980BE45</td>
</tr>
<tr>
<td>4He(γ, n)3He</td>
<td>$22.5 - 137$</td>
<td>Measured cross section versus E_γ. Analyzed by assuming $2^+ T = 0$ levels in 4He at 29.6, 35.6 MeV.</td>
<td>1981AR23</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Measured asymmetry of (γ, n) and (γ, p) cross sections for linearly polarized γ-rays.</td>
<td>1985VI07</td>
</tr>
<tr>
<td></td>
<td>$100 - 360$</td>
<td>Measured $\sigma(E, \theta)$ for (γ, n) and (γ, p) for 60°, 90°, 120°. Compared to calculations with MEC contributions.</td>
<td>1986SC01</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Measured asymmetry of (γ, n) and (γ, p) cross sections for linearly polarized γ-rays.</td>
<td>1989VI05</td>
</tr>
<tr>
<td>4He(γ, p)3H</td>
<td>$30.0 - 51.8$</td>
<td>Determined $\sigma(E)$ for (γ, n) and (γ, p) in same apparatus (mag. spectrometer).</td>
<td>1972DO03</td>
</tr>
<tr>
<td></td>
<td>$24 - 120$</td>
<td>Determined $\sigma(E)$ for (γ, n) and (γ, p) under same physical conditions.</td>
<td>1973AR07</td>
</tr>
<tr>
<td></td>
<td>$180 - 320$</td>
<td>Measured $\sigma(E, \theta)$ at $\theta_{\text{c.m.}} = 60° - 120°$ in spark chamber.</td>
<td>1973KI06</td>
</tr>
<tr>
<td></td>
<td>$20 - 120$</td>
<td>Measured σ_{total}.</td>
<td>1974AR18</td>
</tr>
<tr>
<td></td>
<td>$190 - 420$</td>
<td>Measured $\sigma(E)$ at 60°, 90° in region of $\Delta(1236)$ resonance.</td>
<td>1975AR01</td>
</tr>
<tr>
<td></td>
<td>$E_{\text{th}} - 150$</td>
<td>Determined E1, E2 cross sections.</td>
<td>1976AR17</td>
</tr>
<tr>
<td></td>
<td>$< E_x = 80$</td>
<td>Measured σ_{total} and $\sigma(E, \theta)$ for (γ, n) and (γ, p). Used cloud chamber.</td>
<td>1977BA35</td>
</tr>
<tr>
<td>4He(γ, p)3H</td>
<td>$200 - 450$</td>
<td>Measured $\sigma(E, \theta)$ at 30° - 150° in $\Delta(1236)$ resonance region.</td>
<td>1979AR07</td>
</tr>
<tr>
<td></td>
<td>$31 - 51$</td>
<td>Measured $\sigma(\gamma, p)/\sigma(\gamma, n)$ ratio at 90° by detecting 3H and 3He recoils.</td>
<td>1979PH04</td>
</tr>
<tr>
<td></td>
<td>$50 - 140$</td>
<td>Analyzed $\sigma(E, \theta)$ data to estimate proton momentum distribution in 4He.</td>
<td>1982AR17</td>
</tr>
<tr>
<td></td>
<td>$187 - 427$</td>
<td>Measured momentum spectrum of protons at 30°. Tagged photons. Deduced pion photo-production σ.</td>
<td>1984HO24</td>
</tr>
</tbody>
</table>

49
Table 4.18: Measurements and summaries (S) of photonuclear cross sections on 4He (continued)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E_{γ} (MeV)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4He(γ, p)3H</td>
<td>28.6 – 58.1</td>
<td>Measured absolute $\sigma(E)$ with monochromatic photon beam. Deduced $\sigma(\gamma, p)/\sigma(\gamma, n)$ ratio.</td>
<td>1988BE38</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>Measured polarization of inclusive protons. Compared with quasideuteron mechanisms of photon absorption.</td>
<td>1988ZY01</td>
</tr>
<tr>
<td></td>
<td>120 – 250</td>
<td>Measured asymmetry versus θ_p. Linearly-polarized photons.</td>
<td>1988GA29</td>
</tr>
<tr>
<td>4He(γ, n0)3He</td>
<td>450</td>
<td>Measured σ versus θ, E of recoil 3He. Impulse approximation calculation.</td>
<td>1982AN16</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>Measured σ versus $\theta_\pi, \theta_{^3\text{He}}, E_{^3\text{He}}$-deduced pion production mechanism.</td>
<td>1984AN02</td>
</tr>
<tr>
<td>4He(γ, p$^-$)3He</td>
<td>< 150</td>
<td>Measured cross section near $\Delta(1236)$.</td>
<td>1972AR23</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>Measured asymmetry at 90° for linearly polarized photons.</td>
<td>1988GA25</td>
</tr>
<tr>
<td></td>
<td>120 – 250</td>
<td>Measured asymmetry versus θ for linearly polarized photons.</td>
<td>1988GA29</td>
</tr>
<tr>
<td>4He(γ, d)2H</td>
<td>< 150</td>
<td>Measured $\sigma(\theta, E)$. Bremsstrahlung beam. Diffusion chamber.</td>
<td>1972AR21</td>
</tr>
<tr>
<td></td>
<td>20 – 120</td>
<td>Measured $\sigma(E)$. Determined energy moments, E1, E2 contributions, 4He radius.</td>
<td>1974AR18</td>
</tr>
<tr>
<td></td>
<td>190 – 380</td>
<td>Measured $\sigma(E)$, dd coin.</td>
<td>1976AR05</td>
</tr>
<tr>
<td></td>
<td>25 – 40</td>
<td>Measured $\sigma(E)$. Multipole expansion. Deduced level in 4He.</td>
<td>1978AR23</td>
</tr>
<tr>
<td>4He(γ, np)2H</td>
<td>< 80</td>
<td>Measured $\sigma(E, \theta)$ for (γ, n), (γ, p), (γ, d), (γ, np), (γ, 2n2p) with diffusion cloud chamber.</td>
<td>1977BA35</td>
</tr>
<tr>
<td></td>
<td>28 – 150</td>
<td>Determined distributions in the Treiman-Yang angle.</td>
<td>1979AR15</td>
</tr>
<tr>
<td></td>
<td>30 – 40</td>
<td>Measured $\sigma(E, \theta)$ for (γ, n), (γ, p), (γ, d), (γ, np), (γ, 2n2p). Deduced reaction mechanism.</td>
<td>1979BA47</td>
</tr>
</tbody>
</table>
Table 4.18: Measurements and summaries (S) of photonuclear cross sections on ^4He (continued)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E_γ (MeV)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^4\text{He}(\gamma, np)^3\text{H}$</td>
<td>150</td>
<td>Measured quasideuteron momentum distribution. Deduced quasideuteron channel radius.</td>
<td>1982AR17</td>
</tr>
<tr>
<td></td>
<td>40–150</td>
<td>Analyzed data to determine $\sigma(E)$ off the mass shell.</td>
<td>1985AR22</td>
</tr>
<tr>
<td></td>
<td>< 450</td>
<td>Analyzed particle spectra to deduce possible free superdense deuteron.</td>
<td>1985CH35</td>
</tr>
<tr>
<td></td>
<td>200–400</td>
<td>Reviewed measurements of $\sigma(\theta, E_p)$.</td>
<td>1985HO27(S)</td>
</tr>
<tr>
<td></td>
<td>75–150</td>
<td>Measured $\sigma(\theta, E_d)$. Deduced breakup normalization constant.</td>
<td>1986AR16</td>
</tr>
<tr>
<td>$^4\text{He}(\gamma, 2p2n)$</td>
<td>not given</td>
<td>Measured $\sigma(E_d, E_p, E_n)$. Studied quasideuteron correlations.</td>
<td>1986CH15</td>
</tr>
<tr>
<td></td>
<td>130–450</td>
<td>Measured $\sigma(E_d, E_p, E_n)$, spectrometer development.</td>
<td>1990NI11</td>
</tr>
<tr>
<td></td>
<td>< 80</td>
<td>Measured $\sigma(E, \theta)$ for (γ, n), (γ, p), (γ, d), (γ, np), $(\gamma, 2n2p)$ with diffusion cloud chamber.</td>
<td>1977BA35</td>
</tr>
<tr>
<td></td>
<td>30–40</td>
<td>Measured $\sigma(E, \theta)$ for (γ, n), (γ, p), (γ, d), (γ, np), $(\gamma, 2n2p)$. Deduced reaction mechanism.</td>
<td>1979BA47</td>
</tr>
</tbody>
</table>

Theoretical studies of the total photonuclear absorption cross sections by means of sum rules have been described in (1974FI03, 1977LI12, 1980AR20, 1983EL07). See also the theoretical investigations of the integrated photonuclear cross sections reported in (1974GO13, 1977GR08, 1984KO33, 1985SA01).

The $^4\text{He}(\gamma, p)^3\text{H}$ -to-$^4\text{He}(\gamma, n)^3\text{He}$ cross section ratio

The ratio of the two photonuclear cross sections, $^4\text{He}(\gamma, p)^3\text{H}$-to-$^4\text{He}(\gamma, n)^3\text{He}$, below $E_x = 35$ MeV has constituted a long-standing anomaly in low-energy photonuclear physics. A review of the experimental data (1983CA08) concluded that the data indicated a (γ, p)-to-(γ, n) ratio which varied slowly from 1.7 to 1.2 in the excitation-energy range $E_x = 25–35$ MeV, in substantial disagreement with the ratio predicted by conventional isospin-conserving theoretical calculations. Data obtained in recent years change this picture substantially. Relevant measurements include:

- $^4\text{He}(\pi^\pm, \pi^{\pm'}\gamma)^4\text{He}$: (1986BL07);
- $^4\text{He}(\pi, \pi'p)$, $^4\text{He}(\pi, \pi'n)$: (1990JO04);
- $^4\text{He}(e, e'p)^3\text{H}$, $^4\text{He}(e, e'n)^3\text{He}$: (1989SP05);
- $^4\text{He}(\gamma, p)^3\text{H}$ to $^4\text{He}(\gamma, n)^3\text{He}$ ratio: (1972DO03, 1979PH04).

An examination of all of the \((\gamma, p)\) and \((\gamma, n)\) data, including inverse reaction studies, led the authors of (1983CA08) to conclude that the \((\gamma, p)\)-to-\((\gamma, n)\) ratio was substantially greater than 1.0 below \(E_x = 35\) MeV. However, since that time a measurement utilizing monoenergetic photons (1988BE38) indicated that the \(^4\text{He}(\gamma, p)^3\text{H}\) cross section was substantially smaller below \(E_x = 35\) MeV than previously thought, and was essentially in agreement with the monoenergetic-photon results for the \(^4\text{He}(\gamma, n)^3\text{He}\) reaction (1954FE16, 1963ZU03, 1966FE07, 1968GO19, 1971BE43, 1972BE06, 1973MA57, 1975IR01, 1977BA35, 1978AR26, 1980BE45). This \((\gamma, p)\) result has received additional support from a new \(^3\text{H}(p, \gamma)^4\text{He}\) measurement (1990FE06) which agreed with it. The \((\gamma, n)\) results of (1980BE45) are also supported by the capture measurements of (1981WA18). Thus, if we take the most recent \((\gamma, n), (\gamma, p), (p, \gamma)\) and \((n, \gamma)\) cross-section measurements we obtain, for \(E_\gamma = 24 - 31\) MeV, a \((\gamma, p)\)-to-\((\gamma, n)\) ratio which is about 1.1, consistent with conventional theoretical predictions and indicating that no charge-symmetry violation is required in \(^4\text{He}\) to explain these data.

Additional support for this result is provided by the \(\pi^+/\pi^-\) cross section ratio measurement of (1986BL07). The measured ratio of \(1.05 \pm 0.08\) indicated little or no isospin mixing in \(^4\text{He}\) between \(E_x \approx 23 - 30\) MeV. A recent simultaneous measurement of \(^4\text{He}(e, e')^3\text{H}\) and \(^4\text{He}(e, e'n)^3\text{He}\) cross sections (1989SP05) gave a ratio less than 1.2, consistent with the predictions of a microscopic model which assumed a charge-symmetric nuclear hamiltonian (1988WA20). Unfortunately, previous results which disagree with this conclusion have not been accounted for. The results of (1982MC03, 1983CA14) are especially disturbing. On the theoretical side, while the “new” data produce a ratio in agreement with essentially all calculations, the lower absolute cross sections, for both \((\gamma, p)\) and \((\gamma, n)\), disagree with most theoretical results (see especially (1983HA21, 1988WA20)). However, a flaw has been revealed recently in the manner in which Siegert’s theorem was used in the calculations of (1988WA20). The correction brings the absolute cross sections down to the lower values, while keeping the ratio close to 1.1, in agreement with the new results. The impact of this correction on the \((e, e'p)\) and \((e, e'n)\) channels remains to be examined, but is expected to be small. Unfortunately, the ratio question continues to haunt many workers in the field, and it has not been unambiguously resolved.

22. (a) \(^4\text{He}(e, e)^4\text{He}\)

(b) \(^4\text{He}(e, e')^3\text{He} + n\) \(Q_m = -20.578\)

(c) \(^4\text{He}(e, e')^3\text{H} + p\) \(Q_m = -19.814\)

(d) \(^4\text{He}(e, e')^2\text{H} + ^2\text{H}\) \(Q_m = -23.847\)

Experiments and data analysis for elastic electron scattering on \(^4\text{He}\) are summarized in Table 4.19. Earlier work is described in the previous compilation (1973FI04). A recent determination (1985OT02) of the r.m.s. charge radius gave \(\langle r^2 \rangle^{1/2} = 1.671 \pm 0.014\) fm.

A number of theoretical calculations relating to \(^4\text{He}(e, e)\) elastic scattering have been carried out. The contribution of two-photon exchange in high-energy large-angle scattering was examined (1972BO63). The elastic scattering form factor was computed (1972CA40) in the local-density approximation and in the oscillator model with short-range correlations (1972FI10). Relativistic corrections and their effect on the diffraction minimum were examined (1973FR21). Calculations utilizing self-consistent Brueckner-Hartree-Fock wave functions (1974CI02) provided estimates of the effects of center-of-mass spuriousity. Charge form factors were calculated with many-body meson exchange operators (1977RI15). The effect of short-range three-nucleon correlations was studied (1978HE19). Elastic and inelastic form factors calculated in
Table 4.19: Measurements and analyses of cross sections for elastic electron scattering on \(^{4}\text{He}\).

<table>
<thead>
<tr>
<th>(q^2) (fm(^{-2}))</th>
<th>(E_e) (MeV)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 - 4.4)</td>
<td></td>
<td>Used symmetrized Fermi-density distributions.</td>
<td>1972EL11</td>
</tr>
<tr>
<td>(\approx 0.2 - 2.5)</td>
<td>200 - 500</td>
<td>Obtained charge density. Model-independent analysis.</td>
<td>1976SI13</td>
</tr>
<tr>
<td>(\leq 6.2)</td>
<td>170 - 750</td>
<td>Measured charge form factor. Deduced point-nucleon distributions from model-independent analysis.</td>
<td>1977MC03</td>
</tr>
<tr>
<td>(\leq 800)</td>
<td></td>
<td>Obtained elastic structure functions.</td>
<td>1978AR05</td>
</tr>
<tr>
<td>(0.45 - 2)</td>
<td>105 - 320</td>
<td>Measured (\sigma(E, \theta)). Obtained charge form factors. Deduced r.m.s. radii, model-independent analysis.</td>
<td>1985OT02</td>
</tr>
</tbody>
</table>

Inelastic scattering experiments are summarized in Table 4.20. See also (1974GO15, 1980GO21, 1981GO03, 1988DY01). A review of the status of theoretical methods and principal results for elastic and inelastic scattering of electrons by nuclei was presented in (1974LU09). In (1974VI03) a simple model of \(^{3}\text{He}\) is suggested to interpret the details of the charge distribution obtained from the electron scattering form factors for \(q^2 \leq 20\) fm\(^{-2}\). A study of the \(0^+\) state at 20.1 MeV in \(^{4}\text{He}\) reported in (1974ZO04) utilized the inelastic form factor and three-body forces in a hyperspherical description. A microscopic treatment of coupled monopole and quadrupole \(T = 0\) vibrations was used in (1975AB04) to calculate transition strengths and inelastic form factors. Center-of-mass corrections for calculations related to electron scattering are studied and reported in (1980DE30). The effect of final-state interactions in inclusive electron scattering is discussed in (1980HO26). The method of hyperspherical functions is discussed in (1981BU04). Quasi-free peak parameters from calculated \((e, e')\) cross sections are related to sum rules in (1981KO10). Data for electron scattering from \(^{2}\text{H}\), \(^{3}\text{He}\), and \(^{4}\text{He}\) are found (1982BO30) to be unified by a nuclear scaling function. The \((e, e')\) cross section was calculated using an interaction-time approximation for dynamic form factors (1982KO26). The existence of \(y\)-scaling for the quasi-elastic cross section was demonstrated in (1983DE13). See also the study of (1985KO19). A continuum RPA calculation with finite-range interaction was applied (1983DE39) to calculate \((e, e')\) cross sections. The role of tensor correlations in inclusive electron scattering processes was studied and discussed in (1983OR05). The location of the quasi-elastic peak maximum in \(^{4}\text{He}(e, e')\) relative to the eN scattering peak was explored (1985KU02) on the basis of \(^{4}\text{He}\) properties. A calculation based on a quark description of the nuclear ground state is presented in (1986DA01). Several different NN interactions are used in a hyperspherical-harmonics calculation of the \((e, e')\) form factor (1987SA23). The form factor for \((e, e')\) excitation of the \(0^+\) resonance in
Table 4.20: Measurements and analyses of cross sections for inelastic electron scattering on ^4He

<table>
<thead>
<tr>
<th>q^2 (fm$^{-2}$)</th>
<th>E_e (MeV)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>800 − 1200</td>
<td>Measured $\sigma(E, \theta)$ for $\theta = 16^\circ - 40^\circ$ near quasielastic maximum. Studied effects of center-of-mass motion.</td>
<td>1975DE23</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>Measured quasielastic scattering at $\theta = 60^\circ$. Compared to static and Fermi gas models.</td>
<td>1976MC01</td>
</tr>
<tr>
<td>(not given)</td>
<td></td>
<td>Measured quasielastic scattering at $\theta = 42^\circ - 140^\circ$. Used measured peak position to study NN interaction.</td>
<td>1984BU18</td>
</tr>
<tr>
<td>0.8 − 2.4</td>
<td>400</td>
<td>Measured $\sigma(\theta, E')$ for excitation of 0^+ state at 20.1 MeV in ^4He.</td>
<td>1983KO25</td>
</tr>
<tr>
<td></td>
<td>730</td>
<td>Measured $\sigma(E, \theta)$ for $\theta = 37.1^\circ$ for energy transfers ≤ 550 MeV in region of Δ-resonance.</td>
<td>1984OC01</td>
</tr>
<tr>
<td>808, 988, 1180</td>
<td></td>
<td>Measured $\sigma(E, E, \theta)$ in quasielastic region. Obtained scaling function. Derived momentum distribution of nucleons in ^4He.</td>
<td>1988DE41</td>
</tr>
<tr>
<td>≈ 0.15</td>
<td>130 − 200</td>
<td>Measured $\sigma(E)$ at 180$^\circ$. Compared with RCCSM.</td>
<td>1988HO11</td>
</tr>
<tr>
<td></td>
<td>183.4</td>
<td>Measured ^3H+p and ^3He+n breakup, e'-n, e'-p coincidence. $E_x = 22 - 36$ MeV in ^4He.</td>
<td>1989SP05</td>
</tr>
<tr>
<td></td>
<td>279 − 725</td>
<td>Measured double-differential cross section. Compared with Coulomb sum rule.</td>
<td>1990VO01</td>
</tr>
</tbody>
</table>

^4He is discussed in connection with a collective and cluster model calculation (1987VA33) and a symplectic shell model calculation (1988VA22). More recent work includes a recoil-corrected continuum shell model study of the 0^+ first excited state in (1989HA02, 1990HAZN), a $(0 + 2)\hbar\omega$ model-space calculation of ^4He observables in (1990WO10), an extrapolation of nucleon-momentum distributions in ^4He using asymptotic scaling analysis (1990CI03), and a Monte Carlo study (1990PA07). See also the discussion of data on longitudinal and transverse response functions (1989PA12), the relativistic model investigation of ion-ion optical potentials (1989RE07), and the microscopic study of the NN interaction (1989YA11). $^4\text{He}(e, e')$ data is utilized in a determination of a phenomenological Δ-nucleon potential in (1990OC01).

23. (a) $^4\text{He}(\pi^\pm, \pi^\pm)^4\text{He}$
(b) $^4\text{He}(\pi^\pm, \pi^\mp)^4\text{He}$
(c) $^4\text{He}(\pi^\pm, \pi^\pm p)^3\text{H}$ $Q_m = -19.814$

Experiments and data analysis for pion scattering on ^4He are summarized in Table 4.21. See also (1973AN26, 1975BI08, 1976BA57, 1976BU19, 1976SH23, 1978FA06, 1980BA17, 1980KA17, 1982BA16, 1984FO18, 1984GM01, 1989AR16). These reactions were not included in the previous compilation (1973FI04).
Table 4.21: Measurements and analyses of cross sections for pion scattering on 4He

<table>
<thead>
<tr>
<th>E_π (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$110 - 260, 67 - 285$</td>
<td>$(\pi^-, \pi^-)\sigma(E, \theta), (\pi^-, \pi^-)\sigma(E)$</td>
<td>$5 - 180$</td>
<td>Phase shift analysis.</td>
<td>1978BI07</td>
</tr>
<tr>
<td>$100, 160, 220$</td>
<td>$(\pi^+, \pi^+)\sigma(E, \theta)$</td>
<td>$30 - 150$</td>
<td>Inclusive measurements.</td>
<td>1981MC09</td>
</tr>
<tr>
<td>$90 - 320$</td>
<td>$(\pi^+, \pi^+)\sigma(E, \theta)$</td>
<td>$30 - 135$</td>
<td>Inclusive measurements. Isobar-hole formalism calculations.</td>
<td>1982BA19</td>
</tr>
<tr>
<td>$120 - 320$</td>
<td>$(\pi^+, \pi^+)\sigma(E, \theta)$</td>
<td>$30 - 135$</td>
<td>Studied quasi-free scattering.</td>
<td>1982BA65</td>
</tr>
<tr>
<td>$120 - 320$</td>
<td>$(\pi^+, \pi^+)\sigma(E, \theta)$</td>
<td>$30 - 135$</td>
<td>Deduced medium corrections.</td>
<td>1983BA24</td>
</tr>
<tr>
<td>$100, 160, 220, 300$</td>
<td>$(\pi^+, \pi^+)\sigma(E, \theta)$</td>
<td>$30 - 146$</td>
<td>Studied systematic properties.</td>
<td>1983LE12</td>
</tr>
<tr>
<td>$350, 400, 475$</td>
<td>$(\pi^+, \pi^+)\text{momentum distribution}$</td>
<td>$60, 90, 120$</td>
<td>Studied quasi-free scattering. Impulse approximation calculations.</td>
<td>1985BO41</td>
</tr>
<tr>
<td>180</td>
<td>$(\pi^+, \pi^+)\sigma(E, \theta)$</td>
<td>$20, 30, 40$ (lab angles)</td>
<td>Studied π^+/π^- ratio in region of 1^- states of 4He to examine CSB.</td>
<td>1986BL07</td>
</tr>
<tr>
<td>180</td>
<td>$(\pi^+, \pi^+ p)\sigma(E, \theta)$</td>
<td>$\theta_\pi = 30 - 80, -\theta_p = 30 - 90$</td>
<td>Studied $\sigma(\pi^+, \pi^+ p)/\sigma(\pi^-, \pi^- p)$ ratio, isospin characteristics of 4He.</td>
<td>1990JO04</td>
</tr>
</tbody>
</table>

Much of the work (1978BI07, 1981MC09, 1982BA19, 1982BA65, 1983LE12, 1985BO41) is directed toward studies of the properties of the pion-nucleon interaction and the effects of the nuclear medium. Related theoretical work includes the DWIA calculations of (1975HE06), a coupled channel method in the K-matrix approach (1979GM01), and the pole extrapolation method for separating strong and electromagnetic contributions (1982DA15). Investigation of medium effects by studying quasi-elastic scattering is discussed in (1983SI21). The question of isospin mixing in 4He and possible charge-symmetry breaking implied by photonuclear reaction data (see sects. 7, 14, and 21 of this compilation) was studied through the π^+/π^- cross section ratio in (1986BL07) and the result implies little isospin mixing in contrast with the earlier photonuclear results. The calculations of (1989HA03) predict no significant deviation from unity of this ratio for isospin mixing at the 5% level. On the other hand, $(\pi^+, \pi^+ p)$ measurements of (1990JO04) found dramatic differences between $(\pi^+, \pi^+ p)$ and $(\pi^-, \pi^- p)$ in the 4He GDR region which, although in sharp contrast to predicted values, do not provide an unambiguous indication of isospin mixing and probably arise from the interference of several reaction amplitudes.

24. 4He(n, n)4He

This reaction is reviewed in (1988AJ01) under the discussion of 5He.

25. (a) 4He(p, p)4He

$E_b = -0.895$

This reaction is reviewed in (1988AJ01) under the discussion of 5He.
(b) $^4\text{He}(p, p')^3\text{He} + n$, \(Q_m = -20.578 \)
(c) $^4\text{He}(p, p')^3\text{H} + p$, \(Q_m = -19.814 \)
(d) $^4\text{He}(p, p')^2\text{H}_2$, \(Q_m = -23.847 \)
(e) $^4\text{He}(p, d)^3\text{He}$, \(Q_m = -18.353 \)

Reaction (a) was reviewed by (1984AJ01) under the discussion of ^5Li. Measurements for reactions (a)–(d) reported since the previous $A = 4$ compilation (1973FI04) are summarized in Table 4.22.

Measurements of proton inelastic scattering and breakup reactions (b) and (c) showing evidence for the lowest $0^+, 0^-, 2^-, T = 0$ states in ^4He are discussed in the previous compilation (1973FI04). No recent work has been reported.

A formula to represent amplitudes for three-body breakup (reactions (b), (c), (d)) is developed and compared with data in (1987FU10).

26. (a) $^4\text{He}(d, d)^4\text{He}$
(b) $^4\text{He}(d, d')^3\text{H} + p$, \(Q_m = -19.814 \)
(c) $^4\text{He}(d, d')^2\text{H}_2$, \(Q_m = -23.847 \)

Reaction (a) was reviewed by (1984AJ01) under the discussion of ^6Li. Measurements of reactions (a)–(c) published since the previous $A = 4$ compilation (1973FI04) are summarized in Table 4.23. See also (1973TR04, 1982IS06).
Table 4.22: Measurements and analyses of cross sections for proton scattering on 4He

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg) or $-t$ (GeV/c)2</th>
<th>Description a</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1050</td>
<td>$\sigma(\theta)$</td>
<td>3 – 47 (lab)</td>
<td>Compared with various theoretical calculations.</td>
<td>1974BA14</td>
</tr>
<tr>
<td>85</td>
<td>$\sigma(\theta)$</td>
<td>10 – 168</td>
<td>Compared with various theoretical calculations.</td>
<td>1974VO05</td>
</tr>
<tr>
<td>580, 720</td>
<td>$d\sigma/dt$</td>
<td>$-t = 0.13 - 0.55$</td>
<td>Measured 4He recoils.</td>
<td>1975VE09</td>
</tr>
<tr>
<td>3.47 – 8.94</td>
<td>A_y</td>
<td>$\theta \approx 90$</td>
<td>Determined angle for $A(E, \theta) = 0$. Phase-shift analysis.</td>
<td>1976BR17</td>
</tr>
<tr>
<td>2.24 – 5.90</td>
<td>$\sigma(\theta)$</td>
<td>168.8, 104.4</td>
<td>Determined angle for $A(E, \theta) = 0$. Phase-shift analysis.</td>
<td>1976BR17</td>
</tr>
<tr>
<td>600</td>
<td>$\sigma(\theta)$</td>
<td>$-t = 0.12 - 0.51$</td>
<td>Used Coulomb-nuclear interference to determine NN amplitudes at 600 MeV.</td>
<td>1976FA09</td>
</tr>
<tr>
<td>18 – 48</td>
<td>σ_B</td>
<td>$-t = 0.02 - 0.71$</td>
<td>Studied first diffraction minimum. Theoretical analyses.</td>
<td>1977AS01</td>
</tr>
<tr>
<td>350, 650, 1050, 1150</td>
<td>$\sigma(\theta)$</td>
<td>not given</td>
<td>(p, p) measurements made for DWBA analysis of (p, d) cross section.</td>
<td>1977BA19</td>
</tr>
<tr>
<td>770</td>
<td>$\sigma(\theta)$</td>
<td>19 – 167</td>
<td>R-matrix analysis for data $E = 0 – 17$ MeV.</td>
<td>1977DO01</td>
</tr>
<tr>
<td>11 – 14</td>
<td>$\sigma(\theta)$</td>
<td>119 – 134, 37 – 157</td>
<td>Abs. precision ±0.01. Tabular presentation.</td>
<td>1977HA06</td>
</tr>
<tr>
<td>11.93, 17.00</td>
<td>A_y</td>
<td>$-t = 0.006 - 1.2$</td>
<td>Studied diffraction minimum. Compared with other data.</td>
<td>1977KL08</td>
</tr>
<tr>
<td>560 – 1730</td>
<td>$\sigma(\theta)$</td>
<td>55 – 135</td>
<td>Tested procedure for polarimeter calibration.</td>
<td>1977ME06</td>
</tr>
<tr>
<td>7.3 – 11.05</td>
<td>A_y</td>
<td>3.5 – 15</td>
<td>Studied dependence on momentum transfer and energy.</td>
<td>1977ST30</td>
</tr>
<tr>
<td>1050</td>
<td>$\sigma(\theta)$</td>
<td>≈ 180</td>
<td>Studied sharp backward peak.</td>
<td>1978BE30</td>
</tr>
<tr>
<td>1750, 2510, 4130</td>
<td>$d\sigma/dt$</td>
<td>$-t = 0.002 - 0.04$</td>
<td>Studied proton-nucleon amplitude.</td>
<td>1978DU15</td>
</tr>
</tbody>
</table>
Table 4.22: Measurements and analyses of cross sections for proton scattering on ^{4}He (continued)

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Measurement</th>
<th>$\theta_{\text{c.m.}}$ (deg) or $-t$ (GeV/c)2</th>
<th>Description a</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>788</td>
<td>$d\sigma/dt$</td>
<td>$-t = 0.11 - 4.19$</td>
<td>Evidence for backward diffraction-like structure.</td>
<td>1978FO33</td>
</tr>
<tr>
<td>20 – 55</td>
<td>$\sigma(\theta)$</td>
<td>10–170</td>
<td>Phase-shift analysis.</td>
<td>1978HO17</td>
</tr>
<tr>
<td>185 – 500</td>
<td>$\sigma(E, \theta), A_y$</td>
<td>144–168</td>
<td>Studied structure in excitation functions.</td>
<td>1978MC06</td>
</tr>
<tr>
<td>2680</td>
<td>$d\sigma/dt$</td>
<td>$-t = 0.15 - 0.66$</td>
<td>Studied shape.</td>
<td>1978NA13</td>
</tr>
<tr>
<td>560 – 1730</td>
<td>$\sigma(E, \theta), A_y$</td>
<td>$-t = 0.0057 - 1.21$</td>
<td>Compared with theory.</td>
<td>1979CO01</td>
</tr>
<tr>
<td>205 – 520</td>
<td>A_y</td>
<td>17, 15, 24</td>
<td>High-precision calibration standards.</td>
<td>1979GR08</td>
</tr>
<tr>
<td>45, 52, 60, 65</td>
<td>$\sigma(E, \theta), A_y$</td>
<td>15 – 160 (lab)</td>
<td>Obtained data for polarization analyzer.</td>
<td>1979IM01</td>
</tr>
<tr>
<td>100 – 700</td>
<td>$\sigma(E, \theta)$</td>
<td>180</td>
<td>Explored role of inelastic pion channels at large momentum transfers. $^4\text{He}(p, p)$ and $^4\text{He}(p, ^3\text{He})$.</td>
<td>1979KA19</td>
</tr>
<tr>
<td>200, 350, 500</td>
<td>$\sigma(E, \theta), A_y$</td>
<td>4 – 168 (lab)</td>
<td>Compared with theory.</td>
<td>1980MO09</td>
</tr>
<tr>
<td>500</td>
<td>$\sigma(E, \theta), A_y$</td>
<td>65, 90, 120, 160</td>
<td>Inclusive scattering measurements. $^4\text{He}(p, x)$.</td>
<td>1981RO03</td>
</tr>
<tr>
<td>992</td>
<td>$d^2\sigma/dp_d\Omega$</td>
<td>$-t = 0.0109 - 0.0897$</td>
<td>Deduced σ_{total} and diffraction cone parameter.</td>
<td>1982VE03</td>
</tr>
<tr>
<td>1000</td>
<td>R</td>
<td>15 – 50</td>
<td>Plot invariant cross section versus p^2 for (p, p').</td>
<td>1983AN18</td>
</tr>
<tr>
<td>500</td>
<td>$\sigma(E, \theta)$</td>
<td>$\approx 2 - 60$</td>
<td>Measured Wolfenstein R parameter.</td>
<td>1983MO01</td>
</tr>
<tr>
<td>1000</td>
<td>A_x</td>
<td>30 – 60</td>
<td>Analyzed by Glauber-Sitenko theory.</td>
<td>1985AL09</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td>Studied parity nonconservation, weak πN coupling constants.</td>
<td>1985LA01, 1986LA29</td>
</tr>
<tr>
<td>98.7, 149.3</td>
<td>$\sigma(E, \theta), A_y$</td>
<td>17.5 – 60</td>
<td>Measured continuum yields for (\vec{p}, p') and (\vec{p}, d).</td>
<td>1985WE12</td>
</tr>
<tr>
<td>700 – 1000</td>
<td>$d\sigma/dt$</td>
<td>$-t = 0.0132 - 0.0799$</td>
<td>Deduced σ_{total} and diffraction cone parameter.</td>
<td>1985VE13</td>
</tr>
<tr>
<td>65</td>
<td>$\sigma(E_p, \theta_p), A_y$</td>
<td>20 – 130</td>
<td>Measured for (p, p') and $(p, p^3\text{H})$ breakup. Observed peaks for ^4He excited states.</td>
<td>1986FU05</td>
</tr>
<tr>
<td>71.9</td>
<td>$\sigma(E, \theta), A_y$</td>
<td>25 – 169</td>
<td>Phase-shift analysis of data at 71.9 and 30 – 72 MeV.</td>
<td>1989BU01</td>
</tr>
</tbody>
</table>
Table 4.22: Measurements and analyses of cross sections for proton scattering on 4He (continued)

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg) or $-t$ (GeV/c)2</th>
<th>Description a</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>695, 793, 890, 991</td>
<td>$d\sigma/dt$</td>
<td>$-t \approx 0.005 - 0.08$</td>
<td>Detected scattered particles and recoils. Phase-shift analysis.</td>
<td>1989GR20</td>
</tr>
<tr>
<td>25.68</td>
<td>A_y</td>
<td>117.5</td>
<td>Developed new method for calibration.</td>
<td>1989HA28, 1989CL04</td>
</tr>
<tr>
<td>14 – 18</td>
<td>A_y</td>
<td>52</td>
<td>Developed high-efficiency polarimeter.</td>
<td>1988SA41</td>
</tr>
<tr>
<td>695, 793, 890, 991</td>
<td>$\sigma(\theta_p, \theta_r)$</td>
<td>small angles</td>
<td>Extracted diffraction slope parameters.</td>
<td>1989GR20</td>
</tr>
<tr>
<td>1.5 – 2.2</td>
<td>A_y</td>
<td>87</td>
<td>Described design, calibration of polarimeter.</td>
<td>1990PR04</td>
</tr>
</tbody>
</table>

a Elastic scattering, except as noted.
Table 4.23: Measurements and analyses of cross sections for deuteron scattering on ^4He

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Measurement</th>
<th>$\theta_{\text{c.m.}}$ (deg) or $-t$ (GeV/c)2</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5 − 17</td>
<td>iT_{11}</td>
<td>$51.8 − 158.9$</td>
<td>Shows d-α scattering is a convenient analyzer for d vector polarization.</td>
<td>1973CH35</td>
</tr>
<tr>
<td>12, 14, 17</td>
<td>$\sigma(\theta)$, A_{xx}, A_{yy}</td>
<td>30 − 145</td>
<td>Obtained abs. precision of ±0.01.</td>
<td>1973OH01</td>
</tr>
<tr>
<td>4.8 − 9.0</td>
<td>A, K</td>
<td>27 − 66 (lab)</td>
<td>Measured 4 analyzing tensors and \approx 14 pol. transfer coefficients.</td>
<td>1973OH02</td>
</tr>
<tr>
<td>29.8, 32.3, 34.8, 37.8, 39.3</td>
<td>$\sigma(\theta, E)$</td>
<td>16 − 159</td>
<td>Avg. rel. error 2%.</td>
<td>1974WI13</td>
</tr>
<tr>
<td>4 − 5, 10 − 12.5</td>
<td>A_{yy}</td>
<td>20 − 180</td>
<td>Investigated analyzing power maxima.</td>
<td>1975HA10</td>
</tr>
<tr>
<td>2.38 − 13.60</td>
<td>iT_{11}</td>
<td>37.5, 45 (lab)</td>
<td>Absolute calibration.</td>
<td>1976SC15</td>
</tr>
<tr>
<td>6.04 − 7.05 (7 energies)</td>
<td>$\sigma(\theta)$, iT_{11}, T_{20}, T_{21}, T_{22}</td>
<td>11 − 165</td>
<td>Deduced phase shifts, ^6Li resonance parameters.</td>
<td>1977HA34</td>
</tr>
<tr>
<td>0.870 − 1.430</td>
<td>$\sigma(\theta, E)$</td>
<td>38 − 125</td>
<td>Obtained resonance parameters.</td>
<td>1979BA30</td>
</tr>
<tr>
<td>12 − 17</td>
<td>$\sigma(\theta)$, A_{y}, A_{xx}</td>
<td>$\theta_1 = 71^\circ 10'$, $\theta_2 = 39^\circ 22'$, $\theta_3 = 46^\circ 40'$</td>
<td>Emphasis on backward angles. Phase-shift analysis.</td>
<td>1979GR01</td>
</tr>
<tr>
<td>1.8</td>
<td>A_{y}</td>
<td></td>
<td>Measured left-right asymmetry for double d-^4He scattering.</td>
<td>1980BA60</td>
</tr>
<tr>
<td>20</td>
<td>$\sigma(\theta)$, A_{y}, A_{xx}, A_{yy}, A_{xx}</td>
<td>30 − 150</td>
<td>Optical model analysis. Needed tensor term.</td>
<td>1980FR01</td>
</tr>
<tr>
<td>17 − 42.8 (7 energies)</td>
<td>A_{y}, A_{yy}, A_{xx}</td>
<td>30 − 160</td>
<td>Compared with RGM and Faddeev calculations.</td>
<td>1980GR04</td>
</tr>
<tr>
<td>17 − 45 (7 energies)</td>
<td>$\sigma(\theta)$, A_{yy}, A_{xx}</td>
<td>30 − 160</td>
<td>Used rapid spin-flip to reduce exp. errors.</td>
<td>1980ST01</td>
</tr>
<tr>
<td>8, 9, 10, 11, 12, 13</td>
<td>$\sigma(\theta)$, iT_{11}, T_{20}, T_{21}, T_{22}</td>
<td>\approx 10 − 160</td>
<td>Phase-shift analysis. Deduced levels in ^6Li.</td>
<td>1983JE04</td>
</tr>
<tr>
<td>3 − 43</td>
<td>T_{ij}, A_{ij}</td>
<td></td>
<td>Phase-shift analysis used to investigate states of maximum polarization.</td>
<td>1983JE03</td>
</tr>
<tr>
<td>56</td>
<td>$\sigma(\theta)$, A_{xx}, A_{yy}, A_{xx}</td>
<td>12 − 160</td>
<td>Deduced optical model parameters.</td>
<td>1985NI01</td>
</tr>
<tr>
<td>8 − 56</td>
<td>$\sigma(\theta)$, A_{y}, A_{xx}, A_{yy}, A_{xx}, A_{yy}, iT_{11}, T_{20}, T_{21}, T_{22}</td>
<td>10 − 165</td>
<td>Reviewed polarization measurements, analyses.</td>
<td>1987GR08(S)</td>
</tr>
<tr>
<td>11.9</td>
<td>K</td>
<td>55.1</td>
<td>Measured six polarization transfer coefficients. Deduced scattering amplitudes.</td>
<td>1988EL01</td>
</tr>
</tbody>
</table>
Many theoretical studies of 4He(d, d)4He elastic scattering have been reported since the previous compilation (1973FI04). Phase-shift analyses have been carried out by (1972SC14, 1975GR09, 1984BA19, 1985JE04, 1990KU16, 1991KR02). See also (1990KU06). Resonating group calculations are described in (1974TH05, 1976LE17, 1982KA24, 1983AO03, 1985FI01, 1985KA20), and optical model analyses in (1984FR14). Calculations based on Glauber theory (1978IN02, 1986FR12), the orthogonality-condition model (1980NI07), microscopic coupled-channel model (1983SA39), and the three-cluster coupling model (1986MI23, 1987MI06) have been carried out. Nucleon-nucleon-alpha Faddeev calculations were reported in (1987HA34, 1990BL13). Calculations utilizing a three-body formalism with Coulomb interaction were described in (1986AG03). A geometric model for dd collisions at high energies (> 6 GeV) is described in (1990HU09). Convergence properties of the pseudo-state method were investigated in (1988KA25). See also the recent work of (1990KU06, 1990KU16, 1991KR02).

Early experimental evidence for levels in 4He from reactions (b) and (c) are discussed in (1973FI04). No new work has been reported.

27. 4H(t, t)4He
$$E_b = 2.468$$

This reaction is reviewed in (1966LA04).

28. 4He(3He, 3He)4He
$$E_b = 1.588$$

This reaction is reviewed in (1988AJ01).

29. (a) 4He(α, α)4He
(b) 4He(α, α')3He + n
$$Q_m = -20.578$$
(c) 4He(α, α')3H + p
$$Q_m = -19.814$$
(d) 4He(α, α')2H2H
$$Q_m = -23.847$$

Reaction (a) was reviewed by (1988AJ01) under the discussion of 8Be. The previous $A = 4$ compilation (1973FI04) reviews early work on reactions (a)–(d) giving information on excited states in 4He. More recently, the work reported in (1982FI16) studied the effects of 4He in the first excited ($^0^+$) state on the elastic $\alpha\alpha$ scattering. Kinematically complete experiments on reaction (d) at 119 MeV reported in (1980KA20) found structure in the coincidence energy spectra corresponding to excitations in 4He of 25.5, 27.8, 29.7, 31.7, and 35.3 MeV. Angular correlations were used to assign $J^\pi = 2^+, 2^+(1^-)$, and 2^+ to the last three of these. An investigation (1981BA39) of the excitation spectra of 4He near $E_x = 20$ MeV by means of an (α, α') experiment at 64 MeV used an R-matrix representation to extract level parameters $E_\lambda = 20.29 \pm 0.02$ MeV, $\Gamma_0 = 0.89 \pm 0.04$ MeV for the first excited state.
30. (a) 6Li(π^-, 2n)4He \hspace{1cm} Q_m = 134.57
(b) 6Li(π^+, 2p)4He \hspace{1cm} Q_m = 137.16

Reactions (a) and (b) are reviewed in the previous compilation (1973FI04) and evidence for the formation of the ground and excited states of 4He based on the summed neutron and proton spectra from reactions (a) and (b), respectively is cited. No new evidence for 4He levels based on reaction (a) has been reported. However, the triple-differential cross section measurements of reaction (b) described in (1986RI01) indicate strong population of the 4He 2^- state at 22.1 MeV excitation. The energy dependence of the reaction around the $^\Delta$(1232) resonance was explored in (1990ZHZZ). See also (1986WH01, 1987HU13).

31. 6Li(n, t)4He \hspace{1cm} Q_m = 4.782 \hspace{1cm} E_b = 7.250

This reaction was reviewed in (1988AJ01) under the discussion of 7Li. No work giving information on levels in 4He has been reported. See, however (1986BA68, 1986CA29, 1986FA13).

32. (a) 6Li(p, 3He)4He \hspace{1cm} Q_m = 4.018 \hspace{1cm} E_b = 5.607
(b) 6Li(p, pd)4He \hspace{1cm} Q_m = -1.475

These reactions are reviewed by (1988AJ01) under the discussion of 7Be. The previous compilation (1973FI04) summarizes early experimental and theoretical work on these reactions that relate to the structure of 4He. More recently, differential cross sections for reaction (a) (1974SC24) were measured and analyzed by cluster-model direct reaction formulae, and possible contributions from compound structures within the 3He-4He*0(0$^+$) channel involving the first excited state of 4He at 20.1 MeV were discussed. Measurements at incident energies $E = 1 - 3$ MeV are described in (1989ZAZX). See also (1987ZA07).

In (1974ZH01) an estimate of the contribution of spin-flip knock-out processes in reaction (b) is presented. The distribution of effective numbers of n-p pairs in 6Li over the excitation spectrum of 4He is given. Quasi-elastic knockout of excited 4He clusters by fast protons at large momentum transfers is discussed in (1987ZH10). The excitation spectrum of 8He is calculated.

33. 6Li(d, $^\alpha$)4He \hspace{1cm} Q_m = 22.372 \hspace{1cm} E_b = 22.280

This reaction is reviewed by (1988AJ01) under the discussion of 8Be. The previous compilation (1973FI04) cites two reported experiments which provide information on excited states of 4He. More recently, an experiment (1978FU03) at $E_d = 13.6$ MeV involving $d\alpha$ angular correlations showed evidence for a 0$^+$ state at 25.52 MeV excitation with a width of 2.26 MeV and an odd-parity state at 27.5 MeV. See also (1975GL08). A recent experiment at $E_d = 18.2 - 36.8$ MeV is reported in (1989BA88). See also (1973HE06, 1973MI20, 1974MI10, 1979WA02, 1981YU01, 1990YA11). An analysis of tensor-analyzing-power data is described in (1990SA40).
This reaction is reviewed by (1988AJ01) under the discussion of 8Be. The previous compilation (1973FI04) cites two experiments which provide information on excited states of 4He at 20.06 and 21.2 MeV. A recent measurement at incident energy $E_i = 29.1 - 44.6$ MeV is reported in (1989BA88). See also the analysis of data at thermonuclear energies in (1990RA28).

4Li

GENERAL

The stability of 8B against particle decay (1988AJ01), in particular against decay into 4He + 4Li, sets an upper limit of 1.7 MeV on the separation energy of 4Li into $p + ^3$He (1952SH44). The instability of 4H against particle decay (see 4H, GENERAL) makes the particle stability of 4Li very unlikely, since the Coulomb energy of 4Li is approximately 1.7 MeV larger than that of 4H (1963WE10), and the nuclear energies should be identical because of charge symmetry. Indeed all decisive tests of the stability of 4Li have failed. Searches for its beta decay have given negative results (see reaction 1). Indirect proof of the non-existence of 4Li can be provided by a measurement of the solar neutrino flux which would be strongly influenced by the existence of 4Li. See (1968ME03). For other theoretical work on 4Li, see (1974ST14, 1979HU02, 1981KA39, 1988CO15).

The level structure of 4Li presented here is based on an R-matrix analysis (1983HA1N) that gives a good representation of all the $p + ^3$He scattering data at proton energies below 20 MeV. BW resonance parameters from that analysis are given in Table 4.24 and shown in Fig. 3. The spin-correlation and 3He analyzing-power data included in the $p-^3$He analysis determined that the lower 1^- level is primarily in the 3P state, while the upper 1^- is primarily in the 1P state, removing the ambiguities in the earlier phase-shift solutions, as was discussed in the previous compilation (1973FI04).

As in the case of the 4H levels (see 4H, GENERAL), which were based on the 4Li parameters, all the levels are at least 1 MeV lower than they were in (1973FI04). The only significant difference between the 4H and 4Li levels is in the position of the ground state above the nucleon-trinucleon threshold, as would be expected from the simple model used to obtain the 4H parameters. Again, the parameters of the analysis predict very broad, positive-parity, $T = 1$ states in the $E_x = 15 - 20$ MeV range and antibound P-wave states that cannot yet be identified in the data. The known $T = 1$ levels in the $A = 4$ nuclei are summarized in the isobar diagram of Fig. 4.

The S-matrix poles resulting from the analysis are all far from the real axis with large decay widths Γ, while their residues are relatively small, leading to small values of the strengths. Although the connection is not clear at this point, the small residues for these poles may be connected with the anomalously small widths that have been observed in recent experiments (1990BR14, 1990BR17) that detect 4Li states in the particle spectra of breakup reactions. It may even be possible that these experiments are not detecting the 2^- and 1^- states as they assume, but positive-parity states (0^+ and 1^+) whose S-matrix poles are much lower in energy than are the K_R-matrix poles.

1. 4Li(β^+)4He $Q_m \approx 21.7$ not observed
Fig. 3: The energy levels of ^4Li are plotted on a vertical scale giving the c.m. energy, in MeV, relative to the mass of $^3\text{He} + \text{p}$. See Fig. 1 for details about notation and Table 4.24 for more information about the levels including total widths.
Table 4.24: Energy levels of 4Li defined for channel radius $a_p = 4.9$ fm. All energies and widths are in the c.m. system.

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>J^π</th>
<th>T</th>
<th>Γ (MeV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s. a</td>
<td>2^-</td>
<td>1</td>
<td>6.03</td>
<td>p, 3He</td>
<td>3</td>
</tr>
<tr>
<td>0.32</td>
<td>1^-</td>
<td>1</td>
<td>7.35 b</td>
<td>p, 3He</td>
<td>3</td>
</tr>
<tr>
<td>2.08</td>
<td>0^-</td>
<td>1</td>
<td>9.35</td>
<td>p, 3He</td>
<td>3</td>
</tr>
<tr>
<td>2.85</td>
<td>1^-</td>
<td>1</td>
<td>13.51 c</td>
<td>p, 3He</td>
<td>3</td>
</tr>
</tbody>
</table>

a 4.07 MeV above the p + 3He mass.
b Primarily 3P_1.
c Primarily 1P_1.

As noted in the previous compilation (1973FI04), the positron decay of 4Li, if it were particle stable, must lie close to 20 MeV, and all searches for 4Li beta decay with the expected energy have yielded negative results. Since the previous compilation, no evidence for this decay has been reported.

2. 3He(p, γ)4Li $Q_m \approx -2.9$ not observed

This reaction has not been observed. Upper limits have been set based on the absence of observable beta decay (1973FI04).

3. 3He(p, p)3He

Measurements of cross sections, polarizations and analyzing powers reported since the previous compilation (1973FI04) are summarized in Table 4.25, and methods of analysis are indicated. No evidence for narrow levels is reported. A discussion of the general features of the earlier cross section data as it concerns possible states in 4Li is given in (1973FI04).

Recent polarization measurements are reviewed, and analyses and comparisons with model calculations are presented in (1987GR08). Phase-shift analyses are reported in (1972BO15, 1978SZ06, 1985BE39, 1985SA22), in addition to those carried out in connection with experiments summarized in Table 4.25. A considerable amount of theoretical work bearing on 3He(p, p)3He has been carried out. Microscopic calculations for the 4Li continuum presented in (1977BE40) include 3He(p, p) differential cross sections as well as 4Li and 4H level positions and widths. A cluster model study by (1979FU05) predicts the ordering of $T = 1$ negative-parity states in $A = 4$ to be 2^-, 1^- (triplet-main), 0^-, 1^- (singlet-main). In the microscopic multichannel resonating group calculations of (1981HO04) the $T = 1$ level order is predicted to be 2^-, 1^- (triplet), 1^- (singlet), 0^-.

In (1987FI03) a review of recent progress in four-body scattering and breakup reactions in the integral equation approach (IEA) is presented. Theoretical studies carried out with various formulations of (IEA) are
Table 4.25: Measurements and analyses of cross sections for proton scattering on ^3He

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg) or $-t$ (GeV/c)2</th>
<th>Description a</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.600</td>
<td>A_y</td>
<td>15 – 165</td>
<td>Precision measurements. Compared with n + ^3He.</td>
<td>1974JA16</td>
</tr>
<tr>
<td>85</td>
<td>$\sigma(\theta)$</td>
<td>10 – 168</td>
<td>Compared with various theoretical calculations.</td>
<td>1974VO05</td>
</tr>
<tr>
<td>18.0, 20.0, 22.5, 25.0, 27.5, 39.0, 35.0, 40.0, 42.7, 45.0, 48.5, 57.0</td>
<td>$\sigma(E, \theta)$</td>
<td>14 – 165</td>
<td>Phase-shift analysis. Compared to resonating group predictions.</td>
<td>1975MO15</td>
</tr>
<tr>
<td>27</td>
<td>$\sigma(\theta), P_3$</td>
<td>40 – 160</td>
<td>Polarized ^3He target.</td>
<td>1975WA08</td>
</tr>
<tr>
<td>600</td>
<td>$\sigma(\theta)$</td>
<td>$-t = 0.08 – 0.45$</td>
<td>Chose $-t$ range to study nuclear multiple scattering.</td>
<td>1976FA09</td>
</tr>
<tr>
<td>16.2</td>
<td>$K_x^\prime, K_y^\prime, K_z^\prime$</td>
<td>30 – 90</td>
<td>R-Matrix analysis.</td>
<td>1976HA08</td>
</tr>
<tr>
<td>18 – 48</td>
<td>$\sigma_R(E)$</td>
<td></td>
<td>Beam-attenuation technique.</td>
<td>1976SO01</td>
</tr>
<tr>
<td>415, 600</td>
<td>$\sigma(\theta)$</td>
<td>$\theta_p = 136^\circ – 172^\circ$</td>
<td>Detected ^3He recoils.</td>
<td>1977FR05</td>
</tr>
<tr>
<td>25</td>
<td>A_y for ^3He</td>
<td>46 – 156</td>
<td>Polarized target.</td>
<td>1978MU14</td>
</tr>
<tr>
<td>19.6 – 26.5</td>
<td>A_y</td>
<td>135</td>
<td>Phase-shift analysis.</td>
<td>1978MU14</td>
</tr>
<tr>
<td>2.30, 3.00, 4.47, 6.80, 8.80</td>
<td>A_y</td>
<td>$\approx 45 – 155$</td>
<td>Polarized ^3He target.</td>
<td>1978SZ05</td>
</tr>
<tr>
<td>6.82, 8.82, 10.77</td>
<td>$K_x^\prime, K_y^\prime, K_z^\prime$</td>
<td>43.6, 58.9, 76.9, 93.9</td>
<td>Compared with calculated values from previous data analyses.</td>
<td>1978WE16</td>
</tr>
<tr>
<td>1000</td>
<td>$\sigma(\theta)$</td>
<td>$\approx 20 – 45$</td>
<td>Studied $\sigma(\theta)$ near minimum. Compared with Glauber model.</td>
<td>1979AL15</td>
</tr>
<tr>
<td>1.74 – 4.50</td>
<td>A_y</td>
<td>40 – 150</td>
<td>R-Matrix analysis. Established order of low-lying $T = 1$ ^4Li levels.</td>
<td>1979DE04</td>
</tr>
<tr>
<td>0.3 – 1.0</td>
<td>$\sigma(E, \theta), A_y$</td>
<td>52.4 – 173.3</td>
<td>Phase-shift analysis.</td>
<td>1980BE06</td>
</tr>
</tbody>
</table>
Table 4.25: Measurements and analyses of cross sections for proton scattering on 3He (continued)

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Measurement</th>
<th>$\theta_{c.m.}$ (deg) or $-t$ (GeV/c)2</th>
<th>Descriptiona</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 – 1700</td>
<td>$\sigma(E, \theta)$</td>
<td>160 – 180</td>
<td>Features in $\sigma(E, \theta)$ attributed to baryonic excitation.</td>
<td>1981BE52</td>
</tr>
<tr>
<td>1000</td>
<td>$\sigma(E, E_p)$</td>
<td>156</td>
<td>Studied proton spectra.</td>
<td>1983AN18</td>
</tr>
<tr>
<td>21.4 – 49.6</td>
<td>A_y</td>
<td>20 – 160</td>
<td>Errors < 0.01. Data compared with fits from phase shift and R-matrix predictions.</td>
<td>1984BI05</td>
</tr>
<tr>
<td>978</td>
<td>$d\sigma/dt$</td>
<td>$-t = 0.03 – 0.15$ (GeV/c)2</td>
<td>Results compared with Glauber-Sitenko theory.</td>
<td>1984BL07</td>
</tr>
<tr>
<td>19.5 – 47.5</td>
<td>$\sigma(E, \theta)$</td>
<td>10.1 – 173.4</td>
<td>Phase-shift analysis. Compared with resonating group calculation.</td>
<td>1984MU13</td>
</tr>
<tr>
<td>1000</td>
<td>$\sigma(\theta)$</td>
<td>$\approx 10 – 40$</td>
<td>Analyzed by Glauber-Sitenko theory. Obtained p, n r.m.s. radii difference.</td>
<td>1985AL09</td>
</tr>
<tr>
<td>25.0, 30.0, 32.5, 35.0</td>
<td>A_y</td>
<td>39.8 – 152.6</td>
<td>Polarized 3He target. Statistical error ≈ 0.05.</td>
<td>1985MC04</td>
</tr>
<tr>
<td>200, 300, 415, 515</td>
<td>$\sigma(E, \theta), A_y$</td>
<td>15 – 150</td>
<td>Analysis by Glauber multiple scattering theory.</td>
<td>1986HA23</td>
</tr>
</tbody>
</table>

a Elastic scattering except as noted.
Extensive use of the Glauber multiple scattering theory has been made to describe the scattering cross section in the intermediate energy region, for example (1973NA06, 1976FR12, 1979ME08, 1981BI08). See also (1976LE32, 1978PE20). Optical model calculations of $^3\text{He}(p, p)$ have been reported in (1979SH06, 1984LA20, 1984PA09, 1985SA22, 1986LA02, 1990LA01). The mechanism of two-nucleon exchange in backward scattering is explored in (1989LA26). The specific distortion effect of the three-nucleon cluster in the p^+-^3He system was studied in a resonating-group formulation by (1986SH12). A non-relativistic field theoretic formalism was used (1979FO08, 1984FO08) to develop a soluble four-body model and calculate scattering cross sections. Time-reversal violating effects in low-energy $^3\text{He}(p, p)^3\text{He}$ scattering were calculated and found to be very small (1977SI11). For other theoretical work related to $^3\text{He}(p, p)^3\text{He}$ see (1972KI13, 1973KI07, 1974LY02, 1975BA05, 1975KI11, 1975RU01, 1979KA19, 1983LY07, 1984LA25, 1987AB13).

4. $^3\text{He}(p, d)^1\text{H}\ ^1\text{H}$

$$Q_m = -5.494$$

Early measurements of particle spectra from the $^3\text{He}(p, d)^1\text{H}\ ^1\text{H}$ reaction are tabulated in the previous compilation (1973FI04), and a discussion of information obtained on pp final-state interactions (FSI) and pp and pd quasi-free scattering (QFS) processes is presented. More recent experiments on $^3\text{He}(p, d)^1\text{H}\ ^1\text{H}$ are summarized in Table 4.26.

Measurements of continuum cross sections and analyzing powers reported in (1985WE12) were compared with distorted-wave impulse approximation calculations based on quasi-free nucleon and deuteron knockout. Results of this comparison clearly indicated the need for including deuteron knockout. Several experiments on $^3\text{He}(p, d)$ have been carried out to investigate the question of dibaryonic resonances. A review of experiments including $^3\text{He}(p, d)$ and other reactions was presented in (1986GA15). Missing mass spectra reported in (1987TA17, 1987TA20) show narrow structures possibly associated with $B = 2, T = 1$ quantum numbers. The structures observed have masses and widths ($M_x = 2.240 \pm 0.005, \Gamma_{1/2} \approx 0.016 \pm 0.003$ GeV; $M_x = 2.192 \pm 0.003, \Gamma_{1/2} \approx 0.025 \pm 0.006$ GeV; $M_x = 2.121 \pm 0.003, \Gamma_{1/2} \approx 0.025 \pm 0.002$ GeV). An independent investigation reported in (1988SA33) found narrow structure in the missing-mass dependence of analyzing power that showed significant correspondence with previous reports and predictions of theory.

5. $^3\text{He}(p, n)^1\text{H}\ ^1\text{H}\ ^1\text{H}$

$$Q_m = -7.718$$

not observed

The previous compilation (1973FI04) lists a limited number of measurements of neutron spectra from $^3\text{He}(p, n)^1\text{H}\ ^1\text{H}\ ^1\text{H}$ and notes there is no evidence for a neutron group below the four-body threshold. No recent work has been reported.

6. $^3\text{He}(d, n)^4\text{Li}$

$$Q_m \approx -2.225$$

As noted in the previous compilation (1973FI04) this reaction was reviewed in (1974AJ01), and early work setting an upper limit to the cross section was cited. No new measurements have been reported. See, however, the work on primordial nucleosynthesis discussed in (1991RI03).
Table 4.26: Measurements and summaries (S) of particle spectra from the $^3\text{He}(p, d)$ reaction

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Particle detected</th>
<th>θ (deg)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.7, 149.3</td>
<td>dp</td>
<td>$\theta_d = 17.5$</td>
<td>Measured $\sigma(\theta), A_y(\theta)$ DWIA analysis based on quasi-free d knockout.</td>
<td>1985WE12</td>
</tr>
<tr>
<td>750, 925</td>
<td>d, X</td>
<td>40 (lab)</td>
<td>Measured $\sigma(\theta, E)$, missing mass. Searched for narrow dibaryons.</td>
<td>1986GA15</td>
</tr>
<tr>
<td>750</td>
<td>d, X</td>
<td>6, 40 (lab)</td>
<td>Measured $\sigma(\theta, E)$, missing mass. Reported evidence for narrow $B = 2$ resonance.</td>
<td>1987TA17</td>
</tr>
<tr>
<td>750, 925</td>
<td>d, X</td>
<td>22, 32, 40 (lab), 30, 40</td>
<td>Measured $\sigma(\theta, E)$, missing mass. Reported evidence for narrow $B = 2, T = 1$ structure.</td>
<td>1987TA20</td>
</tr>
<tr>
<td>$p_p = 1.46$ GeV/c</td>
<td>d, X</td>
<td>22 (lab)</td>
<td>Measured $\sigma(\theta), A_y(\theta)$. Evidence for narrow structure.</td>
<td>1988SA33</td>
</tr>
</tbody>
</table>

7. $^3\text{He}(d, n)^3\text{He} + ^1\text{H}$
$Q_m = -2.225$
$E_b = 16.387$

This reaction was reviewed in the previous compilation (1973FI04) and by (1974AJ01). No evidence was cited for states of ^4Li. No new work has been reported.

8. $^3\text{He}(^3\text{He}, d)^3\text{He} + ^1\text{H}$
$Q_m = -5.494$
$E_b = 11.489$

This reaction was reviewed in the previous compilation (1973FI04) and by (1974AJ01). Upper limits are quoted for the cross section. Two experiments in which the products of $^3\text{He} (^3\text{He}, d)$ reactions were studied have been reported since (1973FI04). The first of these (1977DA11) searched for high energy deuterons from $^3\text{He}(^3\text{He}, d)^4\text{He} + e^+ + \nu$ at $E(^3\text{He}) = 15$ and 20 MeV in connection with the solar neutrino problem. The other experiment examined quasi-free processes in which at least two of the final-state particles were charged. Beam energies were 50, 65, and 78 MeV. The kinematic conditions that were chosen favored the dominance of $d - ^3\text{He}$ quasi-free processes over sequential decay modes through ^4Li or ^5Li. No evidence for ^4Li was observed in either of these experiments.

9. $^4\Lambda\text{He}(\pi^-)^1\text{H} + ^3\text{He}$
$Q_m = 35.394$
Table 4.27: Measurements and summaries (S) of $\pi^+ + ^4\text{He}$ reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E_π (MeV)</th>
<th>Description</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^4\text{He}(\pi^+, p)^3\text{He}$</td>
<td>60, 100, 220</td>
<td>Measured $\sigma(E, \theta)$ and proton spectra at 45°, 90° (lab). Studied absorption mechanism.</td>
<td>1977JA15</td>
</tr>
<tr>
<td></td>
<td>50 – 295</td>
<td>Measured $\sigma(E, \theta)$ at 20°, 40°. Yields nearly proportional to number of target NN pairs.</td>
<td>1980KA37</td>
</tr>
<tr>
<td></td>
<td>50 – 300</td>
<td>Measured $\sigma(E, \theta)$ at 20°. Compared $\pi^+\text{NN}\rightarrow\text{Np}$ and $\pi^+d\rightarrow\text{pp}$.</td>
<td>1981KA41</td>
</tr>
<tr>
<td></td>
<td>400, 475</td>
<td>Measured yields for $\theta_p = 30°$. Two-nucleon pion absorption kinematic region emphasized.</td>
<td>1981KA43</td>
</tr>
<tr>
<td></td>
<td>100, 160, 220</td>
<td>Measured $\sigma(E_\pi, \theta)$ and proton spectra at $\theta_p = 30° - 150°$. Observed quasi-deuteron absorption mode.</td>
<td>1981MC09</td>
</tr>
<tr>
<td></td>
<td>50 – 295</td>
<td>Measured $\sigma(E_\pi, E_p)$ at $\theta_p = 30°$, 40°. Studied pion scattering and absorption contributions.</td>
<td>1983KA14</td>
</tr>
<tr>
<td>$^4\text{He}(\pi^+, 2p)^2\text{H}$</td>
<td>165</td>
<td>Measured $\sigma(\theta_{p1}, \theta_{p2})$. Deduced contribution of $2\text{N} + \pi \rightarrow 2\text{N}$ reactions where initial 2 nucleons are in a relative S-state.</td>
<td>1981AS10</td>
</tr>
<tr>
<td></td>
<td>65 – 320</td>
<td>Measured charged-particle multiplicity, $\sigma(\theta_1, \theta_1)$.</td>
<td>1990ADZY</td>
</tr>
</tbody>
</table>

Early work on this reaction was summarized in the previous compilation (1973FI04). More recently, extensive reviews of experimental and theoretical work on hypernuclei were presented in (1975GA1A, 1978PO1A, 1990CO1D, 1990OS1A). A theoretical study (1985LY1A) found that the polarization of the protons and tritons in the reaction is largely determined by the strong interaction in the $p-^3\text{He}$ system. Theoretical analyses of the binding energies of the ground and excited states of $^4_\Lambda\text{He}$ and $^4_\Lambda\text{H}$ are presented in (1982KO13, 1987YA1M). See also (1988MA09). Coulomb effects and charge symmetry breaking are discussed in (1985BO17). A four-body calculation of the $0^+ - 1^+$ binding energy difference is reported in (1988GI1F). Non-mesonic decays are discussed in (1985TA1E, 1986SZ1A, 1990CO1D, 1990OS1A). Evidence for the existence of a Σ-nucleus bound state formed in a (K^-, π^-) reaction on ^4He was reported in (1989HA39). See also (1989HA30, 1989HA39, 1990HA08, 1990HA11). The possibility of forming doubly-strange Ξ-hypernuclei is considered in (1983DO1B). Theoretical discussions of Σ-hypernuclei are given in (1990HA1B, 1990HA08, 1990HA11, 1990OK03).
10. (a) $^4\text{He}(\pi^+, \text{p})^3\text{He}$ \hspace{1cm} $Q_m = 120.28$

(b) $^4\text{He}(\pi^+, 2\text{p})^2\text{H}$ \hspace{1cm} $Q_m = 114.79$

(c) $^4\text{He}(\pi^+, 2\text{p})^1\text{N} + ^1\text{H}$ \hspace{1cm} $Q_m = 112.56$

(d) $^4\text{He}(\pi^+, \pi^0)^4\text{Li}^*$ \hspace{1cm} $Q_m = -14.69$

Measurements of cross sections and proton spectra from reaction (a) reported since the previous compilation (1973FI04) are summarized in Table 4.27. The emphasis in these measurements is on the study of pion scattering and absorption contributions. A review of the experimental and theoretical situation with respect to pion absorption in nuclei is presented in (1985OH09), and an isobar-hole model calculation is described for ^4He which takes into account large pion distortion effects and predicts the main features of the cross section correctly. One experimental study of reaction (b) was reported (1981AS10). The relative absorption ratio of a pion by $T = 0$ and $T = 1$ pairs was determined. Calculations of this ratio have been carried out utilizing a standard theory of Δ-isobar excitations (1982TO18) and by a unitary isobar model (1984SI03). Earlier work reported in (1974WI19) obtained amplitudes and cross sections for the $(\pi^+, 2\text{p})$ reactions in a treatment based on field theory. No new data on reaction (d) have been reported. A calculation of inelastic pion-nucleus collisions and pion absorption from the Boltzmann equation which included the (π^+, π^0) reaction is described in (1979HU02).
Fig. 4: Isobar diagram for $A = 4$. All energies are referred to the ground-state mass ^4He without taking into account the np mass difference or the Coulomb energy. Levels belonging to the same isospin multiplet are connected by dashed lines. For other notations, see Fig. 1.
References

(Closed 01 June 1991)

1952SH44 R.K. Sheline, Phys. Rev. 87 (1952) 557
1963WE10 C. Werntz and J.G. Brennan, Phys. Lett. 6 (1963) 113
1964GO25 V.I. Goldansky, Phys. Lett. 9 (1964) 184
1964VL1A N.A. Vlasov and L.N. Samoilov, At. Energ. (USSR) 17 (1964) 3; Sov. At. Energy 17 (1964) 687
1965CL1A Clark, Stewart and Morrison, Phys. Lett. 18 (1965) 316
1966LA04 T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1

75
1973KU03 D. Kurath, Phys. Rev. C7 (1973) 1390
1973NA06 P. Narboni, Nucl. Phys. A205 (1973) 481
1973SA09 A.M. Saperstein, Phys. Rev. Lett. 30 (1973) 1257

83
1975FI08 S. Fiarman and S.S. Hanna, Nucl. Phys. A251 (1975) 1
1975GA1A A. Gal, Adv. Nucl. Phys. 8 (1975) 1
1975KU01 D. Kurath and D.J. Millener, Nucl. Phys. A238 (1975) 269

84
1975SE07 F. Seiler, Nucl. Phys. A244 (1975) 236
1975WA08 R.H. Ware, W.R. Smythe and P.D. Ingalls, Nucl. Phys. A242 (1975) 309
<table>
<thead>
<tr>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1977BA74</td>
<td>O.L. Bartaya and T.S. Macharadze</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
</tbody>
</table>

91

92
1978FE08 F. Fernandez and J.C. Nalda, Fizika Suppl. 10 (1978) 61
1978KIZQ King, JOUR DABBB 39 (1978) 822
1978PO1A B. Povh, Ann. Rev. Nucl. Part. Sci. 28 (1978) 1

95

1979FO08 A.C. Fonseca, Phys. Rev. C19 (1979) 1711

96
 Phys. Ser. 43:5 (1979) 117
1979GH01 J. Ghosh and V.S. Varma, Pramana 12 (1979) 427
1979GO21 B. Gomez-Moreno, W. Hardt, K. Kochskamper, W. Rosenstock and W. von Witsch,
1979GR13 W. Gruebler, R.E. Brown, F.D. Correll, R.A. Hardekopf, N. Jarmie and G.G. Ohlsen,
 Nucl. Phys. A331 (1979) 61
 Sato and Y. Wakuta, Nucl. Phys. A325 (1979) 397
 (1979) 353
 37
 (1979) 766
1979KO23 V. Konig, W. Gruebler, R.A. Hardekopf, B. Jenny, R. Risler, H.R. Burgi, P.A.
 Schmelzbach and R.E. White, Nucl. Phys. A331 (1979) 1
1979ME08 L. Meritet and J. Proriol, Nucl. Phys. A324 (1979) 420
1979RA30 S.S. Raghavan, Pramana 13 (1979) 159
1979UE02 T. Ueda, Prog. Theor. Phys. 61 (1979) 1367
1979YA06 Y. Yamamoto, Prog. Theor. Phys. 61 (1979) 975

104
B32 (1982) 1349
Prokhorets, Ukr. Fiz. Zh. 27 (1982) 826
Prokhorets, Yad. Fiz. 36 (1982) 817
Nucl. Phys. 36 (1982) 206
(1982) 60
1982BL23 A.V. Blinov, I.A. Vanyushin, I.D. Voitenko, V.E. Grechko, V.A. Ergakov, S.M. Zom-
Fiz. 35 (1982) 532

106
1983GI02 V. Girija, V. Devanathan, A. Nagl and H. Uberall, Phys. Rev. C27 (1983) 1169
1983HA0N Hale et al., Unpublished (1983)

110
1983MA31 S.E. Massen, Phys. Scr. 27 (1983) 385
1983NI06 F. Nichitiu and M.G. Sapozhnikov, Yad. Fiz. 37 (1983) 1209
1984FO1A W.A. Fowler, Rev. Mod. Phys. 56 (1984) 149

113
1984TS01 A. Tsechanski and G. Shani, Nucl. Technology 64 (1984) 78
1985DU05 O. Dumbrajs, Phys. Scr. 31 (1985) 485
117
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
</table>
1986BE51 J.J. Bevelacqua, Fizika (Zagreb) 18 (1986) 383
1986FO07 A.C. Fonseca, Few-Body Syst. 1 (1986) 69
1986GR02 D.P. Grechukhin, S.V. Romanov and A.A. Soldatov, Yad. Fiz. 43 (1986) 375

122
1986SZ1A J.J. Szymanski, AIP Conf. Proc. 150 (1986) 934

123
1987BA49 D. Baye, Fizika (Zagreb) 19 Supplement 1 (1987) 41

124

125

126

129

130

1989BE07 J.J. Bevelacqua, Fizika (Zagreb) 21 (1989) 65

1990CO1D J. Cohen, Prog. Part. Nucl. Phys. 25 (1990) 139