Energy Levels of Light Nuclei

\(A = 6 \)

D.R. Tilley \(^{a,b}\), C.M. Cheves \(^{a,c}\), J.L. Godwin \(^{a,c}\), G.M. Hale \(^d\),
H.M. Hofmann \(^e\), J.H. Kelley \(^{a,b}\), C.G. Sheu \(^{a,c}\) and H.R. Weller \(^{a,c}\)

\(^{a}\)Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308
\(^b\)Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
\(^c\)Department of Physics, Duke University, Durham, NC 27708-0305
\(^d\)Los Alamos National Laboratory, Los Alamos, NM 87545
\(^e\)Universität Erlangen-Nürnberg, Erlangen, Germany

Abstract: An evaluation of \(A = 5-7 \) was published in Nuclear Physics A708 (2002), p. 3. This version of \(A = 6 \) differs from the published version in that we have corrected some errors discovered after the article went to press. Also, the introduction and introductory tables have been omitted from this manuscript. Reference key numbers are in the NNDC/TUNL format.

(References closed August 23, 2001)

This work is supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG02-97-ER41042 (North Carolina State University); Contract No. DEFG02-97-ER41033 (Duke University).
Table of Contents for $A = 6$

Below is a list of links for items found within the PDF document. Links for the Update Lists provide brief descriptions on important research bearing on level information published since the last full evaluation in 2002.

A. Nuclides: $A = 6$, 6n, 6H, 6He, 6Li, 6Be, 6B, 6C

B. Master Tables:
- Table 6.1: Energy levels of 6He
- Table 6.4: Energy levels of 6Li
- Table 6.14: Energy levels of 6Be

C. References

D. General Tables: 6He, 6Li, 6Be

E. Update Lists: 6H, 6He, 6Li, 6Be

F. Figures: 6He, 6Li, 6Be, Isobar diagram

G. Erratum to this Publication
A = 6

GENERAL: References to articles on general properties of A = 6 nuclei published since the previous review (88AJ01) are grouped into categories and listed, along with brief descriptions of each item, in the General Tables for A = 6 located on our website at (www.tunl.duke.edu/NuclData/General_Tables/06.shtml).

6_n

(Not illustrated)

6_n has not been observed. See (79AJ01, 88AJ01) and references cited there. More recently (90AL40) reports a search for 6_n in a 14C(7Li, 6_n) activation experiment at $E(^7$Li) = 82 MeV. No evidence for 6_n was obtained.

The method of angular potential functions was used by (89GO18) in a calculation of the properties of multi-neutron systems which indicated that these systems have no bound states. The ground state energy of a six-neutron drop has been computed with variational and Green’s function Monte Carlo methods (97SM07).

6_H

(Fig. 7)

6_H was reported in the 7Li(7Li, 8B)6_H reaction at $E(^7$Li) = 82 MeV (84AL1F, 85AL1G) [$\sigma(\theta) \approx 60 \text{ nb/sr at } \theta = 10^\circ$] and in the 9Be(11B, 14O)6_H reaction at $E(^{11}$B) = 88 MeV (86BE35) [$\sigma(\theta) \approx 16 \text{ nb/sr at } \theta \approx 8^\circ$]. 6_H is unstable with respect to breakup into 3H + 3n by $2.7 \pm 0.4 \text{ MeV, } \Gamma = 1.8 \pm 0.5 \text{ MeV (84AL1F), } 2.6 \pm 0.5 \text{ MeV, } \Gamma = 1.3 \pm 0.5 \text{ MeV (86BE35).}$ The value adopted in the previous review (88AJ01) is $2.7 \pm 0.3 \text{ MeV, } \Gamma = 1.6 \pm 0.4 \text{ MeV.}$ See also (cite87BO40). The atomic mass excess of 6_H using the (95AU04) masses for 3H and n, is then $41.9 \pm 0.3 \text{ MeV.}$ There is no evidence for the formation of 6_H in the 6Li(π^-, p) reaction at $E_{\pi^-} = 220 \text{ MeV}$ as reported in (90PA25). (91SE06) shows that the continuum missing mass spectra can be explained in terms of the presence of dineutrons in the breakup products. An analysis of the proton spectra for the 7Li(π^-, p) reaction (90AM04) showed no evidence for 6_H.

The ground state of 6_H is calculated to have $J^\pi = 2^-$. Excited states are predicted at 1.78, 2.80 and 4.79 MeV with $J^\pi = 1^-, 0^-$ and $1^+ [(0 + 1)\hbar \omega \text{ model space}]$ (85PO10) [see also for $(0 + 2)\hbar \omega \text{ calculations}]$. See also the additional references cited in (88AJ01).
GENERAL: References to articles on general properties of 6He published since the previous review (88AJ01) are grouped into categories and listed, along with brief descriptions of each item, in the General Tables for 6He located on our website at (www.tunl.duke.edu/NuclData/
General_Tables/6he.shtml).

Ground State Properties:

The interaction radius of 6He, obtained from measurements of the total interaction cross section, is 2.18 ± 0.02 fm (85TA13, 85TA18). These authors have also derived nuclear matter, charge and neutron r.m.s. radii.

6He is considered to be a neutron-halo nucleus because its interaction radius, which is deduced from the total interaction cross section in (85TA13, 85TA18), is appreciably larger than that of 6Li. A Glauber calculation using proton and neutron densities from an alpha-core valence-neutron model leads to the conclusion that the matter radius is much larger than the charge radius, as predicted by theoretical models of the 6He ground-state wave function. These theoretical models include three-body models (93ZH1J, 95HI15), cluster-orbital shell models (91SU03, 94FU04), no-core microscopic shell models (96NA24), and microscopic cluster models for various effective nucleon-nucleon interactions (93CS04, 97WU01). See also (92TA18). The point proton and point neutron radii are often compared in order to enhance the effect, and are found to differ by 0.4–0.8 fm. For other typical properties of halo nuclei see (95HA2B).

1. 6He(β^-)6Li

The half-life is 806.7 ± 1.5 ms (84AJ01). The decay to the ground state of 6Li ($J^x = 1^+$) is via a super-allowed Gamow-Teller transition; $\log f t = 2.910 \pm 0.002$ (84AJ01, 88AJ01). A second beta-decay branch leading to an unbound final state consisting of a deuteron and an α particle was reported (90RI01) based on the observation of beta-delayed deuterons. The branching ratio for $E_d > 350$ keV was measured (93BO24, 93RIZY) to be $(7.6 \pm 0.6) \times 10^{-6}$. Calculations are presented which consider alternative decay routes. (One considers a decay to an unbound state of 6Li which then decays into $\alpha + d$. In the other route 6He breaks up into an alpha particle plus a di-neutron which β decays to a deuteron). The calculation of (94BA11) successfully reproduces the deuteron spectrum shape and branching ratios. References to theoretical work on the 6He(β^-)6Li decay are presented in Table 6.2.

2. 1H(6He, 6He)1H

The reaction is $Q_m = 3.508$.
Figure 4: Energy levels of 6He. For notation see Fig. 5.
Table 6.1: Energy levels of $^6{\text{He}}$

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>$\tau_{1/2}$ or Γ_{cm}</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0$^+$; 1</td>
<td>$\tau_{1/2} = 806.7 \pm 1.5$ ms</td>
<td>β^-</td>
<td>1, 5, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 30, 31</td>
</tr>
<tr>
<td>1.797 ± 25</td>
<td>2$^+$; 1a</td>
<td>$\Gamma = 113 \pm 20$ keV</td>
<td>n, α</td>
<td>5, 9, 10, 11, 12, 13, 15, 16, 19, 20, 21, 22, 23, 24, 26, 31</td>
</tr>
<tr>
<td>5.6 ± 300a</td>
<td>(2$^+$, 1$^-$, 0$^+$); 1a</td>
<td>12.1 ± 1.1 MeVa</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>14.6 ± 0.7a (15.5 ± 500)</td>
<td>(1$^-$, 2$^-$); 1a</td>
<td>7.4 ± 1.0 MeVa</td>
<td></td>
<td>9, 15, 19, 22, 24</td>
</tr>
<tr>
<td>23.3 ± 1.0a (32)</td>
<td></td>
<td>4 ± 2 MeV</td>
<td></td>
<td>10, 11, 16, 19, 23, 24</td>
</tr>
<tr>
<td>(36)</td>
<td></td>
<td>14.8 ± 2.3 MeVa</td>
<td></td>
<td>11, 15, 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 2 MeV</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 2 MeV</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

a Newly adopted in this evaluation or revised from the previous evaluation (88AJ01).

Angular distributions for elastic scattering and for 1n and 2n transfer were measured at 25 MeV/A, and spectroscopic amplitudes were extracted by (99WO13). An analysis of elastic scattering data at 700 MeV/A is described in (98AL05). See also the analysis (00DE43) of data at $E = 25, 40$ MeV and that of (00GU19) at $E = 25–70$ MeV. The reaction cross section was measured for 36 MeV/A 6He on hydrogen, and a value of $\sigma_R = 409 \pm 22$ mb was obtained (01DE19). Analysis within a microscopic model allowed the 6He density distribution to be explored.

The use of elastic and inelastic scattering with secondary beams to probe ground-state transition densities of halo nuclei has been explored in a theoretical study (95BE26). Cross sections for $E = 151$ MeV were calculated by (00AV02), and density-distribution features were deduced. See also the discussion of (99EG02).

3. (a) 3H(t, n)5He $Q_m = 10.534$ $E_b = 12.305$
(b) 3H(t, 2n)4He $Q_m = 11.332$
(c) 3H(t, t)3H

The cross section for reaction (b) was measured for $E_t = 30$ to 115 keV by (86BR20, 85JA16) who also calculated the astrophysical S-factors [the extrapolated $S(0) \approx 180$ keV-b]
Table 6.2: \(^6\text{He}(\beta^-)^6\text{Li} \) – Theoretical work

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>89DO1B</td>
<td>Meson exchange corrections to the (^6\text{He}{g.s.} \rightarrow ^6\text{Li}{g.s.}) beta decay</td>
</tr>
<tr>
<td>89SA20</td>
<td>Polarization effects of second-class currents in the direct and inverse decay of nuclei</td>
</tr>
<tr>
<td>89TE04</td>
<td>Neutral current effect in nuclear (\beta)-decays</td>
</tr>
<tr>
<td>90DA1H</td>
<td>Two body phase space in alpha-deuteron breakup at 40 MeV</td>
</tr>
<tr>
<td>90DAZR</td>
<td>Beta-decay of the ground state of (^6\text{He}) in three-particle (\alpha + 2n) model</td>
</tr>
<tr>
<td>90DO04</td>
<td>Particle-hole symmetry and meson exchange corrections to the (^6\text{He}) beta decay amplitude</td>
</tr>
<tr>
<td>90HA29</td>
<td>A review of recent results on nuclear structure at the drip lines</td>
</tr>
<tr>
<td>91DA24</td>
<td>Decay of the ground state of the (^6\text{He}) nucleus in the three-particle (\alpha + 2n) model</td>
</tr>
<tr>
<td>92DAZV</td>
<td>Static electromagnetic characteristics and beta-decay of (^6\text{He})</td>
</tr>
<tr>
<td>92DE12</td>
<td>Beta-delayed deuteron emission of (^6\text{He}) in a potential model</td>
</tr>
<tr>
<td>93CH06</td>
<td>Gamow-Teller beta-decay rates for (A \leq 18) nuclei, a comprehensive analysis</td>
</tr>
<tr>
<td>93ZH09</td>
<td>(^6\text{He}) beta decay to the (\alpha + d) channel in a three-body model</td>
</tr>
<tr>
<td>94BA11</td>
<td>Deuteron emission following (^6\text{He}) beta decay</td>
</tr>
<tr>
<td>94BB03</td>
<td>Evidence for halo in quenching of (^6\text{He}) (\beta)-decay into alpha and deuteron</td>
</tr>
<tr>
<td>94CS01</td>
<td>Microscopic description of the beta delayed deuteron emission from (^6\text{He})</td>
</tr>
<tr>
<td>94SK01</td>
<td>Improved limits on time-reversal-violating, tensor weak couplings in (^6\text{He})</td>
</tr>
<tr>
<td>94SU02</td>
<td>Glauber theory microscopic analysis of fragmentation and beta-delayed particle emission</td>
</tr>
<tr>
<td>95SU13</td>
<td>Study of halo structure in light nuclei with a multicluster model</td>
</tr>
<tr>
<td>98GL01</td>
<td>Order-(\alpha) radiative correction to (^6\text{He}) (\beta)-decay recoil spectrum</td>
</tr>
<tr>
<td>99ER02</td>
<td>Antisymmetrization in multicluster model & nucleon exchange effects</td>
</tr>
</tbody>
</table>
and discussed the earlier measurements. See also (74AJ01, 79AJ01) and (86JA1E). Calculations have also been made within the framework of the two-channel resonating group method (89VA20), the microscopic multichannel resonating group method (91TY01) and the generator coordinate method (90FU1H). For muon-catalyzed fusion see (88MA1V, 89BR23, 89CH2F, 90HA46). For earlier work see (88AJ01).

4. $^4\text{He}(2n, \gamma)^6\text{He}$

A mechanism for this reaction in astrophysical processes is suggested, and a reaction rate is calculated (96EF02).

5. $^4\text{He}(t, \text{p})^6\text{He}$

Angular distributions of the protons to $^6\text{He}^*(0, 1.80)$ have been measured at $E_t = 22$ and 23 MeV. [No L-values were assigned.] No other states are observed with $E_x \leq 4.2$ MeV; see (79AJ01). Cross sections and angular distributions for the reaction products of the $^3\text{H}(\alpha, \text{p})^6\text{He}$ reaction were measured at $E_x = 27.2$ MeV (92GO21). A potential description of $^3\text{H} + ^4\text{He}$ elastic scattering is discussed in (93DU09).

6. $^4\text{He}(\alpha, 2\text{p})^6\text{He}$

Total cross sections for the production of ^6He have been measured (01AU06) at $E_x = 159$, 280 and 620 MeV in a study of cosmic ray nucleosynthesis. The resulting cross sections decrease rapidly with energy.

7. $^4\text{He}(^7\text{He}, ^6\text{He})^4\text{He}$

Differential cross sections were measured at $E(^7\text{He}) = 151$ MeV. DWBA analysis suggests a spectroscopic factor of ≈ 1 for the di-neutron cluster. (98TE1D, 98TE03). Measurements at $E_{cm} = 11.6$ and 15.9 MeV (99RA15) also show evidence for the 2n transfer process in the elastic scattering. However, a couple-discretized-continuum channel analysis discussed in (00RU03) suggests a smaller 2n transfer process than commonly assumed (01TE03). See also the analyses and calculations of (98GO1J, 99OG06, 99OG09). A microscopic multicluster model description of the elastic scattering process is discussed in (99FU03).
8. \(^{6}\text{He}(p, p)^{6}\text{He}\) \(E_b = 9.975\)

See reaction 2 for experimental information on the \(^{6}\text{He} + ^{1}\text{H}\) system.

Calculations of the elastic scattering of protons from \(^{6}\text{He}\) at \(E_p \geq 100\) MeV are described in (92GA27). A folding model with target densities which reproduce the r.m.s. radii and a range of electroweak data was used.

A calculation of the expansion of the Glauber amplitude described in (99AB37) found that a \(^{6}\text{He}\) matter radius constant with the analysis is 2.51 fm. Finite-range coupled channel calculations have been performed below the \(^{6}\text{He}\) three-body breakup threshold (00TI02). A theoretical study (00WE03) with four differential nuclear structure models concluded that elastic scattering at < 100 MeV/A does not provide good constraints on the structure of the \(^{6}\text{He}\) ground state. First order optical potentials were studied for 20–40 MeV scattering by (00DE43). A microscopic multicluster calculation of \(\sigma(\theta)\) and \(\sigma(E)\) for \(E_{cm} = 0–5\) MeV is reported in (01AR05).

9. \(^{6}\text{Li}(e, \pi^+)^{6}\text{He}\) \(Q_m = -143.078\)

(86SH14) report breaks in \((e, \pi^+)\) spectra at \(E_e = 202\) MeV corresponding to \(E_x = 7, 9, 12, 13.6, 17.7\) and 24.0 MeV. Using the shape of the virtual photon spectrum results in groups with angular distributions that suggest that the states at 13.6, 17.7 and 24.0 MeV are spin-dipole isovector states \([J^\pi = 1^- , 2^-]\). See also (90SH11). For the earlier work see (84AJ01). [Note: The states reported here at 7, 9 and 12 MeV are inconsistent with the work reported in reactions 12, 13, 22 and 23, and with the work on the analog region in \(^{6}\text{Be}\)].

10. (a) \(^{6}\text{Li}(\pi^-, \gamma)^{6}\text{He}\) \(Q_m = 136.062\)
 (b) \(^{6}\text{Li}(\pi^-, \pi^0)^{6}\text{He}\) \(Q_m = 1.086\)

The excitation of \(^{6}\text{He}^*(0, 1.8)\) and possibly of (broad) states at \(E_x = 15.6 \pm 0.5, 23.2 \pm 0.7\) and \(29.7 \pm 1.3\) MeV has been reported: see (79AJ01). A study of capture branching ratios to \(^{6}\text{He}^*(0, 1.8)\) was reported in (86PE05). For reaction (b) see (84AJ01).

11. \(^{6}\text{Li}(n, p)^{6}\text{He}\) \(Q_m = -2.725\)

Angular distributions of the ground state proton group, \(p_0\) have been reported at \(E_n = 4.7\) to 6.8 MeV, at 14 MeV and at 59.6 MeV [see (79AJ01, 84AJ01)] and at 118 MeV (87PO18, 88HA2C, 88WA24). At \(E_n = 59.6\) MeV broad structures in the spectra are ascribed to states at \(E_x = 15.5 \pm 0.5\) and \(25 \pm 1\) MeV with \(\Gamma = 4 \pm 1.5\) and \(8 \pm 2\) MeV (83BR1C, 84BR03).
[see for discussions of the GDR strength]. The ground state reaction has also been studied at $E_n = 198$ MeV (88JA01). Proton spectra were measured at $E_n = 118$ MeV by (98HA24).

An angular distribution of the proton group corresponding to population of the $E_x = 1.8$ MeV $J^* = 2^+$ state in 6He was also reported (88WA24). See also (89WA1F). Angular distributions were measured for p_0 at $E_n = 280$ MeV in tests of isospin symmetry in (n, p), (p, p') and (p, n) reactions populating the $T = 1$ isospin triads in $A = 6$ nuclei (90MI10). Cross sections for $\theta_{lab} = 1^\circ$–10° for $E_n = 60$–260 MeV were measured to obtain the energy dependence of the Gamow-Teller strength (91SOZZ, 92SO02).

Several theoretical studies have been reported since the previous review. A dynamical multicluster model was used to generate transition densities for 6He and 6Li (91DA08). A microscopic calculation in the framework of the $\alpha + 2N$ model (93SH1G) reproduced energy spectra and cross sections reliably. Predictions for the structure of a second 2^+ resonance in the 6He continuum were made with a $\alpha + N + N$ cluster model (97DA01). Halo excitation of 6He in 6Li$(n, p)^8$He was studied using four-body distorted wave theory (97ER05); see also (97VA06). The status of experimental and theoretical research on nuclei featuring a two-particle halo is reviewed in (96DA31).

12. 6Li$(d, 2p)^6$He

$$Q_m = -4.950$$

The previous review (88AJ01) notes that at $E_d = 55$ MeV, 6He*$(0, 1.8)$ [the latter weak] are populated: no other states are observed with $E_x \leq 25$ MeV [see (84AJ01)]. More recently cross sections at 0° were measured at $E_d = 260$ MeV (93OH01) and at $E_d = 125.2$ MeV (95XU1A). In both studies the cross section for $(d, ^3$He) showed a linear relationship with Gamow-Teller strength from β decay or (p, n) reactions.

13. 6Li$(t, ^3$He)6He

$$Q_m = -3.489$$

The ground-state angular distribution has been studied at $E_t = 17$ MeV. At $E_t = 22$ MeV only 6He*$(0, 1.8)$ are populated for $E_x \leq 8.5$ MeV: see (79AJ01). Differential cross sections for the transition to 6He*(1.8) are reported at $E(^6$Li) = 65 MeV (87AL1L). In a more recent experiment at $E_t = 336$ MeV reported in (00NA35), the 6He ground and 1.8 MeV states were populated. In addition, a broad asymmetric structure around $E_x \approx 5$ MeV was observed with an angular distribution which exhibited $\Delta L = 1$ dominance. Another structure at $E_x \approx 14.6$ MeV was observed with the angular distribution indicating $\Delta L = 1$.

14. 6Li(6Li, 6Be)6He

$$Q_m = -7.796$$
Table 6.3: Levels in 6He from 6Li7Li, 7Be)6He a

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>J^π</th>
<th>Γ (MeV)</th>
<th>$d\sigma/d\Omega$ (mb/sr)</th>
<th>G c</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>0$^+$</td>
<td>0.72 ± 0.08</td>
<td>0.46 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>1.92 ± 0.17</td>
<td>2$^+$</td>
<td>0.25 ± 0.04</td>
<td>0.40 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>5.6 ± 0.3</td>
<td>(2$^+$, 1$^-$, 0$^+$) d</td>
<td>12.1 ± 1.1</td>
<td>4.56 ± 0.48</td>
<td>0.39 ± 0.04</td>
</tr>
<tr>
<td>14.6 ± 0.7</td>
<td>(1, 2)$^-$</td>
<td>7.4 ± 1.0</td>
<td>2.11 ± 0.23</td>
<td>0.43 ± 0.06</td>
</tr>
<tr>
<td>23.3 ± 1.0</td>
<td></td>
<td>14.8 ± 2.3</td>
<td>1.75 ± 0.19</td>
<td>0.47 ± 0.07</td>
</tr>
</tbody>
</table>

a (96JA11). $E(7\text{Li}) = 350$ MeV.
b $\theta_{\text{cm}} = 4.5^\circ$.
c Averaged spin-flip signatures $G = Y_{\text{coinc}}/Y_{\text{singles}}$.
d (99AN13) and J. Jänecke, private communication.

Angular distributions have been studied for $E(6\text{Li}) = 32$ and 36 MeV for the transitions to $^6\text{He}_{g.s.}$, $^7\text{Be}_{g.s.}$ and, in inelastic scattering of ^6Li [see ^6Li], to the analog state $^6\text{Li}^*(3.56)$: for a discussion of these see the references quoted in (79AJ01).

15. $^6\text{Li}(7\text{Li}, 7\text{Be})^6\text{He}$

Measurements of differential cross sections at $E(7\text{Li}) = 82$ MeV are reported in (92GLZX, 93GLZZ, 94SAZZ) and at $E(7\text{Li}) = 78$ MeV in (93SA35, 94RUZZ). The ^6He levels at $E_x = 0 J^\pi = 0^+$ and $E_x = 1.80 J^\pi = 2^+$ were identified. A maximum at $E_x \approx 6$ MeV is interpreted as consistent with a soft-dipole response expected in neutron-halo nuclei. A study (96JA11, 99AN13) at $E(7\text{Li}) = 350$ MeV utilized magnetic analysis to observe transitions to the $J^\pi = 0^+$ ground state, and the $J^\pi = 2^+$ state at $E_x = 1.8$ MeV, as well as pronounced resonances at ≈ 5.6 MeV, ≈ 14.6 MeV and ≈ 23.3 MeV (96JA11). See Table 6.3. In experiments at $E = 65$ MeV/A with this reaction, isovector spin-flip and spin non-flip resonances were deduced (98NAZP, 98NAZR). See also the more recent measurements described in (00NA22) and (01NA18).

A theoretical study of ^6He structure with an extended microscopic three-cluster model is described in (99AR08).

16. (a) $^7\text{Li}(\gamma, p)^6\text{He}$

(b) $^7\text{Li}(e, ep)^6\text{He}$

At $E_\gamma = 60$ MeV, the proton spectrum shows two prominent peaks attributed to $^6\text{He}^*(0^+, 1.8, 18 \pm 3)$: see (79AJ01). Reactions (a) and (b) have been studied by (85SE17). See
also 7Li, (84AJ01) and (86BA2G). An analysis of the available experimental data on 7Li photodisintegration at energies up to $E_\gamma = 50$ MeV is presented in (90VAZM, 90VA16). See also the discussion of reactions involving scattering of polarized electrons from polarized targets (93CA11). In more recent work a broad excited state was observed (01BO38) in 6He with energy $E_x = 5 \pm 1$ MeV and width $\Gamma = 3 \pm 1$ MeV. In experiments with reaction (b) momentum distributions from transitions to the 6He ground and first excited states were measured by (99LA13, 00LA17). The deduced spectroscopic factor for both reactions is 0.58 ± 0.05 in agreement with variational Monte Carlo calculations.

17. 7Li($\pi^−, ^6$He)n $Q_m = 128.812$

The results of measurements of inclusive spectra made with $\pi^−$ mesons with momentum 90 MeV/c are presented in (93AM09). The yield of one-neutron emission was found to be $Y = (1.1 \pm 0.2) \times 10^{-3}$ per stopped $\pi^−$.

18. 7Li($\pi^−, \pi^−p$)6He $Q_m = -9.975$

Pion and proton spectra were measured at 0.7, 0.9, 1.25 GeV/c by (00AB25). Fermi-momentum distributions were deduced.

19. 7Li(n, d)6He $Q_m = -7.751$

At $E_n = 60$ MeV, the deuteron spectrum shows two prominent peaks attributed to states centered at $E_x = 13.6$, 15.4 and 17.7 MeV (± 0.5 MeV) and a possible state or states (populated with an l_p transfer ≥ 2) at $E_x = 23.7$ MeV. DWBA analyses of the d_0 and d_4 groups are consistent with $l_p = 1$ and $S(1p_{3/2}) = 0.62$ for 6He$_{g.s.}$ and to $S(1p_{3/2}) = 0.37$, $S(1p_{1/2}) = 0.32$ for 6He$^*(1.8)$ (77BR17); see (79AJ01). Measurements of the cross section as a function of energy for $E_x = 10$–30 MeV were reported in (89CO22). See also the measurements at $E_n = 14.1$ MeV (89SHHZ).

20. 7Li(p, 2p)6He $Q_m = -9.975$

From measurements at $E_p = 1$ GeV (85BE30, 85DO16), the separation energy between 6–7 MeV broad 1$p_{3/2}$ and 1$s_{1/2}$ peaks is reported to be 14.1 ± 0.7 MeV. See also (83GO06) and (79AJ01). Differential cross section measurements at $E_p = 70$ MeV are reported in (88PA26, 98SH33, 01SH03). Contributions from 1p and 1s nucleons in 7Li were distinguished. Proton
spectra measurements for $E_p = 1 \text{ GeV}$ were reported by \(00\text{MI17, 01\text{MI07}}\). Effective proton polarizations were deduced. See also the review of experimental and theoretical nucleon and cluster knockout reactions in light nuclei presented in \(87\text{VD1A}\).

21. $^7\text{Li}(d, ^3\text{He})^6\text{He}$

As summarized in the previous review \(88\text{AJ01}\), angular distributions of the ^3He ions to $^6\text{He}^*(0, 1.8)$ have been measured at $E_d = 14.4$ and 22 MeV: they have an $l_p = 1$ character and therefore these two states have $J^\pi = (0^+ - 3 +)$. There is no evidence for any other states of ^6He with $E_x < 10.7 \text{ MeV}$: see \(79\text{AJ01}\). \(87\text{BO39}\) [$E_d = 30.7 \text{ MeV}$] deduce that the branching ratio of $^6\text{He}^*(1.8)$ into a dineutron $[n^2 \quad T = 1, S = 0]$ and an α-particle is 0.75 ± 0.10. See also \(85\text{BO55}\) and \(87\text{DA1N}\). More recently, the energy spectrum of neutrons from the ^6He excited state at $E_x = 1.8 \text{ MeV}$ populated in this reaction was measured at $E_d = 23 \text{ MeV}$ \(94\text{BO46}\).

22. $^7\text{Li}(t, \alpha)^6\text{He}$

As summarized in \(88\text{AJ01}\), the energy of the first-excited state is $1.797 \pm 0.025 \text{ MeV}$, $\Gamma = 113 \pm 20 \text{ keV}$. $^6\text{He}^*(1.80)$ decays into $^4\text{He} + 2n$. The branching ratio $\Gamma_\gamma/\Gamma_\alpha \leq 2 \times 10^{-6}$; for $\Gamma_{\text{cm}} = 113 \pm 20 \text{ keV}$, $\Gamma_\gamma \leq 0.23 \text{ eV}$. Angular distributions of the α_0 and α_1 groups have been measured at $E_t = 13$ and 22 MeV. No other α-groups are reported corresponding to ^6He states with $E_x < 24 \text{ MeV}$ (region between $E_x \approx 13$ and 16 MeV was obscured by the presence of breakup α-particles): see \(79\text{AJ01}\). Angular distributions were reported at $E_t = 0.151$ and 0.272 MeV \(87\text{AB09}; \alpha_0, \alpha_1\) and at $E(^7\text{Li}) = 31 \text{ MeV}$ \(87\text{AL1L}; \text{to } ^6\text{He}^*(0, 1.8, 13.6)\)).

In more recent work, differential cross sections were measured at $E_t = 38 \text{ MeV}$ \(92\text{CL04}\). DWBA calculations are presented and spectroscopic factors are deduced.

The resonance theory of threshold phenomena was used to analyze differential cross sections for $^7\text{Li}(t, \alpha)^6\text{He}^*(1.8)$ for $\theta < 90^\circ$ at $E_t = 80–500 \text{ keV}$ in a study of ^{10}Be levels \(91\text{LA1D}\).

23. $^7\text{Li}(^3\text{He}, p)^3\text{He}^6\text{He}$

At $E(^3\text{He}) = 120 \text{ MeV}$ the missing mass spectra show $^6\text{He}^*(0, 1.8)$ and a strong, broad peak corresponding to $^6\text{He}^*(16)$ [possibly due to unresolved states]. There is no indication of a state near 23.7 MeV but there is some evidence of structures at $E_x = 32.0$ and 35.7 MeV, with $\Gamma \leq 2 \text{ MeV}$ \(85\text{FR01}\).
24. (a) $^7\text{Li}(^6\text{Li}, ^7\text{Be})^6\text{He}$ \hspace{1cm} $Q_m = -4.370$

(b) $^7\text{Li}(^7\text{Li}, ^8\text{Be})^6\text{He}$ \hspace{1cm} $Q_m = 7.280$

In reaction (a) at $E(^6\text{Li}) = 93$ MeV a broad peak ($\Gamma = 5.5$ MeV) was reported at $E_x = 14$ MeV. A second structure may also be present at 15.5 MeV (87GLZW, 88BUZH). $^6\text{He}^*(0, 1.8)$ are also populated (88BUZH). For reaction (b) see ^8Be. See also ^7Be, (84AJ01) and (88BU1Q, 84BA53), and see (96SO17) which involves ^{10}Be excited states. Measurements of differential cross sections at $E(^7\text{Li}) = 22$ MeV were reported in (88BO18).

25. $^9\text{Be}(\gamma, ^3\text{He})^6\text{He}$ \hspace{1cm} $Q_m = -21.178$

Measurements of ground-state cross sections and angular distributions are reported in (99SH05). See (99ZHZN) for a compilation and evaluation of cross section data for $E_\alpha \leq 30$ MeV.

26. $^9\text{Be}(n, \alpha)^6\text{He}$ \hspace{1cm} $Q_m = -0.600$

Angular distributions have been reported for $E_n = 12.2$ to 18.0 MeV (α_0, α_1). No other states are observed with $E_x \leq 7$ MeV: see (79AJ01). For a study of possible dineutron breakup of $^6\text{He}^*(1.8)$ see (83OT02). An analysis of the alpha and neutron spectra observed in this reaction for $E_n \approx 14$ MeV is presented in (88FE06). See also ^{10}Be and (83SH1J).

27. $^9\text{Be}(^6\text{He}, ^6\text{He})^9\text{Be}$ \hspace{1cm} $E_b = 19.069$

Elastic scattering measurements for $E(^6\text{He}) = 8.8$–9.3 MeV were reported in (91SM01). The data are well reproduced with calculations using ^6Li or ^7Li optical model parameters. See also ^9Be.

28. $^9\text{Be}(^6\text{Li}, ^9\text{B})^6\text{He}$ \hspace{1cm} $Q_m = -4.576$

Differential cross sections were measured at $E(^6\text{Li}) = 34$, 62 MeV, and spectroscopic factors were deduced (85CO09). Vector and tensor analyzing powers were measured for detection of the ^6He nuclei at $\theta_{cm} = 14^\circ$–80$^\circ$ at $E(^6\text{Li}) = 32$ MeV (93RE04). See ^9B in (88AJ01).
29. 9Be(7Li, 6He)10B \quad Q_m = -3.390

This reaction has been used as a source of 6He beams for elastic scattering experiments at $E(^6$He) = 8.8–9.3 MeV (91SM01) and at $E(^6$He) = 10.2 MeV (95WA01).

30. 9Be(9Be, 6He)12C \quad Q_m = 5.101

Angular distributions were measured at $E(^9$Be) = 40 MeV (92CO05). See 9Be in (88AJ01) and 12C in (90AJ01).

31. 11B(7Li, 12C)6He \quad Q_m = 5.982

At $E(^{11}$B) = 88 MeV the population of the ground state and the first-excited state at $E_x = 1.8 \pm 0.3$ MeV ($\Gamma \leq 0.2$ MeV) is reported (87BEY1). See also (88BEYJ).

32. 12C(μ^+, 6He)X

Measurements of the energy dependence at $E = 100, 190$ GeV were reported by (00HA33).

33. 12C(6He, n)X

Peripheral fragmentation of 6He at 240 MeV/A was studied (97CH24, 97CH47, 98AL10) in a kinematically complete experiment. It was found that one-neutron stripping to 5He is the dominant mechanism. A continuation of the analysis described in (00AL04) indicates excitation of the 6He first 2^+ state and associates it with E1 dipole oscillation. See also (93FE02). Model calculations are discussed in (98BE09, 98GA37).

34. 12C(6He, α)X

Measurements at 240 MeV/A are described in (98AL10, 98AN02, 99AU01, 00AL04). Fragmentation cross sections of 6He were analyzed in the Glauber theory to investigate the importance of neutron correlation (94SU02). Fragmentation reaction data and beta-delayed particle emission data are reproduced successfully. Detailed structure is described with a multicluster model and halo-like structure is discussed in (95SU13). See also (98BE09, 98GA37).
35. 12C(6He, 6He)12C

Elastic and quasielastic scattering of 6He on 12C was studied at $E(^6$He) = 10.2 MeV (95WA01). See also (95PE1D). Measurements of cross sections were made at 41.6 MeV/A (96AL11). The results were successfully analyzed within a 4-body ($\alpha + n + n + ^{12}$C) eikonal scattering model.

Potential parameters were deduced and differential cross sections were calculated for 6He scattering at 50 and 100 MeV/A (93GO06). The possibility of studying the structure of the neutron halo in 6He elastic rainbow scattering is discussed. See also (89SI02, 92CL04, 93FE02, 95GA24). Calculations of cross sections at $E = 20$–60 MeV/A were reported in (00BO45). Proton, neutron and matter r.m.s. distributions were also calculated.

36. 208Pb(6He, 2n)X

Measurements and analyses of a three-body breakup experiment at 240 MeV/A are described in (99AU01, 00AL04). Two-neutron interferometry measurements at 50 MeV/A are discussed in (00MA12).
General: References to articles on general properties of ^6Li published since the previous review (88AJ01) are grouped into categories and listed, along with brief descriptions of each item, in the General Tables for ^6Li located on our website at (www.tunl.duke.edu/NuclData/General_Tables/6li.shtml).

Ground State Properties:

$$\mu = +0.8220473(6)\ \text{nm}, +0.8220567(3)\ \text{nm}$$ see (89RA17),

$$Q = -0.818(17)\ \text{mb}$$ (98CE04).

The interaction nuclear radius of ^6Li is 2.09 ± 0.02 fm (85TA18). These authors have also derived nuclear matter, charge and neutron r.m.s. radii.

Quadrupole moment: The tiny quadrupole moment of ^6Li poses a difficult task for theoretical calculations. Except for a phenomenological (85ME02), a microscopic cluster (86ME13), and a Greens-Function Monte-Carlo (97PU03) calculation, the models fail even to predict the sign. See the discussion of three-body models in (93SC30). In (91UN02), this failure of the three-body models is blamed on the missing antisymmetrization of the valence nucleons with the nucleons in the alpha-core. Another microscopic cluster calculation (92CS04) considers the findings of (86ME13) to be due to a fortuitous choice of the model space.

Asymptotic D/S ratio: The ratio of the D- and S-state asymptotic normalization constants, referred to in the literature as η, has been used widely to quantify the properties of the D-state wave function. There is general agreement in the $A=2\text{–}4$ systems between theoretical calculations and empirical determinations of the normalization constants. See (88WE1C, 90EI01, 90LE24). The S-state $\alpha + d$ normalization constant for ^6Li appears to be well determined (93BL09, 99GE02), but both the magnitude and sign of η are uncertain.

In a two-body $\alpha + d$ model it was found (84NI01) that in order to reproduce the experimental quadrupole moment Q, the wave functions must have $\eta < 0$. However, three-body ($\alpha + n + p$) models consistently result in predictions of $\eta > 0$ (90LE24, 95KU08). Recent microscopic six-body calculations using realistic NN potentials predict $\eta = -0.07$ (96FO04).

The asymptotic D/S ratio has been probed empirically by studying scattering processes, transfer reactions, and ^6Li breakup. These determinations usually rely on an underlying assumption as to the scattering or reaction mechanism. The S- and D-state asymptotic normalization constants were determined in a study of d-α scattering (78BO1A) from which η was found to be $+0.005\pm0.014$. Several $^6\text{Li} + ^{58}\text{Ni}$ elastic scattering studies (84NI01, 95DE06, 95RU14) have described polarization observables with $\eta \approx -0.01$, while an investigation of the breakup of ^6Li on ^1H suggests $\eta > 0$ (92PU03). A study of the $^6\text{Li}(d, \alpha)^4\text{He}$ reaction

We are very grateful to K.D. Veal and C.R. Brune for providing these comments on the asymptotic D/S ratio for ^6Li.

1 We are very grateful to K.D. Veal and C.R. Brune for providing these comments on the asymptotic D/S ratio for ^6Li.

^6Li
(Figs. 5 and 7)
Table 6.4: Energy levels of 6Li

<table>
<thead>
<tr>
<th>E_x (MeV ± keV) a</th>
<th>$J^\pi; T$</th>
<th>Γ_{cm} (MeV) a</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>$1^+; 0$</td>
<td></td>
<td>stable</td>
<td>3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 59, 60, 61, 64, 67</td>
</tr>
<tr>
<td>2.186 ± 2</td>
<td>$3^+; 0$</td>
<td>0.024 ± 0.002</td>
<td>γ, d, α</td>
<td>3, 4, 5, 8, 9, 10, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 30, 33, 34, 36, 37, 38, 39, 42, 44, 45, 46, 47, 48, 49, 55, 57</td>
</tr>
<tr>
<td>3.56288 ± 0.10</td>
<td>$0^+; 1$</td>
<td>$(8.2 \pm 0.2) \times 10^{-6}$</td>
<td>γ</td>
<td>3, 5, 12, 15, 17, 18, 20, 21, 22, 23, 25, 34, 37, 38, 39, 42, 44, 47, 67</td>
</tr>
<tr>
<td>$4.312 \pm 22 , ^b$</td>
<td>$2^+; 0$</td>
<td>$1.30 \pm 0.10 , ^b$</td>
<td>γ, d, α</td>
<td>3, 8, 17, 18, 20, 21, 29, 37, 39, 42, 55</td>
</tr>
<tr>
<td>5.366 ± 15</td>
<td>$2^+; 1$</td>
<td>$0.541 \pm 0.020 , ^b$</td>
<td>γ, n, p, α</td>
<td>3, 17, 20, 37, 38, 39</td>
</tr>
<tr>
<td>5.65 ± 50</td>
<td>$1^+; 0$</td>
<td>1.5 ± 0.2</td>
<td>d, α</td>
<td>8, 20, 39, 42</td>
</tr>
<tr>
<td>$17.985 \pm 25 , ^{b,c}$</td>
<td>$2^-; 1 , ^b$</td>
<td>$3.012 \pm 0.007 , ^b$</td>
<td>$\gamma, t, ^3\text{He}$</td>
<td>3</td>
</tr>
<tr>
<td>$24.779 \pm 54 , ^{b,c}$</td>
<td>$3^-; 1 , ^b$</td>
<td>$6.754 \pm 0.110 , ^b$</td>
<td>$\gamma, n, t, ^3\text{He}$</td>
<td>3, 8</td>
</tr>
<tr>
<td>$24.890 \pm 55 , ^{b,c}$</td>
<td>$4^-; 1 , ^b$</td>
<td>$5.316 \pm 0.112 , ^b$</td>
<td>$\gamma, n, t, ^3\text{He}$</td>
<td>3</td>
</tr>
<tr>
<td>$26.590 \pm 65 , ^{b,c}$</td>
<td>$2^-; 1 , ^b$</td>
<td>$8.684 \pm 0.125 , ^b$</td>
<td>$\gamma, n, d, t, ^3\text{He}$</td>
<td>3, 8</td>
</tr>
</tbody>
</table>

a See also Table 6.12.

b Newly adopted in this evaluation or revised from the previous evaluation (88AJ01).

c See remarks under reaction 3, and see Table 6.5.

d For possible states at high E_x see reactions 8, 37, 39 and 45 and Table 6.9
(90SA47) found that η should lie in the range -0.010 to -0.015. Recently, a phase-shift analysis of $^6\text{Li} + ^4\text{He}$ scattering determined $\eta = -0.025 \pm 0.006 \pm 0.010$ (99GE02) while an analysis of $(^6\text{Li}, d)$ transfer reactions resulted in a near zero value of $\eta = +0.0003 \pm 0.0009$ (98VE03).

Based on these theoretical and empirical results, we conclude that both the magnitude and sign of η for the $^6\text{Li} \rightarrow \alpha + d$ wave function are not well determined. See also (98VE03, 99GE02).

Isotopic abundance: $(7.5 \pm 0.2)\%$ (84DE1A). See also (87LA1J, 88LA1C).

For estimates of the parity-violating α-decay width of $^6\text{Li}^*(3.56)$ $[0^+; T = 1]$ see (83RO12, 84BU01, 86BU07).

1. $^1\text{H}(^6\text{Li}, ^6\text{Li})^3\text{H}$

Differential cross sections were measured at $E = 0.7$ GeV/A by (00DOZY, 01EG02). Matter distribution radii and halo features of $^6\text{Li}^*(3.56)$ were deduced.

2. $^2\text{H}(\alpha, \pi^0)^6\text{Li}$ $Q_m = -133.503$

Measurements of cross sections at $E_\alpha = 418, 420$ MeV are reported by (00AN15, 00AN31). Halo features of $^6\text{Li}^*$ were deduced.

Figure 5: Energy levels of ^6Li. In these diagrams, energy values are plotted vertically in MeV, based on the ground state as zero. Uncertain levels or transitions are indicated by dashed lines; levels which are known to be particularly broad are cross-hatched. Values of total angular momentum J, parity, and isobaric spin T which appear to be reasonably well established are indicated on the levels; less certain assignments are enclosed in parentheses. For reactions in which ^6Li is the compound nucleus, some typical thin-target excitation functions are shown schematically, with the yield plotted horizontally and the bombarding energy vertically. Bombarding energies are indicated in laboratory coordinates and plotted to scale in cm coordinates. Excited states of the residual nuclei involved in these reactions have generally not been shown; where transitions to such excited states are known to occur, a brace is sometimes used to suggest reference to another diagram. For reactions in which the present nucleus occurs as a residual product, excitation functions have not been shown. Further information on the levels illustrated, including a listing of the reactions in which each has been observed, is contained in the master table, entitled “Energy levels of ^6Li.”
3. (a) $^3\text{He}(^3\text{H}, \gamma)^6\text{Li}$
(b) $^3\text{He}(^3\text{H}, n)^3\text{Li}$
(c) $^3\text{He}(^3\text{H}, d)^4\text{He}$
(d) $^3\text{He}(^3\text{H}, ^3\text{H})^3\text{He}$

In the previous review (88AJ01), information on radiative capture of ^3H on ^3He was summarized as follows: “Capture γ-rays (reaction (a)) to the first three states of ^6Li [γ_0, γ_1, γ_2] have been observed for $E(^3\text{He}) = 0.5$ to 25.8 MeV, while the yields of γ_3 and γ_4 have been measured for $E(^3\text{He}) = 12.6$ to 25.8 MeV. The γ_2 excitation function does not show resonance structure. However, the γ_0, γ_1, γ_3 and γ_4 yields do show broad maxima at $E(^3\text{He}) = 5.0 \pm 0.4$ [γ_0, γ_1], 20.6 ± 0.4 [γ_1], ≈ 21 [γ_3] and 21.8 ± 0.8 [γ_4] MeV. The magnitude of the ground-state-capture cross section is well accounted for by a direct-capture model; that for the γ_1 capture indicates a non-direct contribution above $E(^3\text{He}) = 10$ MeV, interpreted as a resonance due to a state with $E_x = 25 \pm 1$ MeV, $\Gamma_{\text{cm}} = 4$ MeV, $T = 1$ (because the transition is E1, to a $T = 0$ final state) [the E1 radiative width $|M|^2 \geq 5.2/(2J + 1)$ W.u.], $J^\pi = (2, 3, 4)^-$, $\alpha + p + n$ parentage. The γ_4 resonance is interpreted as being due to a broad state at $E_x = 26.6$ MeV with $T = 0$. $J^\pi = 3^-$ is consistent with the measured angular distribution. The ground and first excited state reduced widths for $^3\text{He} + t$ parentage, $\theta^2_0 = 0.8 \pm 0.2$ and $\theta^2_1 = 0.6 \pm 0.3$: see (74AJ01). See also (85MO1C, 86MO1G, 87MO1I).”

Since the previous review (88AJ01), a new resonance analysis (88MO11, 90HE20, 90MO10 92HE1E) has been applied to the $^3\text{He} + ^3\text{H}$ elastic scattering in odd parity states and to the $^3\text{He}(^3\text{H}, \gamma)$ data. This analysis explains the shape of the capture cross sections and angular distributions in terms of very wide overlapping resonances. See Table 6.5. These correspond to ^6Li states at $E_x = 17.985 \pm 0.025$ MeV, $\Gamma_{\text{cm}} = 3.012 \pm 0.007$ MeV, $J^\pi = 2^-$; $E_x = 24.779 \pm 0.054$ MeV, $\Gamma_{\text{cm}} = 6.754 \pm 0.110$ MeV, $J^\pi = 3^-$; $E_x = 24.890 \pm 0.055$ MeV, $\Gamma_{\text{cm}} = 5.316 \pm 0.112$ MeV, $J^\pi = 4^-$; $E_x = 26.590 \pm 0.065$ MeV, $\Gamma_{\text{cm}} = 8.684 \pm 0.125$ MeV, $J^\pi = 2^-$ (all with $S = 1$, $T = 1$). The analysis is compatible with an almost pure $^3\text{He} - ^3\text{H}$ cluster structure of the negative parity unbound ^6Li states with $S = 1$, $T = 1$. These results are supported by calculations described in (95OH03) which utilize a complex-scaled $^3\text{He} + t$ resonating group method to calculate the energies and widths of the ^6Li $^3\text{He} + t$ states. Note, however, that the calculated scattering phase shifts rise only gradually with energy and stay well below 90°. Consequently the stated precision on the extracted level parameters is a point of controversy between the authors of (90MO10, 90HE20) and one of the authors [H.M.H.] of this review. The radiative capture reaction as a source of ^6Li production in Big Bang nucleosynthesis is discussed in (90FU1H, 90MA1O, 97NO04). See also (95DU12).

The angular distribution and polarization of the neutrons in reaction (b) have been measured at $E(^3\text{He}) = 2.70$ and 3.55 MeV. The excitation function for $E(^3\text{He}) = 0.7$ to 3.8 MeV decreases monotonically with energy. The excitation function for n_0 has been measured for $E(^3\text{He}) = 2$ to 6 MeV and for $E(^3\text{He}) = 14$ to 26 MeV; evidence for a broad structure at $E(^3\text{He}) = 20.5 \pm 0.8$ MeV is reported [$^6\text{Li}^*$(26.1)]: see (79AJ01).
Table 6.5: Levels of ^6Li from ^3He(^3H, ^3H)^3He and ^3He(^3H, γ)$^6\text{Li}^*$ (2.18) a

<table>
<thead>
<tr>
<th>State</th>
<th>J^π; T</th>
<th>$E_{^3\text{He}}$ (MeV)</th>
<th>E_γ (MeV)</th>
<th>Γ_{cm} (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{33}\text{P}_2$</td>
<td>2$^-$; 1</td>
<td>2.190 ± 0.025</td>
<td>17.985 ± 0.025</td>
<td>3.012 ± 0.007</td>
</tr>
<tr>
<td>$^{33}\text{F}_3$</td>
<td>3$^-$; 1</td>
<td>8.984 ± 0.054</td>
<td>24.779 ± 0.054</td>
<td>6.754 ± 0.110</td>
</tr>
<tr>
<td>$^{33}\text{F}_4$</td>
<td>4$^-$; 1</td>
<td>9.095 ± 0.055</td>
<td>24.890 ± 0.055</td>
<td>5.316 ± 0.112</td>
</tr>
<tr>
<td>$^{33}\text{F}_2$</td>
<td>2$^-$; 1</td>
<td>10.795 ± 0.065</td>
<td>26.590 ± 0.065</td>
<td>8.684 ± 0.125</td>
</tr>
</tbody>
</table>

a From the analysis (90HE20, 90MO10) of data from (68BL10, 73VE09, 77VL01).

Angular distributions of deuterons (reaction (c)) have been measured for $E_t = 1.04$ to 3.27 MeV and at $E(^3\text{He}) = 0.29$ to 32 MeV. Polarization measurements are reported for $E_t = 9.02$ to 17.27 MeV [see (79AJ01)], as well as at $E(^3\text{He}) = 18.0$ and 33.0 MeV (86RA1C). See also (86KO1K) and (85CA41). A microscopic calculation for reaction (c) and its inverse with special emphasis on isospin breaking in the analyzing power is described in (90BR09). See also the calculations of (90BLZW, 93DU02, 93FI06).

Elastic scattering (reaction (d)) angular distributions were measured at $E(^3\text{He}) = 5.00$ to 32.3 MeV and excitation functions were reported for $E(^3\text{He}) = 4.3$ to 33.4 MeV see (79AJ01). At the lower energies the elastic yield is structureless and decreases monotonically with energy. Polarization measurements were reported for $E_t = 9.02$ to 33.3 MeV. A strong change occurs in the analyzing power angular distributions at $E_t = 15$ MeV. See (88AJ01) for a description of earlier analyses of these data. More recently a new resonance analysis (90HE20, 90MO10) of these same data along with ^3He(^3H, γ) data led to the $^6\text{Li} S = 1$, $T = 1$ states discussed above under reaction 3(a). See Table 6.5. A coupled-channels variational model calculation of the ^3He(total) cross section for $E_t = 9$ MeV has been reported by (01TH12).

For other channels see (84AJ01). See also (84KR1B). For thermonuclear reaction rates see (88CA26).

4. (a) ^3H(α, n)^6Li $Q_m = -4.7829$
(b) ^3H(α, cd)n $Q_m = -6.25725$
(c) ^3H(α, t^3He)n $Q_m = -20.57762$

$^6\text{Li}^*$(0, 2.19) have been populated with reaction (a): see (74AJ01). See also ^7Li (83CO1E) and (83FU11). Cross sections for $E_\alpha < 20$ MeV were calculated with a resonating group method by (91FU02). A kinematically complete experiment on reaction (b) at $E_\alpha = 67.2$ MeV is described in (00GO35). ^6Li excited states at $E_x = 14.5$ and 16.0 MeV with widths ≈ 1 MeV are reported. In a similar experiment (99GO36) at $E_\alpha = 67.2$ MeV on
reaction (c) a 6Li level at $E_x \approx 20$–21 MeV was reported based on the energy of the final state between 3H and 3He.

5. 3He(3He, π^+)6Li $Q_m = -123.7941$

Differential cross sections were measured for the transitions to 6Li*(0, 2.19) for $E(^3$He) = 350, 420, 500 and 600 MeV (83LE26). See also (84AJ01), (83BR1B, 83JA13) and (84GE05). Analyses of data for $E(^3$He) = 295–810 MeV and microscopic reaction model calculations are reported by (91HA22). See also the calculations of (99VO01).

6. 4He(d, γ)6Li $Q_m = 1.4743$

The previous review (88AJ01) summarized the information on this reaction as follows: “No resonance has been observed corresponding to formation of 6Li*(3.56) [0$^+$; $T = 1$]: the parity-forbidden $\Gamma_{\text{tot}} \leq 6 \times 10^{-7}$ eV (84RO04)” See also (84BU01, 86BU07).

“The cross section for the capture reaction has been measured for $E_\alpha = 3$ to 25 MeV by detecting the recoiling 6Li ions: the direct capture is overwhelmingly E2 with a small E1 contribution. The spectroscopic overlap between the 6Li gs. and $\alpha + d$ is 0.85 ± 0.04: see (84AJ01). See also (82KI1A), (85CA41, 86LA22, 86LA27) and theoretical work presented in (84AK01, 85AK1B, 86AK1C, 86BA1R).”

Since the previous review (88AJ01), measurements of the cross section at energies $E_\alpha \approx 2$ MeV corresponding to the 3^+ resonance at $E_x = 2.186$ MeV in 6Li have been reported (94MO17). Values extracted for the total width Γ and the radiative width Γ_γ confirm the adopted value (88AJ01). An experimental search for the reaction at $E_{cm} \approx 53$ keV (96CE02) gave an upper limit for the S factor of 2×20^{-7} MeV·b at the 90% confidence level. Implications for Big Bang nucleosynthesis of 6Li are discussed. Thermonuclear reaction rates for this reaction calculated from evaluated data are presented in the compilation (99AN35).

A considerable amount of theoretical work has been devoted to this reaction – much of it related to its importance in astrophysics. A list of references with brief descriptions is provided in Table 6.6.

7. (a) 4He(d, np)4He $Q_m = -2.224$ $E_b = 1.475$
 (b) 4He(d, t)3He $Q_m = -14.320$

Reaction (a) has been studied to $E_\alpha = 165$ MeV and to $E_d = 21.0$ MeV: see (79AJ01, 84AJ01). Measurements are also reported at $E_d = 5.4$, 6.0 and 6.8 MeV (85LU08), 6 to 11 MeV (85OS02), 10.05 MeV (83BR23) and 12.0 and 21.0 MeV (83IS10) and at $E_\alpha = 11.3$ MeV (87BR07). See also (86DO1K).
Table 6.6: 4He(d, γ)6Li – Theoretical work

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>89CR01</td>
<td>D-state effects in the 4He(d, γ)6Li reaction</td>
</tr>
<tr>
<td>89SC25</td>
<td>The reaction rate at $T = 300$ K for 2H((\alpha, \gamma))^6Li and other reactions</td>
</tr>
<tr>
<td>90CR04</td>
<td>Tensor interaction effects in 4He(d, γ)6Li</td>
</tr>
<tr>
<td>90KRZX</td>
<td>Polarization observables for 4He(d, γ)6Li and the D state of 6Li</td>
</tr>
<tr>
<td>90SC22</td>
<td>The extended elastic model II applied to 2H((\alpha, \gamma))^6Li</td>
</tr>
<tr>
<td>91TY02</td>
<td>Low-energy 2H((\alpha, \gamma))^6Li and 208Pb(6Li, dα)208Pb cross sections</td>
</tr>
<tr>
<td>93JA02</td>
<td>Polarizability and E1 radiation in 4He(d, γ)6Li</td>
</tr>
<tr>
<td>93MU12</td>
<td>Calculation of the 6Li \rightarrow (\alpha + d) vertex constant</td>
</tr>
<tr>
<td>94MO17</td>
<td>Direct capture in the 3^+ resonance of 2H((\alpha, \gamma))^6Li</td>
</tr>
<tr>
<td>95DU12</td>
<td>Cluster model descriptions of 6Li photodisintegration</td>
</tr>
<tr>
<td>95IG06</td>
<td>Analysis of the nuclear astrophysical reaction 4He(d, γ)6Li</td>
</tr>
<tr>
<td>95MU21</td>
<td>Astrophysical factor for 4He(d, γ)6Li</td>
</tr>
<tr>
<td>95MU1J</td>
<td>Peripheral astrophysical radiative capture processes, a survey</td>
</tr>
<tr>
<td>95RY01</td>
<td>4He(d, γ)6Li capture and the isoscalar E1 multipole</td>
</tr>
<tr>
<td>97NO04</td>
<td>Nuclear reaction rates and primordial 6Li</td>
</tr>
<tr>
<td>98KH06</td>
<td>Microscopic study of 2H((\alpha, \gamma))^6Li in a multicluster model</td>
</tr>
<tr>
<td>00IG03</td>
<td>Coulomb breakup & astrophys. S-factor of 2H((\alpha, \alpha)) at extremely low energies</td>
</tr>
<tr>
<td>01NO01</td>
<td>Six-body calculation of the 2H((\alpha, \gamma))^6Li cross section</td>
</tr>
</tbody>
</table>
More recently, measurements of the cross section and transverse tensor analyzing power at $E_d = 7$ MeV were made \(^{(88GA14)}\) with kinematic conditions chosen to correspond to production of the singlet deuteron. Coulomb and nuclear field effects in these reactions are discussed in \(^{(87KO1X, 88KA38)}\). Cross sections and polarization observables from data at $E_d < 12, 17$ MeV are compared with three-body model predictions in \(^{(88SU12)}\).

For reaction (b), measurements of vector and tensor analyzing power at $E_d = 35, 45$ MeV have been reported \(^{(86BR1N, 86VA1B, 86VU1A, 87VU1A)}\). Cross sections and polarization observables were measured at $E_d = 32.1, 35.15, 39.6, 49.7$ MeV to investigate 3H and 3He asymptotic normalization constants \(^{(87VU1B)}\) and charge symmetry breaking \(^{(88VU01)}\). Cross sections and polarization observables measured at $E_{cm} = 14–33$ MeV \(^{(89BR23)}\) were compared with microscopic-model predictions in a study of isospin violation. See also \(^{(90BR09)}\). The role of tensor force was explored in \(^{(88BR18)}\).

For earlier work and other breakup channels, see \(^{(88AJ01)}\).

8. 4He(d, d)4He

$E_b = 1.4743$

Elastic differential cross-section and polarization measurements have been carried out up to $E_\alpha = 166$ MeV and $E_d = 45$ MeV: see \(^{(74AJ01, 79AJ01, 84AJ01)}\). Measurements were also reported at $E_d = 0.87$ to 1.43 MeV \(^{(84BA19, 85BA1K)}\), at $E_d = 11.9$ MeV \(^{(88EL01)}\), 21 MeV \(^{(86MI1E)}\), 24.0 and 38.2 MeV \(^{(86GR1D)}\), 31.8 to 39.0 MeV \(^{(86KO1M)}\), 40 MeV \(^{(89DE1A)}\), 56 MeV \(^{(85NI1A)}\) and at $E_\alpha = 7.0$ GeV/c \(^{(84SA1C)}\). A compilation of data for energies $E_d = 1–56$ MeV is presented in \(^{(87GR08)}\). For a study of the inclusive inelastic scattering at $E_\alpha = 7.0$ GeV/c see \(^{(87BA13)}\).

Phase-shift analyses, particularly that by \(^{(83JE03)}\) which uses all available differential cross section, vector and tensor analyzing power measurements and $L \leq 5$, in the range $E_d = 3$ to 43 MeV lead to the results displayed in Table 6.7. It is found that the d-wave shifts are split and exhibit resonances at $E_d = 2.19$ (3D$_3$), 4.7 (3D$_2$) and 5.65 MeV (3D$_1$). \(^{(83JE03)}\) suggest very broad 3G$_3$ and 3G$_4$ resonances at $E_d = (19.3)$ and 33 MeV, a 3D$_3$ resonance at 22 MeV and 3F$_3$ and 3F$_2$ resonances at ≈ 34 and ≈ 39 MeV, corresponding to states which are primarily of $(d + \alpha)$ parentage.

\(^{(85JE04)}\) have investigated the points where $A_{yy} = 1$ and report four such points at $E_d = 4.30 \ [\theta_{cm} = 120.7\degree], 4.57 \ [58.0\degree], 11.88 \ [55.1\degree]$ and 36.0 ± 1.0 MeV $\ [150.1 \pm 0.3\degree]$. [For the latter see also \(^{(86KO1M)}\)]. The correspondence of these polarization maxima to 6Li states is discussed by \(^{(85JE04)}\). For a discussion of the M-matrix see \(^{(88EL01)}\). For work on $(\alpha + d)$ correlations involving 6Li*(0, 2.19, 4.31 + 5.65) see \(^{(87CH08, 87CH33, 87PO03)}\) and \(^{(87FO08)}\).

For additional references to early work see references cited in \(^{(88AJ01)}\).

A considerable body of theoretical work on the 4He + d channel has been done since the previous review \(^{(88AJ01)}\). A list of references with brief descriptions is provided in Table 6.8.
Table 6.7: Levels of 6Li from 4He(d, d)4He a

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>$J^\pi; T$</th>
<th>E_x (MeV)</th>
<th>Γ_{cm} (MeV)</th>
<th>Γ_d/Γ b</th>
<th>γ_d^2 c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.070 ± 0.003</td>
<td>3$^+$; 0</td>
<td>2.187</td>
<td>1.32 ± 0.04</td>
<td>0.967</td>
<td>0.27</td>
</tr>
<tr>
<td>4.34 ± 0.04</td>
<td>2$^+$; 0</td>
<td>4.36</td>
<td>1.9 ± 0.1</td>
<td>0.74</td>
<td>0.34</td>
</tr>
<tr>
<td>5.7 ± 0.1 d</td>
<td>1$^+$; 0</td>
<td>5.3</td>
<td>26.7 ± 1.0</td>
<td>0.34</td>
<td>1.69</td>
</tr>
<tr>
<td>(19.3 ± 1.3)</td>
<td>3$^+$; 0</td>
<td>(14.3)</td>
<td>17.8 ± 0.8</td>
<td>0.76</td>
<td>0.77</td>
</tr>
<tr>
<td>(21.6 ± 1.1)</td>
<td>3$^+$; 0</td>
<td>(15.8)</td>
<td>12 ± 2</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>33 ± 2</td>
<td>4$^+$</td>
<td>23</td>
<td>16 ± 3</td>
<td>0.30</td>
<td>0.24</td>
</tr>
<tr>
<td>34 ± 5</td>
<td>3$^-$</td>
<td>27</td>
<td>22 ± 7</td>
<td>0.43</td>
<td>0.42</td>
</tr>
<tr>
<td>39$^{+3}_{-3}$</td>
<td>2$^-$</td>
<td>27</td>
<td>22 ± 7</td>
<td>0.43</td>
<td>0.42</td>
</tr>
</tbody>
</table>

a The data in this table are mostly from the S-matrix analysis of (83JE03). The results are unique up to $E_d = 15$ MeV. See also Table 6.4 in (74AJ01), and Tables 6.3 in (79AJ01) and (84AJ01).

b The errors in Γ_d/Γ are typically 0.03.

c In units of the Wigner limit $\gamma_d^2 = 2.93$ MeV for a radius of 4.0 fm. See (88AJ01).

d 6.26 MeV (R-matrix analysis): $E_x = 5.65$ MeV.

9. (a) 4He(3He, p)6Li \hspace{1cm} $Q_m = -4.0192$

(b) 4He(3He, pd)4He \hspace{1cm} $Q_m = -5.49349$

Angular distributions have been measured at $E(^3$He) = 8 to 18 MeV and $E_\alpha = 42$, 71.7 and 81.4 MeV: see (74AJ01). More recently, proton polarization was measured as a function of angle at $E_{cm} = 12.6$ MeV (89GR02). At $E_\alpha = 28$, 63.7, 71.7 and 81.4 MeV the α-spectra show that the sequential decay (reaction (b)) involves 6Li*(2.19) and possibly 5Li: see (79AJ01). See also the recent theoretical work of (93GO16) and the multiconfiguration RGM calculations of (95FU16).

10. (a) 4He(α, d)6Li \hspace{1cm} $Q_m = -22.3722$

(b) 4He(α, pn)6Li \hspace{1cm} $Q_m = -24.5968$

(c) 4He(α, d)2H \hspace{1cm} $Q_m = -23.84653$

Reactions (a) and (b) have been studied to $E_\alpha = 158.2$ MeV [see (79AJ01, 84AJ01)] and at 198.4 MeV (85WO11). The dependence of the cross section on energy shows that the $\alpha + \alpha$ process does not contribute significantly to 6Li (and 7Li) synthesis above $E_\alpha = 250$ MeV (85WO11) [and see for additional comments on astrophysical problems]. A more recent measurement of the cross section for reaction (b) (01AU06, 01ME13) at $E_\alpha = 159.3, 279.6$ and 619.8 MeV found cross sections which differ significantly from tabulated values commonly
Table 6.8: \(^4\text{He}(d, d)^4\text{He} – \text{Theoretical work}\)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>88BE58</td>
<td>Polarization phenomena in (^4\text{He}(d, d)) at intermediate energies</td>
</tr>
<tr>
<td>88KA25</td>
<td>Convergence features in the pseudostate theory of the (d + \alpha) system</td>
</tr>
<tr>
<td>88WE1C</td>
<td>Manifestations of the D-state in light nuclei</td>
</tr>
<tr>
<td>89ET1A</td>
<td>Description of diffraction scattering on nuclei</td>
</tr>
<tr>
<td>89FI1E</td>
<td>Microscopic theory of collective resonances of light nuclei</td>
</tr>
<tr>
<td>89KR08</td>
<td>Padé approximation technique for processing scattering data</td>
</tr>
<tr>
<td>90BL13</td>
<td>Analysis of higher partial waves in (^4\text{He}(d, d)) in 3-body framework</td>
</tr>
<tr>
<td>90DA1H</td>
<td>Two body phase space in (\alpha-d) breakup at 40 MeV</td>
</tr>
<tr>
<td>90GU23</td>
<td>D-wave effect in (\alpha-d) elastic scattering at intermediate energies</td>
</tr>
<tr>
<td>90HO1R</td>
<td>Microscopic study of clustering phenomena</td>
</tr>
<tr>
<td>90HU09</td>
<td>A geometric model for nucleus-nucleus scattering at high energies</td>
</tr>
<tr>
<td>90KU06</td>
<td>Reconstruction of interaction potential from scattering data</td>
</tr>
<tr>
<td>90KU16</td>
<td>Padé-approximation techniques for processing scattering data</td>
</tr>
<tr>
<td>90LI11</td>
<td>Further study of (\alpha) elastic scattering on light nuclei</td>
</tr>
<tr>
<td>91BL04</td>
<td>Manifestation of Pauli-forbidden states in (^4\text{He}(d, d)) at low energies</td>
</tr>
<tr>
<td>91KR02</td>
<td>Energy-dependent phase-shift analysis of (^4\text{He}(d, d)) at low energies</td>
</tr>
<tr>
<td>91KU09</td>
<td>(d-\alpha) scattering in a three-body model</td>
</tr>
<tr>
<td>91KU27</td>
<td>Recovering (\alpha + d) potential from Faddeev and measured phase shifts</td>
</tr>
<tr>
<td>92ES04</td>
<td>(\alpha-d) resonances and the low-lying states of (^6\text{Li})</td>
</tr>
<tr>
<td>92FU10</td>
<td>Reaction mechanisms in (A = 6) with the multiconfiguration RGM</td>
</tr>
<tr>
<td>92KU16</td>
<td>Supersymmetric potentials and the Pauli Principle in (^4\text{He}(d, d))</td>
</tr>
<tr>
<td>92KU1G</td>
<td>Deuteron size effects in (d-\alpha) scattering</td>
</tr>
<tr>
<td>93BL09</td>
<td>Determination of (^6\text{Li} \rightarrow \alpha + d) vertex constant for (d-\alpha) phase-shifts</td>
</tr>
<tr>
<td>93FI06</td>
<td>Study of continuous spectrum of (^6\text{Li}) in RGM</td>
</tr>
<tr>
<td>94CS01</td>
<td>Microscopic description of beta-delayed deuteron emission in (^6\text{He})</td>
</tr>
<tr>
<td>95DU12</td>
<td>Cluster model description of photonuclear processes in (^6\text{Li})</td>
</tr>
<tr>
<td>97DU15</td>
<td>Electromagnetic effects in light nuclei and the cluster potential</td>
</tr>
<tr>
<td>97KU14</td>
<td>Reconstruction of analytic (S) matrix from experimental (d-\alpha) data</td>
</tr>
<tr>
<td>98DU03</td>
<td>Potential cluster model description of the (d-\alpha) interaction</td>
</tr>
<tr>
<td>99CO11</td>
<td>An (S)-matrix inversion technique applied to (\alpha-d) scattering</td>
</tr>
</tbody>
</table>
used in cosmic-ray production calculations and lead to lower predicted production of ^6Li. For reaction (c) [and excited states of ^4He] see (84AJ01): $^6\text{Li}^*(2.19)$ is involved in the process.

11. $^6\text{He}(\beta^-)^6\text{Li}$ \hspace{1cm} $Q_m = 3.508$

See ^6He, reaction 1.

12. (a) $^6\text{He}(p, n)^6\text{Li}$ \hspace{1cm} $Q_m = 2.7254$
(b) $^6\text{He}(p, p)^6\text{He}$

The (p, n) reaction has been studied in inverse kinematics by $^1\text{H}(^6\text{He}, ^6\text{Li})n$ experiments with secondary ^6He beams. An experiment utilizing a secondary ^6He beam with $E(\text{^6He}) = 42$ MeV/A was reported by (95CO05, 98CO1M, 98CO19, 98CO28). The ^6Li ground state and $E_x = 3.56$ MeV state were observed. Angular distributions were reported and the ratio of the cross section for the Gamow-Teller transition to the ground state and the Fermi transition to the isobaric analog state was measured. The reaction was also studied at $E/A = 93$ MeV (96BR30). The 0° ground state cross section was measured to be $\frac{d\sigma}{d\Omega} = 43 \pm 16$ mb/sr. The ratio of Gamow-Teller to Fermi strength was found to be $(87 \pm 6)\%$ of that expected from p, n systematics and beta decay. Differential cross sections at $E/A = 41.6$–68 MeV were measured by (97CO04) to study the effects of halo structure. Measurements on reactions (a) and (b) utilizing a secondary ^6He beam at 36 MeV/A are reported by (01DE19).

The status of theoretical and experimental research on nuclei featuring a two-particle halo was reviewed in (96DA31).

13. $^6\text{Li}^*(0^+; 1) \rightarrow \alpha + d$ \hspace{1cm} $Q_m = 2.0886$

A theoretical study in a microscopic three-cluster model of the parity-violating $\alpha + d$ decay of the lowest 0^+ state in ^6Li ($E_x = 3.5629$ MeV) is described in (96CS03). A phase shift analysis of $^4\text{He} + d$ was used in a determination of the vertex constant for the $^6\text{Li}(1^+; 0)_{g.s.} \rightarrow \alpha + d$ virtual decay by (92BLZX, 93BL09, 97KU14). See also (90RY07, 91KR02, 93BO38).

14. (a) $^6\text{Li}(\gamma, n)^5\text{Li}$ \hspace{1cm} $Q_m = -5.389$
(b) $^6\text{Li}(\gamma, p)^5\text{He}$ \hspace{1cm} $Q_m = -4.497$
(c) $^6\text{Li}(\gamma, d)^4\text{He}$ \hspace{1cm} $Q_m = -1.4743$
(d) $^6\text{Li}(\gamma, np)^4\text{He}$ \hspace{1cm} $Q_m = -3.6989$
(e) $^6\text{Li}(\gamma, t)^3\text{He}$ \hspace{1cm} $Q_m = -15.7947$
The previous review (88AJ01) summarizes the information on these reactions as follows:

“The (γ, n) and (γ, Xn) cross sections increase from threshold to a maximum at $E_\gamma \approx 12$ MeV then decrease to $E_\gamma = 32$ MeV: see (84AJ01) and (88DI02). (84DY01) also report a broad peak at 16 MeV. The cross section for photoproton production (reaction (b)) is generally flat up to 90 MeV. [The previously reported hump at $E_\gamma \approx 16$ MeV is almost certainly due to oxygen contamination: see (84AJ01).] See also (88CA11) and 5He. The cross section for reaction (c) is $\leq 5 \mu b$ in the range $E_\gamma = 2.6$ to 17 MeV consistent with the expected inhibition of dipole absorption by isospin selection rules: see (66LA04). The onset of quasideuteron photodisintegration between 25 and 65 MeV is suggested by the study of (84WA18). E_γ(bremsstrahlung) $= 67$ MeV. The 90° differential cross section for reaction (e) decreases monotonically for $E_\gamma = 18$ to 70 MeV: reaction (e) contributes $\frac{1}{3}$ of the total cross section for 6Li+γ, consistent with a 3H+3He cluster description of 6Li, with $\delta^2 \approx 0.68$. The agreement with the inverse reaction, 3H(3He, γ) [see reaction 3] is good: see (84AJ01). See also (86LI1F).”

The absorption cross section has been studied in the range E_γ $= 100$ to 340 MeV; it shows a broad bump centered at ≈ 125 MeV and a fairly smooth increase to a maximum at ≈ 320 MeV: see (84AJ01). For spallation studies see (74AJ01, 84AJ01). For pion production see (86GL07, 87GL01) and (84AJ01).”

Since the previous review (88AJ01) tagged photons were used to study 6Li(γ, p) at $\theta_p = 0^o$ for $E_\gamma \approx 59$ and 75 MeV. Strong evidence for the photo-deuteron mechanism was found. Measurements made for angles between 30° and 150° (95DI01) showed most of the strength occurring in three-body breakup channels. Studies at these same energies of the (γ, d) and (γ, t) reaction were reported in (97DI01). See also (94RY01). Measurements of 6Li(γ, d) at $E_\gamma \approx 60$ MeV indicated strict non-violation of the isospin selection rule for E1 absorption.

The (γ, pn) reaction was also studied at $E_\gamma = 55$–100 MeV with bremsstrahlung photons and with linearly polarized tagged photons for $E_\gamma = 0.3$–0.9 GeV. See also (90RIZX).

Linearly polarized photons were used to measure the cross section asymmetry in 6Li(γ, t)3He up to $E_\gamma \approx 70$ MeV (89BU10) and differential cross sections up to $E_\gamma \approx 90$ MeV (93DE07, 95BU08). Results of a measurement of the absolute total photoabsorption cross section for $E_\gamma = 300$–1200 MeV are presented in (94BI1B).

A list of theoretical references relating to 6Li photonuclear reactions with brief descriptions is provided in Table 6.9.

15. 6Li(γ, γ)6Li

The width, Γ_γ, of 6Li*($3.56) = 8.1 \pm 0.5$ eV: see (74AJ01) and Table 6.4 in (79AJ01); $E_x = 3562.88 \pm 0.10$ keV: see (84AJ01). See also (87PI06). The results of an absolute measurement of the total photoabsorption cross section are described in (94BI1B). Photon absorption and photon scattering for light elements is discussed in terms of a collective resonance phenomenon in (90ZI1C).
Table 6.9: $^6\text{Li}(\gamma, X)$ – Theoretical work

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>88DU04</td>
<td>Calculation of the $^6\text{Li}(\gamma, d\gamma)$ cross section at $E_\gamma = 2.23$ MeV</td>
</tr>
<tr>
<td>89AR02</td>
<td>Quark degrees of freedom and nuclear photoabsorption</td>
</tr>
<tr>
<td>90BU29</td>
<td>Possibility (?) of observing an isoscalar E1 multipole in $^6\text{Li}(\gamma, d)$</td>
</tr>
<tr>
<td>90VA16</td>
<td>Cluster effects in ^6Li photodisintegration</td>
</tr>
<tr>
<td>90ZH19</td>
<td>Manifestations of cluster structure in $^6\text{Li}(\gamma, d)$</td>
</tr>
<tr>
<td>91BE05</td>
<td>$^6\text{Li} \rightarrow a + d$ break-up — astrophysical significance</td>
</tr>
<tr>
<td>95DU12</td>
<td>Description of photonuclear processes in ^6Li</td>
</tr>
</tbody>
</table>

16. (a) $^6\text{Li}(\gamma, \pi^0)^6\text{Li}$
 $Q_m = -134.97660$
(b) $^6\text{Li}(\gamma, \pi^+)^6\text{He}$
 $Q_m = -143.0780$
(c) $^6\text{Li}(\gamma, \pi^-)^6\text{Be}$
 $Q_m = -143.8579$

Measurements of neutral-pion photoproduction yield (reaction (a)) for $E < 10$ MeV above threshold were reported in (89NA23). The total cross section was measured in the energy region from the reaction threshold to $E_\gamma \approx 146.5$ MeV (89GL07) and analyzed in the impulse approximation. The cross section increases monotonically to $\sigma = 6.50 \pm 0.96 \mu\text{b}$ at $E_\gamma = 146.5$ MeV. See also (86GL07, 87GL01) and (84AJ01). An analysis (91TR1C) of early measurements suggests that anomalously large measured values of the cross section are due to target impurities. The differential cross section at small angles at energies $E \approx 300-450$ MeV has been measured by (91BE16). Total and differential cross sections were measured within 23 MeV of threshold with tagged photons by (99BE14). Differential cross sections for reaction (b) leading to the ^6He ground state have been measured at $E_\gamma = 200$ MeV (91SH02) and analyzed by DWBA. See also the measurements of (91GA26). The energy distributions of electroproduced π^+ at $E_\pi \approx 200$ MeV were measured and (γ, π^+) cross sections were deduced (94SH38). For reaction (c) see (88KA41, 91GA26).

Theoretical studies of pion photoproduction include: an impulse-approximation calculation for (γ, π^0) at $E_\gamma = 300$ MeV (89TR09); an impulse approximation and shell model study of inelastic photoproduction of pions (91TR02); a DWIA Feynman-diagram production-operator-based calculation of (γ, π^+) at $E_\gamma = 200$ MeV (90BE49); and multicluster dynamic-model calculation of π^+ photoproduction off ^6Li (95ER1B); and an exclusive (γ, π^+) production calculation for $E_\gamma = 200$ MeV (95DO24).

17. (a) $^6\text{Li}(e, e)^6\text{Li}$
 $Q_m = -4.497$
(b) $^6\text{Li}(e, ep)^5\text{He}$
 $Q_m = -1.4743$
(c) $^6\text{Li}(e, ed)^4\text{He}$
Table 6.10: Levels of ^6Li from $^6\text{Li}(e, e')$ and $^6\text{Li}(\gamma, \gamma')$ \(^{a}\)

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>$J^p; T$</th>
<th>$\Gamma_{\gamma 0}$ (eV)</th>
<th>Multipolarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.183 ± 0.009</td>
<td>3$^+$; 0</td>
<td>$(4.40 \pm 0.34) \times 10^{-4}$ (^{b})</td>
<td>E2</td>
</tr>
<tr>
<td>3.56288 ± 0.00010 (^{c})</td>
<td>0$^+$; 1</td>
<td>8.19 ± 0.17 (^{d})</td>
<td>M1</td>
</tr>
<tr>
<td>4.27 ± 0.04</td>
<td>2$^+$; 0</td>
<td>$(5.4 \pm 2.8) \times 10^{-3}$</td>
<td>E2</td>
</tr>
<tr>
<td>5.379 ± 17 (^{d,e})</td>
<td>2$^+$; 1</td>
<td>0.27 ± 0.05</td>
<td>M1</td>
</tr>
</tbody>
</table>

\(^{a}\) See Tables 6.4 in (79AJ01, 84AJ01) for references and for the earlier work.

\(^{b}\) (69EI06), $B(E2) = 25.6 \pm 2.0 \text{ e}^2 \cdot \text{fm}^4$. The value given in (88AJ01) was incorrect.

We are grateful to Dr. John Millener for pointing out this error.

\(^{c}\) (81RO1D).

\(^{d}\) Weighted mean of values shown in Table 6.4 in (79AJ01).

\(^{e}\) $\Gamma = 540 \pm 20 \text{ keV}$.

(d) $^6\text{Li}(e, e')^3\text{He}$

\[Q_m = -15.7947 \]

The previous review (88AJ01) summarized the information then available on electron scattering as follows: “The elastic scattering has been studied for $E_e = 85$ to 600 MeV: see (74AJ01, 79AJ01, 84AJ01). The results appear to require that the ground state be viewed as an α-d cluster in which the deuteron cluster is deformed and aligned. The ground-state M1 current density has also been calculated (82BE11). A model-independent analysis of the elastic scattering yields $r_{r.m.s} = 2.51 \pm 0.10 \text{ fm}$. See also the discussion in (84DO1A).”

“Table 6.10 summarizes the results obtained in the inelastic scattering of electrons. Form factors have been measured for $^6\text{Li}^*(2.19, 3.56, 5.37)$ as well as for the $t + ^3\text{He}$ continuum up to 4 MeV above threshold [no narrow structures corresponding to ^6Li states are observed]: see (84AJ01)”. In more recent work, nucleon spin structure functions were extracted from measurements of deep inelastic scattering on polarized targets by (99RO13).

For reaction (b) see ^3He and (87VA08) and (87VA1N). Angular distributions for the d_0 group in the (e, d_0) reaction have been measured for $E_x = 10$ to 28 MeV. The deduced E1 and E2 components of the (γ, d_0) cross section show no structure. The E1 strength implies non-negligible isospin mixing in this energy region (86TA06). Triple differential cross sections were measured for $E_x = 27 - 49 \text{ MeV}$ in a search for GDR evidence (99HO02). At $E_e = 480 \text{ MeV}$ (reaction (c)) the α-d momentum distribution in the ground state of ^6Li has been studied. The results are well accounted for by an αNN model. The α-d probability in the ground state of ^6Li is 0.73 [estimated ± 0.1]. The data are consistent with the expected $2S$ character of the α-d relative wave function (86EN05). See also (86EV1A). π^0 production involving $^6\text{Li}^*(2.19, 3.56, 5.37)$ is reported at $E_e = 500 \text{ MeV}$ (87NA11).

For the earlier work see (79AJ01, 84AJ01) and the references cited in (88AJ01). Since the previous review (88AJ01), experimental results on quasielastic response have been reviewed (88LO1E). Measurements of the quasielastic scattering cross section for ele-
trons on ^{6}Li are reported at momentum transfer 0.85 ± 2.3 fm$^{-1}$ (88BU25). See also the measurements at $E_e = 80$–680 MeV by (89LI109). Cross sections for $^{6}\text{Li}(e, ep)$ were measured in the missing energy region $0 \leq E_m \leq 30$ MeV and in the range $-100 \leq p_m \leq 200$ MeV/c of missing momentum (89LA22). The $^{6}\text{Li} \rightarrow p + (n\alpha)$ spectral function was measured (89LI09). The ratio of transverse and longitudinal response function was investigated in (90LA06). See also the review (90DE16) of proton spectral functions and momentum distributions in $(e, e'p)$ experiments and see the report (90GH1E) on nuclear density dependence of electron proton coupling in $^{6}\text{Li}(e, e'p)$.

Reaction (c) was used (90JO1D) in a study of correlation functions in ^{6}Li. A measurement in parallel kinematics to study the mechanism of the $^{6}\text{Li}(e, e'\bar{H})$ reaction is reported in (91MI19, 94EN04). Cross sections for $^{6}\text{Li}(e, e't)\bar{3}\text{He}$ (reaction (d)) at $E_e = 523$ MeV and the momentum-transfer dependence of the ^{3}H and ^{3}He knockout reaction was measured by (98CO06).

A list of references to theoretical work related to electron scattering on ^{6}Li is provided, along with brief descriptions, in Table 6.11.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $^{6}\text{Li}(\pi^\pm, \pi^\pm)^6\text{Li}$</td>
<td></td>
</tr>
<tr>
<td>(b) $^{6}\text{Li}(\pi^+, \pi^-)$</td>
<td></td>
</tr>
<tr>
<td>(c) $^{6}\text{Li}(\pi^-, \pi^+)^6\text{H}$</td>
<td>$Q_m = -27.77$</td>
</tr>
<tr>
<td>(d) $^{6}\text{Li}(\pi^+, \pi^+p)^5\text{He}$</td>
<td>$Q_m = -4.497$</td>
</tr>
<tr>
<td>(e) $^{6}\text{Li}(\pi^+, p)^5\text{Li}$</td>
<td>$Q_m = 134.96$</td>
</tr>
<tr>
<td>(f) $^{6}\text{Li}(\pi^-, p)^5\text{H}$</td>
<td>$Q_m = 114.2$</td>
</tr>
<tr>
<td>(g) $^{6}\text{Li}(\pi^+, 2p)^4\text{He}$</td>
<td>$Q_m = 136.6536$</td>
</tr>
<tr>
<td>(h) $^{6}\text{Li}(\pi^-, 2p)4n$</td>
<td>$Q_m = 106.7933$</td>
</tr>
<tr>
<td>(i) $^{6}\text{Li}(\pi^+, \pi^+d)^4\text{He}$</td>
<td>$Q_m = -1.4743$</td>
</tr>
<tr>
<td>(j) $^{6}\text{Li}(\pi^+, pd)^3\text{He}$</td>
<td>$Q_m = 118.3006$</td>
</tr>
<tr>
<td>(k) $^{6}\text{Li}(\pi^+, ^3\text{He})^3\text{He}$</td>
<td>$Q_m = 123.7941$</td>
</tr>
<tr>
<td>(l) $^{6}\text{Li}(\pi^-, ^3\text{He})3n$</td>
<td>$Q_m = 114.5113$</td>
</tr>
</tbody>
</table>

Elastic angular distributions have been measured at $E_{x\pi} \approx 50$ MeV [see (84AJ01)] and at $E_{x\pi} = 100, 180$ and 240 MeV (86AN04 also to $^{6}\text{Li}^*(2.19)$). Differential cross sections are also reported for $E_{x\pi} = 100$ to 260 MeV to $^{6}\text{Li}^*(0, 2.19, 3.56, 4.25)$. The excitation function for the unnatural-parity transition to $^{6}\text{Li}^*(3.56)$ has an anomalous energy dependence (84KI16).

A number of experimental studies with polarized targets have been reported for elastic and inelastic ($E_x(\bar{6}\text{Li}) = 2.19$ MeV, $J^\pi = 3^+$) scattering. Measurements of polarization observables are reported at $E_{x\pi} = 134, 164$ MeV (89TA21, 90TA1L, 91BO1R), $E_{x\pi} = 160$–219 MeV (91RI01, 94RI06). Comparison of these data with a coupled channels model is discussed.
Table 6.11: $^6\text{Li}(e, e)^6\text{Li} – \text{Theoretical work}$

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>87KR07</td>
<td>EM properties of ^6Li in cluster model</td>
</tr>
<tr>
<td>87LE1N</td>
<td>Coincidence reactions and the 3-body structure of ^6Li</td>
</tr>
<tr>
<td>88AL1J</td>
<td>Second Born approximation correction to ^6Li electron scattering</td>
</tr>
<tr>
<td>88ES01</td>
<td>Elastic electromagnetic form factors of ^6Li from 3-body models</td>
</tr>
<tr>
<td>89ER07</td>
<td>Exchange and correlation effects in EM structure of ^6Li</td>
</tr>
<tr>
<td>89ES05</td>
<td>Inelastic ($1^+ \rightarrow 0^+$) EM form factor of ^6Li with 3-body models</td>
</tr>
<tr>
<td>89KU21</td>
<td>Correlation and exchange effects in EM form factors</td>
</tr>
<tr>
<td>90BE54</td>
<td>Analysis of $^6\text{Li}(e, e')^6\text{Li}$ transitions to the low-lying ^6Li levels</td>
</tr>
<tr>
<td>90DE1V</td>
<td>$^6\text{Li}(e, e')^5\text{He}$</td>
</tr>
<tr>
<td>90KU12</td>
<td>Detailed study of EM structure of ^6Li from 3-body model</td>
</tr>
<tr>
<td>90LO14</td>
<td>Cluster-model interpretation of $^6\text{Li}(e, e')^5\text{He}$</td>
</tr>
<tr>
<td>90LU06</td>
<td>Calculation of the magnetic form factor of ^6Li</td>
</tr>
<tr>
<td>90RE1I</td>
<td>Parity-invariance violation in $^6\text{Li}(e, e'd)^4\text{He}$</td>
</tr>
<tr>
<td>90WA1J</td>
<td>Occupation probabilities of shell-model orbitals</td>
</tr>
<tr>
<td>91LU07</td>
<td>Magnetic form factor of ^6Li</td>
</tr>
<tr>
<td>91UN02</td>
<td>^6Li elastic form factors and antisymmetrization</td>
</tr>
<tr>
<td>92JO02</td>
<td>Two-body correlations in ^6Li through the $(e, e'd)$ reaction</td>
</tr>
<tr>
<td>92LO09</td>
<td>Multiquark configuration effect on nuclear charge form factor</td>
</tr>
<tr>
<td>92LOZX</td>
<td>Short-range correlation in the 6-body ^6Li wave function</td>
</tr>
<tr>
<td>92RYZY</td>
<td>EM properties of ^6Li in multicluster dynamic model</td>
</tr>
<tr>
<td>92ZH18</td>
<td>Calculation of $^6\text{Li}(e, ed)$ cross section in $\alpha 2\text{N}$ model</td>
</tr>
<tr>
<td>93KU27</td>
<td>Prohibition and suppression of multicluster states by Pauli principle</td>
</tr>
<tr>
<td>93RY01</td>
<td>^6Li properties — multicluster dynamic model</td>
</tr>
<tr>
<td>93SC30</td>
<td>Nucleon polarization in 3-body models of polarized Li</td>
</tr>
<tr>
<td>94BO04</td>
<td>Shell model calculation of magnetic electron scattering</td>
</tr>
<tr>
<td>94WE10</td>
<td>^6Li inelastic form factors in a cluster model</td>
</tr>
<tr>
<td>95AR10</td>
<td>Halo structure in ^6Li $E_x = 3.563 \ 0^+$ state</td>
</tr>
<tr>
<td>95DO23</td>
<td>Phenomenological transition amplitudes in selected p-shell nuclei</td>
</tr>
<tr>
<td>95KU08</td>
<td>Cluster structure of ^6Li low-lying states</td>
</tr>
<tr>
<td>95MA59</td>
<td>Finite-size effects in quasi-elastic scattering — Fermi gas model</td>
</tr>
<tr>
<td>98WI10</td>
<td>Quantum Monte Carlo calculations for light nuclei</td>
</tr>
<tr>
<td>98WI28</td>
<td>Microscopic calculation of ^6Li elastic & transition form factors</td>
</tr>
<tr>
<td>99GN01</td>
<td>Multicluster calculation of $^6\text{Li}(e, e')$ asymmetric & polarization ratios</td>
</tr>
</tbody>
</table>
in (95BO1H). See also the Δ-hole model analysis of (92JU1B) and the multicenter dynamic model analysis by (95RY1C). Calculations of cross sections and polarization observables at \(E_{\pi^\pm} = 80-260\) MeV are presented in (88ER06, 88NA06). A theoretical study in terms of a strong absorption model is described in (98AH06). Quantum Monte-Carlo calculations of cross sections for \(E_{\pi} = 100-240\) MeV are reported in (01LE01). Transition densities and \(B(E2)\) transition strengths were also calculated.

Measurements of pion double-charge exchange cross section (reactions (b) and (c)) at incident pion energies \(E_{\pi} = 180, 240\) MeV are reported in (89GR06, 95FO1J). In (91SE06) it is shown that continuum missing mass spectra from reaction (c) can be explained in terms of the presence of dineutrons in the products of the breakup.

Cross section measurements for reaction (d) at \(E_{\pi^+} = 130, 150\) MeV are reported in (87HU02). For a study of reaction (i) at \(E_{\pi^+} = 130\) MeV, see (87HU13).

Pion absorption followed by nucleon emission (reactions (e), (f), (g), (h), (j), (k), (l)) has been studied in a number of experiments. For reaction (k) see (83BA26, 83LO10, 85MC05, 86MC11). Measurements have been reported for cross sections for reaction (g) at \(E_{\pi^+} = 30, 50, 80, 115\) MeV (89ROZY); reactions (g) and (h) angular distributions at \(E_{\pi} = 70, 130, 165\) MeV (89YO05); reactions (g) and (h) angular correlations at \(E_{\pi} = 165\) MeV (89YO07); cross sections for reaction (g) at \(E_{\pi^+} = 115, 140, 165, 190, 220\) MeV (89ZHZZ); angular distributions for reaction (h) at \(E_{\pi} = 70, 130, 165\) MeV (89YO03); two-particle coincidences for reactions (g) and (h) at low energies (91YO1C); cross sections at \(E_{\pi} = 50, 100, 150, 200\) MeV (90RA05, 90RA20, 92RA01, 92RA11); differential and total cross sections for reaction (g) at \(E_{\pi^+} = 100, 165\) MeV (95PA22, 96LO04); inclusive spectra of \(^3\)He produced in reaction (l) (92AM1H, 93AM09); total reaction cross sections for \((\pi^+, X), (\pi^-, X)\) at \(E_{\pi} = 42-65\) MeV (96SA08). See also the earlier work on reaction (g) at \(E_{\pi^+} = 59.4\) MeV (86RI01), and see the compilation and review of (92BA57, 93IN01).

Analysis of particle emission following \(\pi^+\) absorption on \(^6\)Li (90RA20) has produced evidence for a three-nucleon absorption model. Distorted-wave impulse approximation calculations of cross sections and analyzing powers have been made (92KH04) for two-nucleon pion absorption on polarized \(^6\)Li targets. A model based solely on isospin was used (93MA14) in a calculation of ratios of pion absorption on three nucleons and agreement with experiment suggest a one-step process.

19. (a) \(^6\)Li(n, n)\(^6\)Li

\[Q_m = -1.4743\]

(b) \(^6\)Li(n, nd)\(^4\)He

\[Q_m = -2.7254\]

(c) \(^6\)Li(n, p)\(^6\)He

\[Q_m = -2.272\]

(d) \(^6\)Li(n, d)\(^5\)He

\[Q_m = 4.7829\]

(e) \(^6\)Li(n, t)\(^4\)He

\[Q_m = 4.7829\]
Angular distributions involving the groups to $^6\text{Li}^*(0, 2.19)$ have been reported at $E_n = 1.0$ to 14.6 MeV [see (84AJ01)], 4.2, 5.4 and 14.2 MeV (85CH37; n$_0$, n$_1$), 7.5 to 14 MeV (83DA22; n$_0$), 8.9 MeV (84FE1A; n$_0$), 8.0 and 24 MeV (86HA1S; n$_0$, n$_1$), $E_n = 5$ to 17 MeV (86PF1A; n$_0$), 11.5, 14.1 and 18 MeV (98CH33; n$_0$, n$_1$), and at 11.5 and 18.0 MeV (98IB02; n$_0$, n$_1$).

An analysis (88HA25) of (n, n) and (n, n') data at $E_n = 24$ MeV indicated that neutron and proton transition densities were approximately equal ($\rho_n \approx \rho_p$) in ^6Li. Cross sections and analyzing powers for $E_n = 8$–40 MeV were analyzed (89HAZV) with microscopic optical model potentials. Secondary neutron spectra induced by 14.2 MeV neutrons on ^6Li were measured by (93XI1A).

An analysis of (n, n') data at $E_n = 7.45$–14 MeV is discussed in (90BE54). See also the calculation for elastic coherent and incoherent scattering of thermal neutrons on ^6Li (90GO26) and the multi-cluster dynamic model calculation for $^6\text{Li}(n, n)$ at $E_n = 12$ MeV (92KA06).

Theoretical studies of $^6\text{Li}(n, n)$ include multiconfiguration resonating group calculations (88FU09, 91FU02), folding model descriptions for $E_n = 25$–50 MeV (93PE13), study of antisymmetry in NN potentials (95CO18), study of optical model potentials for intermediate energies (96CH33).

For reaction (b) see (84AJ01, 85CH37, 93XI1A, 94EL08).

A number of experiments on the (n, p) charge exchange (reaction (c)) have been reported. They include: measurements of $\sigma(E_p)$ and $\sigma(\theta)$ at $E_n \approx 198$ MeV (87HE22); $\sigma(\theta, E_p)$ at $E_n \approx 118$ MeV (87PO18, 88HA12, 98HA24); $\sigma(\theta)$ at $E_n = 198$ MeV (88JA01); $\sigma(\theta)$ to explore the Gamow-Teller sum rule (88WA24); $\sigma(\theta, E_p)$ at $E_n = 280$ MeV for an isospin symmetry test (90MI10); $\sigma(\theta, E)$ at $E_n = 60$–260 MeV (92SO02); and polarization observables at $E_n = 0.88$ GeV (96BB23).

For reaction (e), measurements were reported at thermal neutron energies (94IT04) and at $E_n < 10$ MeV (94DR11). For reaction (f), measurements of parity violation with cold polarized neutrons are described in (90VE16, 93VE1A, 96VE02). A discussion of nuclear reaction rates and primordial ^6Li is presented in (97NO04). See also the application-related calculation of (93FA01).

Theoretical work related to reactions (b), (c), (d), (e), (f) includes: dynamical cluster-model calculation (91DA08); microscopic calculation in a 3-particle $\alpha+2$N model (93SH1G); supermultiplet-symmetry-approximation calculation at $E_n = 6.77$ MeV (93DU09); multiconfiguration RGM calculation (95FU16); and three-body cluster model calculations of $^6\text{Li}(n, p)$ at $E_n = 50$ MeV (97DA01, 97ER05).

20. (a) $^6\text{Li}(p, p)^6\text{Li}$
(b) $^6\text{Li}(p, 2p)^5\text{He}$
(c) $^6\text{Li}(p, pd)^4\text{He}$
(d) $^6\text{Li}(p, p^3\text{H})^3\text{He}$
(e) $^6\text{Li}(p, pn)^5\text{Li}$
Proton angular distributions have been measured for \(E_p = 0 \) to 800 MeV \([p_0, p_1, p_2, p_3]\) [see (66LA04, 74AJ01, 84AJ01)] and at \(E_p = 5 \) to 17 MeV (86PF1A, p0).

Double-differential cross sections for the continuum yield \([s e e(66LA04, 74AJ01, 84AJ01)]\) and at \(E_p = 5\) to 17 MeV (86PF1A, p0).

Double-differential cross sections and/or polarization observables have been measured at \(E_p = 6 \) to 10 MeV (89HA17) [optical model analysis]; \(E_p = 1.6 \) to 10 MeV (89HA18) [phase shift analysis]; \(E_p = 65 \), 80 MeV (89TO04) [DWIA analysis]; \(E_p = 200 \) MeV (90GL04); \(E_p = 65 \) MeV (92NA02) [microscopic DWBA analysis]; \(E_p = 72 \) MeV (94HE11) [depolarization parameters]; \(E_p < 2.2 \) MeV (95SK01) [deduced resonance parameters]; \(E_p = 0.88 \) GeV (96BB23) [polarized target]; \(E_p = 250 \) to 460 keV (97BR37), \(E_p = 280 \) MeV (90MI10) [deduced isospin symmetry test]; \(E_p = 14 \) MeV [optical model, coupled channels]; \(E^6\text{Li} = 62, 72, 75 \) MeV/A, \(^1\text{H}(^6\text{Li}, p) \) [neutron halo states] (96KUZU); \(E_p = 1.6 \) to 2.4 GeV (99BB21, 99DE47). For a summary of the results on excited states see Table 6.12.

Reaction (b) was studied at 70 MeV (83GO06), at 50 to 100 MeV (85PA1B, 85PA1B) and 1 GeV (85BE30, 88BE2B, 00MI17); see \(^5\text{He}\) and (84AJ01) for the earlier work. Reaction (c) has been studied at \(E_p = 9 \) MeV to 1 GeV [see (74AJ01, 79AJ01, 84AJ01)] and at 20 and 42 MeV (83CA13) [report involvement of \(^6\text{Li}^\ast(4.31, 5.65)\)], at 70 MeV (83GO06, 85PA1C, 85PA04) and at 119.6 and 200.2 MeV (84WA09, 85WA25). In the latter experiments the spectroscopic factors for \(^6\text{Li}\) are deduced to be 0.76 [at 119.6 MeV] and 0.84 [at 200.2 MeV] using DWIA and a bound-state Woods-Saxon 2S wave function (84WA09, 85WA25).

Work on reaction (d) has suggested that the \(^3\text{He} + t\) parentage of \(^6\text{Li}\) is comparable with the \(^3\text{He} + d\) parentage: see (84AJ01). See also (85PA1C). Reaction (e) was studied at \(E_p = 70 \) MeV (88PA27). See also \(^5\text{Li}, \text{Be}\) and (85BE30, 93ST06). The \((p, 3p)\) reaction has been studied by (84NA17). The spectral function for pn pairs in \(^6\text{Li}\) was obtained in a study of the \(^6\text{Li}(p, p\gamma)\)pn reaction at \(E_p = 200 \) MeV (90WA17). A measurement of tensor analyzing powers in \(^1\text{H}(^6\text{Li}, d \text{ or } \alpha \text{ or } t)\)X with 4.5 GeV polarized \(^6\text{Li}\) deuterons provided information on the \(^6\text{Li}\) D state (92PU03). Systematic studies of electron screening effects on low energy reactions including \(^6\text{Li} + p\) are reported in (92EN01, 92EN04, 95RO37). For antiproton studies see (87AS06). See also (84AJ01, 88AJ01) for the earlier work.

Theoretical work on these reactions reported since the previous review (88AJ01) is listed in Table 6.13 along with brief descriptions.

21. (a) \(^6\text{Li}(d, d)^6\text{Li}\)
(b) \(^6\text{Li}(d, pn)^6\text{Li}\)
(c) \(^6\text{Li}(d, 2d){}^4\text{He}\)
(d) \(^6\text{Li}(d, \alpha p){}^3\text{H}\)
(e) \(^6\text{Li}(d, \alpha n){}^3\text{He}\)

Angular distributions of deuterons have been measured at \(E_d = 4.5 \) to 19.6 MeV [see (79AJ01)] and at 50 MeV (88KO1C, 96RU1A). The \(0^+, T = 1 \) state, \(^6\text{Li}^\ast(3.56)\) is not
appreciably populated. For a summary of the results on excited states see Table 6.12. Gaussian potentials were derived for the description of $^6\text{Li}+\text{d}$ elastic scattering by (92DU07).

At $E_d = 21$ MeV reaction (b) shows spectral peaking (characteristic of $^1\text{S}_0$ for the pn system [$T=1$]) when $^6\text{Li}^*(3.56)$ is formed, in contrast with the much broader shape (characteristic of $^3\text{S}_1$) seen when $^6\text{Li}^*(0, 2.19)$ are populated. A study of reaction (c) at $E_d = 52$ MeV shows that the α-clustering probability, $N_{\text{eff}} = 0.12^{+0.12}_{-0.06}$ if a Hankel function is used. The α-particle and the deuteron clusters in ^6Li have essentially a relative orbital momentum of $l = 0$. The D-state probability of the ground state of ^6Li is $\approx 5\%$ of the S-state. Quasi-free scattering is an important process even for $E_d = 6$ to 11 MeV. Interference effects are evident in reaction (c) proceeding through $^6\text{Li}^*(2.19, 4.31)$: this is due to the experiment being unable to determine whether the detected particle was emitted first or second in the sequential decay. Reactions (c) and (d) studied at $E_d = 7.5$ to 10.5 MeV indicate that the three-body breakup of ^6Li at these low energies is dominated by sequential decay processes (79AJ01, 90YA11). Differential cross sections for cluster pickup by 20 MeV/A deuterons on ^6Li were measured by (95MA57).

Calculation of Maxwellian rate parameters for reaction (d) and (e) are described in (00VO08). See also ^8Be and references cited in (88AJ01).

22. $^6\text{Li}(t, t)^6\text{Li}$

At $E_t = 17$ MeV angular distributions have been measured for the tritons to $^6\text{Li}^*(0, 3.56)$: see (79AJ01).

23. (a) $^6\text{Li}(^3\text{He}, ^3\text{He})^6\text{Li}$
(b) $^6\text{Li}(^3\text{He}, p\alpha)^4\text{He}$ $Q_m = 16.878$

Angular distributions have been measured at $E(^3\text{He}) = 8$ to 217 MeV [see (79AJ01, 84AJ01)] and at 34, 50, 60 and 72 MeV (86BI14; elastic).

More recently, differential cross sections were measured for elastic scattering at $E(^3\text{He}) = 93$ MeV (94DO32), and at $E(^3\text{He}) = 60$ MeV (95MA57), and for inelastic scattering to $^6\text{Li}^*(E_x = 2.185$ MeV, $J^p = 3^+$) at $E(^3\text{He}) = 50, 60, 72$ MeV (95BU20). A microscopic-potential analysis of data at $E(^3\text{He}) = 34, 50, 60, 72$ MeV is described in (93SI06). Differential cross section and energy spectra were compiled and analyzed by (95MI16). For reaction (b), cross sections have been measured at $E(^3\text{He}) = 11, 13, 14$ MeV (89ARZR, 89AR08); $E(^3\text{He}) = 2.5$ MeV (89AR20); $E(^3\text{He}) = 1.6$ MeV (91AR25); $E(^3\text{He}) = 1.6$–9 MeV (92AR20); $E(^3\text{He}) = 8$–14 MeV (95KO51); $E(^3\text{He}) = 2.0, 22$ MeV (92DA1K); $E(^3\text{He}) = 7$, 9 MeV (93AR12). A calculation of near-threshold two-fragment resonance amplitudes and widths for this reaction at $E(^3\text{He}) = 8$–14 MeV was reported in (95KO51). See also ^5Li (84AR17, 87ZA07) and see ^9B in (88AJ01).
Table 6.12: Parameters of levels of ^6Li

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>Γ_{cm} (keV)</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.185 ± 3</td>
<td>20.0 ± 2.8</td>
<td>$^4\text{He}(d, d)^4\text{He}$</td>
</tr>
<tr>
<td>2.187 ± 3</td>
<td></td>
<td>$^4\text{He}(d, d)^4\text{He}$</td>
</tr>
<tr>
<td>2.188 ± 6</td>
<td>24 ± 2 b</td>
<td>$^6\text{Li}(p, p')$, (d, d'), $^7\text{Li}(d, t)^6\text{Li}$</td>
</tr>
<tr>
<td>2.203 ± 6</td>
<td></td>
<td>$^9\text{Be}(p, \alpha)^6\text{Li}$</td>
</tr>
<tr>
<td>2.186 ± 2</td>
<td>24 ± 2</td>
<td>“best” value</td>
</tr>
<tr>
<td>3.56288 ± 0.10 c</td>
<td>(8.2 ± 0.2) × 10$^{-3}$ c</td>
<td>$^6\text{Li}(\gamma, \gamma')^6\text{Li}$</td>
</tr>
<tr>
<td>4.36 ± 40</td>
<td>1320 ± 40</td>
<td>$^4\text{He}(d, d)^4\text{He}$</td>
</tr>
<tr>
<td>4.27 ± 40</td>
<td></td>
<td>$^6\text{Li}(e, e')^6\text{Li}$</td>
</tr>
<tr>
<td></td>
<td>1044 ± 58 d</td>
<td>$^6\text{Li}(e, e')^6\text{Li}$</td>
</tr>
<tr>
<td>4.40 ± 120</td>
<td>1490 ± 150</td>
<td>$^6\text{Li}(p, p')^6\text{Li}$</td>
</tr>
<tr>
<td>4.32 ± 40</td>
<td>1820 ± 110</td>
<td>$^6\text{Li}(d, d')^6\text{Li}$</td>
</tr>
<tr>
<td>4.3 ± 100</td>
<td>600 ± 100</td>
<td>$^7\text{Li}(^3\text{He}, \alpha)^6\text{Li}$</td>
</tr>
<tr>
<td>4.3 ± 200</td>
<td>1600 ± 300</td>
<td>$^7\text{Li}(^3\text{He}, \alpha d)^4\text{He}$</td>
</tr>
<tr>
<td>4.3</td>
<td>1600 ± 120 e</td>
<td>$^7\text{Li}(^3\text{He}, \alpha d)^4\text{He}$</td>
</tr>
<tr>
<td>4.30 ± 10</td>
<td>850 ± 50, 480 ± 80</td>
<td>$^9\text{Be}(p, \alpha)^6\text{Li}$</td>
</tr>
<tr>
<td>4.312 ± 22</td>
<td>1300 ± 100 f</td>
<td>“best” value</td>
</tr>
<tr>
<td>5.379 ± 17 g</td>
<td>540 ± 20 g</td>
<td>$^6\text{Li}(e, e')^6\text{Li}$</td>
</tr>
<tr>
<td></td>
<td>546 ± 36 d</td>
<td>$^6\text{Li}(e, e')^6\text{Li}$</td>
</tr>
<tr>
<td>5.33 ± 80</td>
<td>560 ± 34 $^{340}_{100}$</td>
<td>$^6\text{Li}(p, p')^6\text{Li}$</td>
</tr>
<tr>
<td>5.34 ± 20</td>
<td>560 ± 40 b</td>
<td>$^7\text{Li}(^3\text{He}, \alpha)^6\text{Li}$</td>
</tr>
<tr>
<td>5.325 ± 5</td>
<td>270 ± 12</td>
<td>$^9\text{Be}(p, \alpha)^6\text{Li}$</td>
</tr>
<tr>
<td>5.366 ± 15</td>
<td>541 ± 20 h</td>
<td>“best” value</td>
</tr>
<tr>
<td>5.65 ± 50 i</td>
<td>1900 ± 100</td>
<td>$^4\text{He}(d, d)^4\text{He}$</td>
</tr>
<tr>
<td>5.7</td>
<td>1000 $^{500}_{100}$</td>
<td>$^6\text{Li}(p, p')^6\text{Li}$</td>
</tr>
<tr>
<td>5.65 ± 200</td>
<td>1650 ± 300</td>
<td>$^7\text{Li}(^3\text{He}, \alpha d)^4\text{He}$</td>
</tr>
<tr>
<td>5.65 ± 40</td>
<td>900 ± 60, 1260 ± 120</td>
<td>$^9\text{Be}(p, \alpha)^6\text{Li}$</td>
</tr>
<tr>
<td>5.65 ± 50</td>
<td>1500 ± 200</td>
<td>“best” value</td>
</tr>
</tbody>
</table>
24. (a) 6Li(α, α)6Li
(b) 6Li(α, 2α)2H $Q_m = -1.4743$

Angular distributions (reaction (a)) have been measured at $E_\alpha = 1.39$ to 166 MeV [see (74AJ01, 79AJ01, 84AJ01)] and at $E_\alpha = 36.6$ and 50.5 MeV (86BR1M). See also (86RO1M, 87BU27). See also 10B in (88AJ01).

More recent measurements at $E_\alpha = 50.5$ MeV of elastic and inelastic 6Li*($E_\alpha = 2.185$ MeV, $J^\pi = 3^+$) were reported by (94BUZY, 96BU06). Tensor polarization for inelastic scattering to 6Li*(2.185, 3^+) has been measured at $E_\alpha = 80$ MeV (92KO19, 93KO33). Angular distributions for (α, α') in the continuum region were studied at $E_\alpha = 50$ MeV (92SA01) and at $E_\alpha = 40$ MeV (94SA32), at $E_\alpha = 10$ MeV/A (96SI13) and at $E_\alpha = 119$ MeV (93OK1A). Cross sections and analyzing powers for elastic scattering of polarized 6Li by 4He are reported for $E(^6$Li) = 50 MeV (95KE10) and $E_{cm} = 11.1$ MeV (96GR08).

Studies of continuum coupling effects in inelastic scattering are described in (95KA1Y, 95KA43, 97RU06, 98RU1C, 00RU03). Folding-model potential analyses of elastic scattering are reported in (93SI09, 95SA12). Multiconfiguration resonating group methods applied to the 6Li + α system are discussed in (94FU17, 95FU11). Other recent theoretical studies include: a potential model description (99MA02); analysis of density distribution influence (98GO1J); a phase-shift-analysis determination of the asymptotic D- to S-state ratio (99GE02); a calculation for $E_\alpha = 16.3$ and 48 MeV with a modified Volkov-potential (00KO52); and a calculation of the nuclear potential and polarization tensor for $E_\alpha = 27.2$ MeV (00KO67). See also (88KO32, 89LE07, 99OG09).

Reaction (b) has been studied at $E_\alpha = 6.6$ to 700 MeV; see (74AJ01, 79AJ01, 84AJ01). At the latter energy and using a width parameter of 60.6 MeV/c the effective number of $\alpha+d$ clusters for 6Li$_{g.s.}$, $n_{eff} = 0.98 \pm 0.05$. The results are very model dependent; see (84AJ01). At $E_\alpha = 27.2$ MeV 6Li*($2.19)$ is very strongly populated (85KO29). See also references cited in (88AJ01).
<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>88HA25</td>
<td></td>
</tr>
<tr>
<td>90ZH1R</td>
<td>Quasi resonating group method analysis of $^6\text{Li}(p, p)^6\text{Li}$</td>
</tr>
<tr>
<td>92GA27</td>
<td>Folding-model study of elastic scattering in halo nuclei</td>
</tr>
<tr>
<td>93DU09</td>
<td>Potential description of $N + ^6\text{Li}$ elastic scattering</td>
</tr>
<tr>
<td>93KO44</td>
<td>Description of $^6\text{Li}(p, p)^6\text{Li}$ with microscopic effective interaction</td>
</tr>
<tr>
<td>93PE13</td>
<td>Folding model description of $^6\text{Li}(p, p)^6\text{Li}$ at 25–50 MeV</td>
</tr>
<tr>
<td>93SA10</td>
<td>DWBA analysis of $^6\text{Li}(p, p)^6\text{Li}$ near the α-d breakup threshold</td>
</tr>
<tr>
<td>94ZH28</td>
<td>Elastic and inelastic proton scattering on ^6Li nucleus at intermediate energies</td>
</tr>
<tr>
<td>94ZH34</td>
<td>Glauber-Sitenko diffraction theory calculation of $^6\text{Li}(p, p)^6\text{Li}$</td>
</tr>
<tr>
<td>95GA24</td>
<td>Analysis of properties of exotic nuclei in elastic scattering</td>
</tr>
<tr>
<td>95KA03</td>
<td>Folding-model analysis of $^6\text{Li}(p, p')^6\text{Li}$ at $E_p = 10–136$ MeV</td>
</tr>
<tr>
<td>95KA07</td>
<td>Continuum-continuum coupling in $^6\text{Li}(p, p)^6\text{Li}$ at $E_p = 65$ MeV</td>
</tr>
<tr>
<td>95KA43</td>
<td>Folding-model analysis of $^6\text{Li}(p, p')^6\text{Li}$ at $E_p = 10–136$ MeV</td>
</tr>
<tr>
<td>97DO01</td>
<td>Fully microscopic model analyses of $^6\text{Li}(p, p')^6\text{Li}$ at $E_p = 200$ MeV</td>
</tr>
<tr>
<td>97KA24</td>
<td>Shell model structures of ^6Li states excited in $^6\text{Li}(p, p')^6\text{Li}$</td>
</tr>
<tr>
<td>98DO16</td>
<td>Microscopic analysis of $^6\text{Li}(p, p)$ at $E_p = 65$ MeV</td>
</tr>
<tr>
<td>98FUZP</td>
<td>Microscopic optical model calculation for $E_p = 60–70$ MeV</td>
</tr>
<tr>
<td>00TI02</td>
<td>Finite-range coupled channels calculation for $^6\text{He} + p$ rxn</td>
</tr>
<tr>
<td>00DE61</td>
<td>Microscopic model analysis of $^6\text{Li}(p, p)^6\text{Li}$ for $E_p = 25$, 30, 40 MeV</td>
</tr>
<tr>
<td>00LA40</td>
<td>Resonance optical model analysis for $^6\text{Li}(p, p)^6\text{Li}$ for $E_p = 1–10$ MeV</td>
</tr>
<tr>
<td>00ZH40</td>
<td>Glauber-Sitenko diffraction theory calculation for $E_p = 0.16–1.04$ GeV</td>
</tr>
<tr>
<td>01AR05</td>
<td>Microscopic multicluster calculation for $^6\text{He} + p$ at $E_{cm} = 0–5$ MeV</td>
</tr>
</tbody>
</table>
In more recent work, two dimensional coincidence spectra of charged particles were measured at \(E_\alpha \approx 100 \text{ MeV} \) (92GA18). Quasi-free scattering processes were studied at \(E_\alpha = 77-119 \text{ MeV} \) (92OK01), \(E_\alpha = 118 \text{ MeV} \) (93OK1B), and \(E_\alpha = 118.4 \text{ MeV} \) (97OK01). The four-body \(^6\text{Li}(\alpha, 2\alpha)p\)n breakup reaction was measured at \(E_\alpha = 77-119 \text{ MeV} \) (92WA18, breakup cross sections); \(E_\alpha = 118 \text{ MeV} \) (88WA29, 89WA26; spectral functions of pn pair).

25. (a) \(^6\text{Li}(^6\text{Li}, ^6\text{Li})^6\text{Li}\)

 \(Q_m = -2.9487 \)

 \((b) \ ^6\text{Li}(^6\text{Li}, 2d)^4\text{He}^4\text{He} \)

 \(Q_m = 20.8979 \)

 Angular distributions of \(^6\text{Li}\) ions have been studied for \(E(^6\text{Li}) = 3.2 \text{ to } 36 \text{ MeV} \) [see (74AJ01, 79AJ01, 84AJ01)] and at \(E(^6\text{Li}) = 2.0 \text{ to } 5.5 \text{ MeV} \) (83NO08) and 156 \text{ MeV} (85SA36; \(^6\text{Li}^*(0, 2.19)\)), (85MI05; elastic; \(^6\text{Li}^*(2.19, 3.56)\) are also populated), (87EY01; several states in \(^{12}\text{C}\)). Reaction (b) has been studied for \(E(^6\text{Li}) = 36 \text{ to } 47 \text{ MeV} \): enhancements in yield, due to double spectator poles, have been observed in d-d and \(\alpha-\alpha \) but not in \(\alpha-d \) double coincidence spectra. The widths of the peaks are smaller than those predicted from the momentum distribution of \(\alpha + \text{d} \) clusters in \(^6\text{Li}\). \(^6\text{Li}^*(2.19)\) was also populated. See references in (84AJ01). Other work on reaction (b) is reported by (84LA19: 2.4 and 4.2 \text{ MeV}) and by (85NO1A).

 For reaction (c), the energy dependence of quasi-free effects were investigated in the range \(E(^6\text{Li}) = 2.4-6.7 \text{ MeV} \) (87LA25, 88LA1D). An analysis (96CH1C) used quasi-free data from reaction (c) to extract the \(^6\text{Li}(d, \alpha)^4\text{He}^4\text{He} \) excitation function at astrophysical energies. See also \(^{12}\text{C}\) in (85AJ01) and references cited in (88AJ01).

 More recently, elastic scattering angular distributions were measured for \(E(^6\text{Li}) = 5-40 \text{ MeV} \) (97PO03 optical model analysis). Eikonal-approximation calculations of differential cross sections and phase shifts for \(E(^6\text{Li}) = 156 \text{ MeV} \) were reported in (92EL1A).

26. \(^6\text{Li}(^7\text{Li}, ^7\text{Li})^6\text{Li}\)

 Angular distributions have been measured at \(E(^7\text{Li}) = 78 \text{ MeV} \) to \(^6\text{Li}^*(0, 2.19) \) (86GL1D), and at \(E(^7\text{Li}) = 9-40 \text{ MeV} \) (98PO03).

27. \(^6\text{Li}(^9\text{Be}, ^9\text{Be})^6\text{Li}\)

 The elastic scattering has been studied in inverse kinematics at \(E(^6\text{Li}) = 4.0, 6.0 \text{ and } 24 \text{ MeV} \) [see (79AJ01)], at 32 MeV (85CO09) and at 50 MeV (88TRZY; also inelastic). Recently angular distributions for elastic and inelastic scattering to \(^6\text{Li}^*(2.186, 3^+)\) were
measured (95MU01) at $E_{cm} = 7, 10, 12$ MeV. Excitation functions for $E_{cm} \approx 4–12$ were also reported. See also 9Be. For the interaction cross section at $E(^6\text{Li}) = 790$ MeV/A see (85TA18).

28. $^6\text{Li}^{(10}\text{B}, ^{10}\text{B})^6\text{Li}$

The elastic scattering has been studied at $E(^6\text{Li}) = 5.8$ and 30 MeV: see (79AJ01).

29. (a) $^6\text{Li}^{(12}\text{C}, ^{12}\text{C})^6\text{Li}$
 (b) $^6\text{Li}^{(13}\text{C}, ^{13}\text{C})^6\text{Li}$
 (c) $^6\text{Li}^{(14}\text{C}, ^{14}\text{C})^6\text{Li}$

The elastic and inelastic scattering (reaction (a)) has been studied at $E(^6\text{Li}) = 4.5$ to 156 MeV [see (84AJ01)] and at $E(^6\text{Li}) = 19.2$ MeV (83RU09), 36 and 45 MeV [and $E(^{12}\text{C}) = 72$ and 90 MeV] (84VI02, 85VI03; also to $^6\text{Li}^*(2.19, 4.31)$ and to various states of ^{12}C), at $E(^{12}\text{C}) = 58.4$ MeV (87PA12), 90 MeV (87DE02; also to various states of ^{12}C), 123.5 and 168.6 MeV (88KA09, and to various states of ^{12}C), 150 MeV (87TA21, 88TA08), 156 MeV (87EY01; and to various states in ^{12}C) and at 210 MeV (88NA02). See also (86SH1Q, 87PA12). More recently, measurements of cross sections and/or analyzing power observables have been reported at $E(^6\text{Li}) = 93$ MeV (89DE34); at $E_{cm} = 13.3$ MeV ((89HN1A, 95CA26) and to $^6\text{Li}^*(3^+, 2.186)$ and $^{12}\text{C}^*(2^+, 4.44)$); at $E(^6\text{Li}) = 210$ MeV (89NA11, to $^{12}\text{C}^*(2^+, 4.44)$); at $E(^6\text{Li}) = 30$ MeV (89VA04 to $^{12}\text{C}^*(2^+, 4.44)$; at 50 MeV (90TR02, to $^{12}\text{C}^*(2^+, 4.44; 0^+, 7.65; 3^-, 9.64)$); at $E(^6\text{Li}) = 30$ MeV (94RE01); at $E(^6\text{Li}) = 30, 60$ MeV (96KE09, to $^{12}\text{C}^*(2^+, 4.44; 0^+, 7.65; 3^-, 9.64)$); at $E_{cm} = 20$ MeV (96GA29, to $^6\text{Li}^*(3^+, 2.18)$ and $^{12}\text{C}^*(2^+, 4.44)$); at $E(^6\text{Li}) = 318$ MeV (93NA01); at $E(^6\text{Li}) = 30$ MeV (94RE15 to $^{12}\text{C}^*(2^+, 4.44; 3^-, 9.64)$); and at $E(^6\text{Li}) = 50$ MeV (95KE10). At $E(^6\text{Li}) = 34$ MeV the d-α angular correlations involve $^6\text{Li}^*(0, 2.19)$ (85CU04). See also (88SE1E), and see ^{12}C in (85AJ01, 90AJ01). An experimental study of the α + d breakup in $^6\text{Li} + ^{12}\text{C}$ collision at $E(^6\text{Li}) = 156$ MeV is reported in (89JE01). For pion production see (84CH16). For the interaction cross section at $E(^6\text{Li}) = 790$ MeV/A see (851A18). For VAP measurements at $E(^6\text{Li}) = 30$ MeV see (88VAZY). Fusion cross sections for $E(^6\text{Li}) = 3.11$–12.07 MeV are reported by (98MU12).

The elastic scattering (reaction (b)) has been studied for $E(^6\text{Li}) = 5.8$ to 40 MeV: see (84AJ01). Measurements of differential cross sections for $E_{cm} = 26$ MeV and observations of a nuclear quasi rainbow were reported by (94DE43). See also (87CA30, 88WO10). The elastic scattering (reaction (c)) has been measured for $E(^6\text{Li}) = 93$ MeV (87DE02). See also ^{18}F and ^{19}F in (87AJ02) and references cited in (88AJ01).

Several theoretical studies relating to $^6\text{Li} + ^{12}\text{C}$ have been reported. The role of the Pauli Principle in heavy ion scattering has been studied (88GR32). The dispersive contribution to
the $^6\text{Li} + ^{12}\text{C}$ real potential was estimated (90KA14). Elastic cross sections for $E(^6\text{Li}) = 30 \text{ MeV}$ were analyzed (90SA05). A semimicroscopic analysis of inelastic scattering at $E(^6\text{Li}) = 156 \text{ MeV}$ is described in (92GA17). Folding model analysis of $^6\text{Li} + ^{12}\text{C}$ scattering is discussed in (94NA03, 94SA10, 95KH03). Differential cross sections were analyzed with an S-matrix approach by (98PI02).

Other theoretical descriptions of $^6\text{Li} + ^{12}\text{C}$ scattering are discussed in (94SA33; strong absorption model), (95IS1F; multiple diffraction interaction), and (96CA01; microscopic description).

30. $^6\text{Li}(^{16}\text{O}, ^{16}\text{O})^6\text{Li}$

Elastic angular distributions have been reported at $E(^6\text{Li}) = 4.5$ to 50.6 MeV [see (84AJ01)], at $E(^6\text{Li}) = 35.3$ and $E(^{16}\text{O}) = 94.2$ MeV (84VI02) and at 50 MeV (88TRZY; also inelastic). At $E(^6\text{Li}) = 25.7$ and $E(^{16}\text{O}) = 68.6$ MeV (84VI01, 85VI03) report some $\sigma(\theta)$ to $^6\text{Li}^*$(1.219) [and to $^{16}\text{O}^*$(6.13)]. See also (87PA12). See (85VI03, 86SC28) for studies of the breakup. Polarization observables have been measured at $E(^6\text{Li}) = 25.7$ MeV, and also using ^{16}O ions (87VAZY, 89VA04). Measurements of $E(^6\text{Li}) = 50 \text{ MeV}$ for elastic scattering and inelastic scattering to $^{16}\text{O}^*$(2+$, 6.05; 3$, 6.13; 2$, 6.92; 1$, 7.12) were reported (90TR02). For fusion cross sections see (86MA19). See also ^{16}O in (86AJ04), (86MO1E, 87PA12) and references cited in (88AJ01). Theoretical work on this scattering reaction includes: $E(^6\text{Li}) = 29.8$ MeV, optical model description (90SA05); $E(^6\text{Li}) = 29.8$–30.6 MeV, Pauli Principle rule (88GR32); $E(^6\text{Li}) = 30.6$, optical model analysis (90SA05); projectile effects (91BO48); $E(^6\text{Li}) = 154$ MeV, 3-body cluster model (91HI07); $E(^6\text{Li}) = 22.8$ MeV, nonresonant breakup states (91HI11); and $E(^6\text{Li}) = 30 \text{ MeV}$, double-folding model, role of Pauli Principle (91SA26).

31. (a) $^6\text{Li}(^{24}\text{Mg}, ^{24}\text{Mg})^6\text{Li}$
(b) $^6\text{Li}(^{25}\text{Mg}, ^{25}\text{Mg})^6\text{Li}$
(c) $^6\text{Li}(^{26}\text{Mg}, ^{26}\text{Mg})^6\text{Li}$
(d) $^6\text{Li}(^{27}\text{Al}, ^{27}\text{Al})^6\text{Li}$

Elastic scattering for reaction (a) was studied at $E(^6\text{Li}) = 156 \text{ MeV}$ (95DE53). Reaction (c) has been studied at $E(^6\text{Li}) = 88 \text{ MeV}$ and 36 MeV (84AJ01) and at 44 MeV (89RU05; polarization observables), and $E(^6\text{Li}) = 60 \text{ MeV}$ (94WA20; polarization observables). Reaction (d) was studied at $E(^6\text{Li}) = 156 \text{ MeV}$ by (87NI04; particles and gammas from inelastic scattering). See also the measurements at $E(^6\text{Li}) = 790 \text{ MeV}/A$ (85TA18).

Theoretical studies for these reactions include: analyzed non-Rutherford cross sections (91BO48); effects of nonresonant breakup states (91HI11); strong absorption model analysis
32. (a) $^6\text{Li}(^{28}\text{Si}, ^{28}\text{Si})^6\text{Li}$
(b) $^6\text{Li}(^{30}\text{Si}, ^{30}\text{Si})^6\text{Li}$

The elastic scattering has been studied at $E(^6\text{Li}) = 13$ to 154 MeV [see (84AJ01)], at 27 and 34 MeV (83VI03) and at 210 MeV (88NAZX). For a study of the decay see (87NI04). See also references cited in (88AJ01).

More recent measurements have been reported at $E(^6\text{Li}) = 210$ MeV (inelastic $\sigma(\theta)$ to $^{28}\text{Si}^*$ (first 2^+ state) (89NA11); elastic $\sigma(\theta)$, optical parameters (89NA02); and $E(^6\text{Li}) = 318$ MeV ($\sigma(\theta)$, folding model potentials (90NAZZ, 93NA01)). Related analyses and other theoretical studies include: Pauli Principle role (88GR32, 91SA26); scattering matrix approach (90KU23); deduced model parameters (90SA05); non-Rutherford cross section thresholds (91BO48); cluster-folding interactions (91HI07); energy dependence, dispersion relation (91TI04); strong absorption model (94SA33); $E(^6\text{Li}) = 210, 318$ MeV, energy approximation (95EM03); microscopic description (96CA01); microscopic potentials, density matrix formalism (96KN02); microscopic potentials (96KN02). Related analyses and other theoretical studies include: Pauli Principle role (88GR32, 91SA26); scattering matrix approach (90KU23); deduced model parameters (90SA05); non-Rutherford cross section thresholds (91BO48); cluster-folding interactions (91HI07); energy dependence, dispersion relation (91TI04); strong absorption model (94SA33); $E(^6\text{Li}) = 210, 318$ MeV, energy approximation (95EM03); microscopic description (96CA01); microscopic potentials (96KN02).

For reaction (b) see (87AR13).

33. (a) $^6\text{Li}(^{39}\text{K}, ^{39}\text{K})^6\text{Li}$
(b) $^6\text{Li}(^{40}\text{Ca}, ^{40}\text{Ca})^6\text{Li}$
(c) $^6\text{Li}(^{44}\text{Ca}, ^{44}\text{Ca})^6\text{Li}$
(d) $^6\text{Li}(^{48}\text{Ca}, ^{48}\text{Ca})^6\text{Li}$

Elastic scattering has been studied for $E(^6\text{Li}) = 26$ to 99 MeV: see (84AJ01, 88AJ01), and at $E(^6\text{Li}) = 34$ MeV (reaction (b)) by (87VA31) and at 210 MeV (88NAZX, 89NA02; reaction (b)). $^6\text{Li}^*(2.19)$ has been studied at $E(^{40}\text{Ca}) = 227$ MeV (87VA31). Reaction (d) was studied at $E(^6\text{Li}) = 150$ MeV (90KAZH). For fusion measurements (reaction (b)) see (84BR04). For breakup measurements (reaction (b)) see (84GR20, 90YA09, 92YAZW, 93GU10, 95AR15, 96YA01).

For theoretical studies related to these reactions see: energy and target dependence of projectile breakup (87SA21); sequential breakup cross sections (87VA31); role of Pauli Principle (88GR32); exchange effects (88KH08, 90DA23); imaginary part of channel-coupling potentials (90TA11); $E(^6\text{Li}) = 30$ MeV, deduced optical model parameters (90SA05); cluster-folding interactions (91HI07); strong absorption model (94SA33); S-matrix approach (95BE60, 98PI02); and microscopic potentials (96KN02). For earlier work see references cited in (88AJ01).
34. (a) \(^7\text{Li}(\gamma, \text{n})^6\text{Li} \)
\[Q_m = -7.249 \]
(b) \(^7\text{Li}(\gamma, p\pi^-)^6\text{Li} \)
\[Q_m = -146.038 \]

Transitions to \(^6\text{Li}^*(0, 2.19, 3.56)\) have been observed in reaction (a): see (79AJ01, 84AJ01). Differential cross sections are reported for \(E_{\text{brem}} = 60 \) to 120 MeV for the \(n_0 + n_2 \) groups (85SE17). Bremsstrahlung yield for \((\gamma, n_0)\) was measured for \(E_\gamma = 7\)–9 MeV (89KA30). Reaction (b) at 0.9 GeV involves \(^6\text{Li}^*(2.19)\) (85RE1A). See also the measurements of \(E_\gamma = 350 \) MeV reported by (91GA26), and see \(^7\text{Li}\), (85ST1A, 86BA2G, 86GO1M).

An analysis of \(^7\text{Li}(\gamma, \text{n})\) data in the giant resonance energy region is described in (87VA05).

Cluster effects were explored in (92VA12). Calculation with a potential two cluster model are reported in (97DU02).

35. \(^7\text{Li}(\pi^-, \pi^-\text{p})^6\text{He} \)
\[Q_m = -9.9754 \]

Quasielastic pion-proton backward scattering was measured at \(E_\pi = 0.7, 0.9, 1.25 \) GeV (00AB25). Fermi momentum distributions for \(^6\text{Li}\) were deduced.

36. \(^7\text{Li}(\pi^+, \text{p})^6\text{Li} \)
\[Q_m = 133.1026 \]

Differential cross sections have been measured at \(E_{\pi^+} = 75 \) and 175 MeV for the transitions to \(^6\text{Li}^*(0, 2.19)\): see (84AJ01). Proton spectra measured at momentum exchange 660 MeV/c (89LIZO) provided evidence for an \(\eta \)-meson nuclear bound state.

37. (a) \(^7\text{Li}(\text{p}, \text{d})^6\text{Li} \)
\[Q_m = -5.0254 \]
(b) \(^7\text{Li}(\text{p}, \text{pn})^6\text{Li} \)
\[Q_m = -7.2499 \]

Angular distributions of deuterons (reaction (a)) have been studied for \(E_\text{p} = 167 \) to 800 MeV [see (79AJ01, 84AJ01)] and at 18.6 MeV (86GO1N, 87GO27; \(d_0, d_1, d_2 \); see for spectroscopic factors), 200 and 400 MeV (85KR13; \(d_0, d_1 \); \(d_2 \) is weakly populated at 200 MeV) and at 800 MeV (84SM04; \(d_0, d_1 \)). The ratio of the intensities of the groups to \(^6\text{Li}^*(2.19)\) and \(^6\text{Li}_{g.s.}\) increases with energy. It is suggested that this can be understood in terms of a small admixture of 1f orbital in these states (85KR13). A DWBA analysis of \(E_\text{p} = 185 \) MeV data leads to \(C^2 \) \(S = 0.87, 0.67, 0.24, (0.05), 0.14 \), respectively for \(^6\text{Li}^*(0, 2.19, 3.56, 4.31, 5.37)\). No other states were seen below \(E_\chi \approx 20 \) MeV: see (79AJ01). The tensor analyzing power \(T_{20} \) was measured for the \(^1\text{H}(^7\text{Li}, \text{d})^6\text{Li} \) reaction at \(E(^7\text{Li}) = 70 \) MeV to \(^6\text{Li}^*(0, 2.186)\) (91DA07). Data at \(E_\text{p} = 33.6 \) MeV were analyzed by (91AB04) in a test for
Cohen-Kurath wave functions. See also the analysis of data at $E_p = 698$ MeV by (93AL05; η production). In reaction (b) at $E_p = 1$ GeV the separation energy between ≈ 6.5 MeV broad $1p_{3/2}$ and $1s_{1/2}$ groups is reported to be 18.0 ± 0.8 MeV (85BE30, 85DO16). See also (83LY04, 88BE11, 88GUZW). Differential cross sections were measured at $E_p = 70$ MeV (88PA26) and at $E_p = 2.7$–3.8 MeV (88BO37; application). See also the measurements for nuclear microprobe utilization (95RI14).

38. $^7\text{Li}(d, t)^6\text{Li}$

$$Q_m = -0.9927$$

A study at $E_d = 23.6$ MeV of the relative cross sections of the analog reactions $^7\text{Li}(d, t)^6\text{Li}$ (to the first two $T = 1$ states at 3.56 and 5.37 MeV) and $^7\text{Li}(d, ^3\text{He})^4\text{He}$ (to the ground and 1.80 MeV excited states) shows that $^6\text{Li}^*(3.56, 5.37)$ have high isospin purity ($\alpha^2 < 0.008$): this is explained in terms of antisymmetrization effects which prevent mixing with nearby $T = 0$ states: see (79AJ01). (87BO39) $[E_d = 30.7$ MeV$]$ deduce that the branching ratio of $^6\text{Li}^*(4.31) [2^+]$ into a dinucleon $[T = 1, S = 0]$ is $(85 \pm 10)\%$: see also reactions 21 in ^6He and 4 in ^6Be. See also (87GU1F; $E_d = 18$ MeV; angular distributions to $^6\text{Li}^*(0, 2.19, 3.56)$) and (84BL21, 86AV1C, 88GUZW). See also the analysis method discussed in (95GU22; DWBA and dispersive theory).

39. (a) $^7\text{Li}(^3\text{He}, \alpha)^6\text{Li}$

$$Q_m = 13.3277$$

(b) $^7\text{Li}(^3\text{He}, d\alpha)^4\text{He}$

$$Q_m = 11.8534$$

Angular distributions have been reported at $E(^3\text{He}) = 5.1$ to 33.3 MeV [see (74AJ01, 84AJ01): the lower energy work has not been published] and more recently at $E(^3\text{He}) = 60$ MeV (94BUZX). Excited states observed in this reaction are displayed in Table 6.12. See also (68CO07) which reported observation of ^6Li states at 0.0, 2.17 ± 0.02, 3.55 ± 0.02 and 5.34 ± 0.02 MeV. (86AN04) have analyzed unpublished data which suggest the involvement of several broad highly excited states of ^6Li. See also (87AL1L).

Several attempts have been made to observe the isospin-forbidden decay of $^6\text{Li}^*(5.37)$ $[2^+; 1]$ via $^7\text{Li}(^3\text{He}, \alpha)^6\text{Li}\rightarrow d + \alpha$: the branching is $< 1\%$. $\Gamma_p/\Gamma = 0.35 \pm 0.10$ and $\Gamma_{p+n}/\Gamma = 0.65 \pm 0.10$ for $^6\text{Li}^*(3.57)$: see (79AJ01). $^4\text{He} + d$ spectra suggest the excitation of $^6\text{Li}^*(4.3) [E_x = 4.3 \pm 0.2$ MeV, $\Gamma = 1.6 \pm 0.3$ MeV$]$ and $^6\text{Li}^*(5.7) [E_x = 5.65 \pm 0.2$ MeV, $\Gamma = 1.65 \pm 0.3$ MeV$]$: see (84AJ01). See also (85DA29, 88BO1Y). A more recent measurement at $E(^3\text{He}) = 4, 5, 6$ MeV (95AR14) gave values for the width of of $^6\text{Li}^*(4.31)$ in agreement with the adopted value $\Gamma = 1700 \pm 200$ keV and found no dependence on incident energy. Measurements of d-α coincidence spectra at $E(^3\text{He}) = 11.5$ MeV (88AR20) and 5.0 MeV (91AR19) gave spectroscopic parameters for $^6\text{Li}^*(5.65)$ in agreement with adopted values (88AJ01). At $E(^3\text{He}) = 120$ MeV the missing mass spectra for ($^3\text{He}, 2d$) and ($^3\text{He}, pt$) reflect the population of $^6\text{Li}^*(0, 2.19)$ and suggest broad structures at $E_x = 28.5$ and 32.9 MeV (85FR01). See also ^{10}B and (83KU17, 88BO1J).
40. (a) $^7\text{Li}(^6\text{Li}, ^7\text{Li})^6\text{Li}$
(b) $^7\text{Li}(^7\text{Li}, ^8\text{Li})^6\text{Li}$ $Q_m = -5.2171$

At $E(^6\text{Li}) = 93$ MeV a broad group ($\Gamma \approx 11$ MeV) centered at $E_x = 20$ MeV is reported in addition to other peaks at $E_x = 17.1 \pm 0.3$, 18.9 ± 0.3 and 21.2 ± 0.3 MeV (87GLZW). See (84KO25) for reaction (b).

41. $^9\text{Be}(\gamma, t)^6\text{Li}$ $Q_m = -17.6885$

Cross section measurements were made with virtual photons using electrons at 21.0–39.0 MeV (99SH05). A compilation and evaluation of cross section data for $E_\gamma < 30$ MeV has been done by (99ZHZN).

42. (a) $^9\text{Be}(p, \alpha)^6\text{Li}$ $Q_m = 2.1254$
(b) $^9\text{Be}(p, 2\alpha)^2\text{H}$ $Q_m = 0.6510$
(c) $^9\text{Be}(p, pt)^6\text{Li}$ $Q_m = -17.6885$

Angular distributions of α-particles (reaction (a)) have been measured at $E_p = 0.11$ to 45 MeV. [see (74AJ01, 79AJ01)] and at $E_p = 22.5$, 31 and 41 MeV (86HA27, α_0, α_1, α_2; see for spectroscopic factors). See also Table 6.12 and (84AJ01). Recent measurements of angular distributions and analyzing power at $E_p = 77–321$ keV are reported by (98BR10). Measurements at $E_x = 1$ GeV are reported in (00ANZX). Calculations of the cross section and polarization observables for $E_p = 40$ MeV are reported in (00GA49, 00GA59). A study of possible reasons for non-observation of certain ^6Li excited states in the reaction is discussed in (99TI07). $^6\text{Li}^*(3.56)$ decays by γ-emission consistent with M1; $\Gamma_\alpha/\Gamma < 0.025$ [forbidden by spin and parity conservation]: see (84AJ01). An analysis of the $^9\text{Be}(p, \alpha)$ cross section at $E_p = 16–700$ keV is described in (01BA47). Astrophysical S-factor, analyzing powers and R-matrix parameters were deduced. At $E_p = 9$ MeV the yield of reaction (b) is dominated by FSI through $^8\text{Be}^*(0, 2.9)$ and $^6\text{Li}^*(2.19)$ with little or no yield from direct three-body decay: see (79AJ01). More recent measurements of cross sections and/or polarization observables have been reported at $E_p = 50$ MeV (89GU05), $E_p = 25$, 30 MeV (92PE12; determined spectroscopic strengths), $E_p = 40$ MeV (97FA17) [see also (89FA1B)], $E_p = 2–5$ MeV (88ABZW), $E_p = 16–390$ keV [deduced $S(E)$] (97ZA06), $E_p = 77–321$ keV [deduced stellar reaction rates] (98BR10), $E_p = 30–300$ keV (00ISZZ). See also application-related experiments (90RE09, 95RI14). Analyses of data for this reaction have been reported for $E_p = 45–50$ MeV [DWBA] (96YA09, 97YAZV) and $E_p < 2$ MeV [analyzed reaction rates, primordial ^6Li] (97NO04). Reactions (b) and (c) at $E_p = 58$ MeV involve $^6\text{Li}^*(0, 2.19)$ (85DE17). See also ^{10}B and (85MA1F, 86AN26, 86KA26).
43. $^9\text{Be}(d, ^5\text{He})^6\text{Li}$ \hspace{1cm} Q_m = -0.897

See ^5He.

44. $^9\text{Be}(t, ^6\text{He})^6\text{Li}$ \hspace{1cm} Q_m = -5.3830

Angular distributions of $^6\text{He}_{g.s.} + ^6\text{Li}_{g.s.}$ and $^6\text{He}_{g.s.} + ^6\text{He}^*(3.56)$ [both ions listed were detected] have been measured at $E_t = 21.5$ and 23.5 MeV. In the latter case the final state is composed of two isobaric analog states: angular distributions are symmetric about 90° cm, within the overall experimental errors. In the reaction leading to the ground states of ^6He and ^6Li differences from symmetry of as much as 40% are observed at forward angles. Angular distributions involving $^6\text{He}_{g.s.} + ^6\text{Li}^*(2.19)$ and $^6\text{Li}_{g.s.} + ^6\text{He}^*(1.8)$ have also been measured. This reaction appears to proceed predominantly by means of the direct pickup of a triton or ^3He from ^9Be. Differential cross sections are also reported at $E_t = 17$ MeV: see (84AJ01) for references.

45. $^9\text{Be}(^3\text{He}, ^6\text{Li})^6\text{Li}$ \hspace{1cm} Q_m = -1.8938

Angular distributions of ^6Li ions have been obtained at $E(^3\text{He}) = 6$ to 10 MeV: see (74AJ01). A study of the continuum suggests the population of ^6Li states at $E_x = 8–12$, ≈ 21 and 21.5 MeV: see (84AJ01). More recently, measurements at $E(^3\text{He}) = 60$ MeV of differential cross sections have been reported (90MA1O, 90MAZG, 95MA57). Spectroscopic factors were deduced. Angular distributions at $E(^3\text{He}) = 60$ MeV for transition to the ^6Li ground state and to $^6\text{Li}^*(3^+, 2.185; 2^+, 5.37; 1^+, 5.65)$ were measured (96RU13) and analyzed by coupled-channels methods.

46. $^{10}\text{B}(n, ^5\text{He})^6\text{Li}$ \hspace{1cm} Q_m = -5.258

Differential cross sections are reported at $E_n = 14.4$ MeV involving $^6\text{Li}^*(2.19)$ and $^5\text{He}_{g.s.}$ (841U02).

47. $^{10}\text{B}(d, ^6\text{Li})^6\text{Li}$ \hspace{1cm} Q_m = -2.9861

Angular distributions involving $^6\text{Li}^*(0, 2.19)$ have been studied at $E_d = 13.6$ MeV (83DO10) and at 19.5 MeV [see (74AJ01)]. See also (84SH1E).
48. 10B(3He, 7Be)6Li

$Q_m = -2.8738$

Angular distributions involving 6Li*(0, 2.19) have been measured at $E(^3$He) = 30 MeV: see (74AJ01).

49. 10B(α, 8Be)6Li

$Q_m = -4.5522$

At $E_\alpha = 72.5$ MeV only 6Li*(0, 2.19) are observed: the latter is excited much more strongly than is the ground state [S_α for the ground state is 0.4 that for 6Li*(2.19)]. The angular distributions for both transitions are flat: see (79AJ01). See also (84AJ01). A more recent measurement of differential cross sections at $E_\alpha = 27.2$ MeV is reported in (95FA21). Spectroscopic factors were deduced.

50. 11B(d, 7Li)6Li

$Q_m = -7.1903$

See (84AJ01).

51. 11B(3He, 8Be)6Li

$Q_m = 4.5712$

Angular distributions are reported at $E(^3$He) = 71.8 MeV involving several states in 8Be (86JA02, 86JA14).

52. 12C(p, 7Be)6Li

$Q_m = -22.5668$

Angular distributions involving 7Be*(0, 0.43) have been measured at $E_p = 40.3$ MeV (85DE05). For the earlier work at $E_p = 30.6$ to 56.8 MeV see (74AJ01, 79AJ01). See also references cited in (88AJ01).

53. 12C(d, 8Be)6Li

$Q_m = -5.8922$

Angular distributions involving states in 8Be have been studied at $E_d = 19.5$ and 51.8 MeV [see (74AJ01)] and at 50 MeV (85GO1G, 89GO07, 89GO26), 54.2 MeV (84UM04) and 78 MeV (86JA14), as well as at $E_d = 18$ and 22 MeV (87TA07) and 51.7 MeV (86YA12). See also (84NE1A, 87GO1S) and the DWBA calculations at $E_d = 50$ MeV (88KA46) and $E_d = 15$ MeV (88RA27).
54. $^{12}\text{C}(^{3}\text{He}, ^9\text{B})^{6}\text{Li}$ $Q_m = -11.5708$

Angular distributions have been obtained at $E(^3\text{He}) = 28$ to 40.7 MeV [see (74AJ01)] and at $E(^3\text{He}) = 33$ MeV (89SI02), $E(^3\text{He}) = 33.4$ MeV (86CL1B. also A_y), $E(^3\text{He}) = 60$ MeV (90MAZG, 93MA48), $E(^3\text{He}) = 30$–60 MeV (95MA57). See also (89GL1D) and see ^9B in (88AJ01).

55. (a) $^{12}\text{C}(\alpha, ^{10}\text{B})^{6}\text{Li}$ $Q_m = -23.7122$
 (b) $^{12}\text{C}(\alpha, d\alpha)^{10}\text{B}$ $Q_m = -25.1865$

Angular distributions (reaction (a)) at $E_\alpha = 42$ MeV involve $^6\text{Li}^*(0, 2.19)$: see (74AJ01). Differential cross sections were measured at $E_\alpha = 90$ MeV and cluster spectroscopic amplitudes were deduced (91GL03). At $E_\alpha = 65$ MeV reaction (b) goes via $^6\text{Li}^*(2.19, 4.31)$: see (84AJ01). See also ^{10}B in (88AJ01) and (87GA20).

56. (a) $^{12}\text{C}(^{6}\text{Li}, \alpha)^{14}\text{N}$ $Q_m = 8.7980$
 (b) $^{12}\text{C}(^{6}\text{Li}, d\alpha)^{12}\text{C}$ $Q_m = -1.4743$

An analysis involving excited states of ^6Li and ^{14}N was applied to cross section and analyzing power data at $E(^6\text{Li}) = 33$ MeV by (00MA43).

Measurements of triple differential cross sections for elastic breakup of 156 MeV ^6Li (reaction (b)) were reported in (89HE28, 89HE17, 89RE1G). A diffraction dissociation model analysis was used. See also reaction 70. Partial cross sections for the $^6\text{Li} + ^{12}\text{C}$ reaction were measured for $E(^6\text{Li}) = 3.11$–12.07 MeV by (98MU12).

57. $^{12}\text{C}(^{10}\text{B}, ^{16}\text{O})^{6}\text{Li}$ $Q_m = 2.7015$

See ^{16}O in (86AJ04).

58. $^{12}\text{C}(^{11}\text{B}, ^6\text{Li})^{17}\text{O}$ $Q_m = -4.609$

Measurements of angular distributions at $E(^{11}\text{B}) = 25, 35, 40$ MeV have been reported by (96JA12). Transfer mechanisms were studied.
59. 12C(12C, 12C)6Li6Li

$Q_m = -28.1726$

The fragmentation of 12C into two 6Li ions has been observed at $E(^{12}$C) = 2.1 GeV/A (86LI11D).

60. 12C(14N, 20Ne)6Li

$Q_m = -4.1810$

Angular distributions of reaction products were measured for $E(^{14}$N) = 50 MeV, and multinucleon transfer mechanisms were studied (92ARZX). See also the analysis for $E(^{14}$N) = 54 MeV (87GO12), and see 20Ne in (87AJ02, 98TI06).

61. 13C(p, 8Be)6Li

$Q_m = -8.6140$

See (74AJ01).

62. 13C(t, 6Li)10Be

$Q_m = -8.6181$

Measurements of differential cross sections and analyzing powers were reported by (89SI02). Spectroscopic factors were extracted.

63. 13C(3He, 6Li)10B

$Q_m = -8.0809$

Differential cross sections at $E(^3$He) = 60 MeV have been reported (90MAZG, 95MA57). Cluster pick-up mechanisms were studied.

64. 16O(d, 12C)6Li

$Q_m = -5.6876$

Angular distributions and polarization observables involving 6Li ions and several 12C states are reported at $E_d = 22$ MeV (87TA07) and 51.7 MeV (86YA12) and at $E_d = 54.2$ MeV (84UM04). See also (84NE1A), and 12C in (90AJ01) for polarization studies.

65. 16O(3He, 6Li)13N

$Q_m = -9.2376$
Measurements and analyses of differential cross sections at \(E(^{3}\text{He}) = 30\)–60 MeV have been reported (95MA57).

66. \(^{19}\text{F}(d, \, ^{6}\text{Li})^{15}\text{N} \quad Q_{m} = -2.5394\)

Differential cross sections at \(E_{d} = 50 \) MeV were reported (90GO14).

67. \(^{19}\text{F}(^{3}\text{He}, \, ^{16}\text{O})^{6}\text{Li} \quad Q_{m} = 4.0945\)

Angular distributions have been measured at \(E(^{3}\text{He}) = 11 \) to 40.7 MeV involving \(^{6}\text{Li}*(0, \, 3.56)\) and various states of \(^{16}\text{O}\): see (74AJ01, 77AJ02). Differential cross sections have been reported for \(E(^{3}\text{He}) = 66 \) MeV (91MA56).

68. \(^{58}\text{Ni}(^{6}\text{Li}, d)X \)

Measurement of the tensor analyzing power made at \(E(^{6}\text{Li}) = 34 \) MeV (78VE03) were analyzed to obtain the \(D\)- and \(S\)-state ratio for the \(<\text{d}^{}\text{a}^{6}\text{Li}| \) bound state overlap.

69. \(^{138}\text{Ba}(^{6}\text{Li}, \, ^{9}\text{Li}) \)

Angular distributions measured for \(E(^{6}\text{Li}) = 21\)–32 MeV are reported by (99MA16).

70. (a) \(^{208}\text{Pb}(^{6}\text{Li}, \, ^{6}\text{Li})^{208}\text{Pb} \quad Q_{m} = -1.4743\)

(b) \(^{208}\text{Pb}(^{6}\text{Li}, \, \text{d})^{208}\text{Pb} \quad Q_{m} = -1.4743\)

For reaction (a) differential cross sections were measured at \(E(^{6}\text{Li}) = 25\)–60 MeV and analyzed by the optical model (94KE08, 98KE03).

For reaction (b) measurements of triple differential cross sections for elastic breakup of 156 MeV \(^{6}\text{Li}\) were reported in (89HE28, 89HE17, 89RE1G). Data were analyzed on the basis of a diffractive disintegration approach. Breakup measurements at \(E(^{6}\text{Li}) = 60 \) MeV were reported in (88HE16). See also reaction 56, and see the theoretical study of angular correlation of breakup fragments in (89BA25).
GENERAL: References to articles on general properties of 6Be published since the previous review (88AJ01) are grouped into categories and listed, along with brief descriptions of each item, in the General Tables for 6Be located on our website at (www.tunl.duke.edu/NuclData/General_Tables/6be.shtml).

1. (a) 3He(3He, γ)6Be $Q_m = 11.4884$
 (b) 3He(3He, p)5Li $Q_m = 11.17$ $E_b = 11.49$
 (c) 3He(3He, 2p)4He $Q_m = 12.8596$
 (d) 3He(3He, 3He)3He $Q_m = -5.4935$

The yield of γ-rays to 6Be*(1.7) (reaction (a)) increases smoothly from 0.4 to 9.3 μb (assuming isotropy) for $0.86 < E(^3$He $) < 11.8$ MeV (90$^\circ$). No transitions are observed to 6Be$_{g.s.}$ [$\sigma < 0.01$ μb at $E(^3$He $) = 1.4$ MeV]. This is understood in terms of a direct capture of 3He by 3He in the singlet spin state and with zero angular momentum: the $0^+ \rightarrow 0^+$ γ-transition is forbidden. Reaction (a) is thus of negligible astrophysical importance compared to reaction (c): see (79AJ01). The capture cross section from $E(^3$He $) = 12$ MeV to 27 MeV continues to increase smoothly with energy at first and then shows a broad structure centered at $E(^3$He $) = 23\pm1$ MeV [$E_x = 23.0\pm0.5$ MeV], $\Gamma_{cm} \approx 5$ MeV. This appears to be a 33F cluster resonance which decays by an $E1$ transition to 6Be*(1.7). The γ-ray angular distributions are consistent with $J^\pi = 3^-$: see (79AJ01). See also (89IS1B). Thermnuclear reaction rates for this reaction calculated from evaluated data are presented in the compilation (99AN35).

Table 6.14: Energy levels of 6Be

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>J^π; T</th>
<th>Γ_{cm}</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s. 1.67 ± 50 a</td>
<td>0$^+$; 1</td>
<td>92 ± 6 keV</td>
<td>p, α</td>
<td>2, 3, 4</td>
</tr>
<tr>
<td></td>
<td>(2)$^+$; 1</td>
<td>1.16 ± 0.06 MeV</td>
<td>p, α</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>23</td>
<td>4$^-$</td>
<td>broad</td>
<td>γ, 3He</td>
<td>1, 3</td>
</tr>
<tr>
<td>26</td>
<td>2$^-$</td>
<td>broad</td>
<td>3He</td>
<td>1, 3</td>
</tr>
<tr>
<td>27</td>
<td>3$^-$</td>
<td>broad</td>
<td>3He</td>
<td>1</td>
</tr>
</tbody>
</table>

a See Table 6.8 in (74AJ01).
Figure 6: Energy levels of 6Be. For notation see Fig. 5.
A_y has been measured for $E(^3\text{He}) = 14$ to 30 MeV [reaction (b)] by (83KI10) using a polarized target. See also ^3Li.

Measurements of the total cross section for reaction (c) have been carried out for $E(^3\text{He}) = 60$ keV to 2.2 MeV [see (79AJ01)] and for 36 to 685 keV (87KR09). The measurements are consistent with a non-resonant reaction mechanism, at least down to $E_{\text{cm}} = 24.5$ keV. Upper limits for $\omega\gamma$ for a resonance below that energy (and with E_R (cm) as low as 16.2 keV) [which might help explain the low observed flux of solar neutrinos], are given in (87KR09). [It should be noted that a corresponding mirror state in ^6He has not been observed.] The best fit to the data is given by $S(0) = 5.57 \pm 0.31$ MeV · b (87KR09). See also (79AJ01) for the earlier work. See also (66LA04, 74AJ01). For work on astrophysical considerations see references cited in (88AJ01), and see also the following work: thermonuclear reaction rates calculated from evaluated data (88CA26, 99AN35); dynamic screening (88CA1J); neutrino astrophysics (89BA05); reaction rates (89SC25); plasma fusion (88PO1J); S factors, RGM (89VA20); cross sections, extended elastic model (90SC15); cross sections, microscopic study (91TY01); phase shifts, generator coordinate method (90KR12); astrophysical S-factor, potential model (92WI09); cross sections, microscopic analysis (94DE27); S factor, electron screening effects (89BE08); and nucleosynthesis around black holes (89JI1A). (85SI12) report o-d correlation measurements at $E(^3\text{He}) = 13.6$ MeV, which suggest the breakup of the diproton (^3He) into $^2\text{H} + e^+ + \nu$.

The elastic scattering (reaction (d)) has been studied for $E(^3\text{He}) = 3$ to 32 MeV and at 120 MeV. The excitation function shows a smooth monotonic behavior except for an anomaly at $E(^3\text{He}) = 25$ MeV in the $L = 3$ partial wave corresponding to a broad state in ^6Be at $E_x \approx 24$ MeV. Polarization measurements have been carried out at $E(^3\text{He}) = 17.9$ to 32.9 MeV. A two level R-matrix analysis of the phase shifts ($L \leq 5$) suggests three broad F-wave states at $E_x \approx 23.4$ (4^-), 26.2 (2^-) and 26.7 MeV (3^-), in disagreement with the capture γ-ray results described above: see (79AJ01). Calculations using the generator coordinate method have been reported for phase shifts ($E(^3\text{He}) < 5$ MeV) (90KR12), and for differential cross sections and astrophysical S factors ($E(^3\text{He}) = 2$–6 MeV) (94DE27). See also (84AJ01) and (86FO04).

A kinematically complete experiment (reaction (e)) has been performed at $E(^3\text{He}) = 120$ MeV: large peaks were observed which appear to correspond to ^3He-d quasi-free scattering followed by p-d FSI: see (84AJ01).

The total reaction cross sections $\sigma_R = 156.7 \pm 3.8$, 250 ± 14 and 296 ± 12 mb at $E(^3\text{He}) = 17.9$, 21.7 and 24.0 MeV (87BR02) [see also for partial cross sections for the breakup reactions and for unpublished results for σ_R for $E(^3\text{He}) = 3.0$ to 17.9 MeV]. See also (84AJ01) and references cited in (88AJ01).

2. $^4\text{He}(^3\text{He}, n)^6\text{Be}$

$$Q_m = -9.0892$$

Neutron groups to $^6\text{Be}^*(0, 1.7)$ have been observed at $E(^3\text{He}) = 19.4$ to 38.61 MeV: see Table 6.8 in (74AJ01) for the parameters of the first-excited state. There is no evidence for
other states of ^6Be with $E_x \leq 5$ MeV, nor for a state near the ^3He threshold at 11.5 MeV: see (79AJ01).

3. (a) $^6\text{Li}(p, n)^6\text{Be}$
 \[Q_m = -5.070 \]
(b) $^6\text{Li}(p, pn)^5\text{Li}$
 \[Q_m = -5.39 \]

Neutron groups have been observed to $^6\text{Be}^*(0, 1.7)$ as has the ground-state threshold. The width of the ground state is 95 ± 28 keV. The parameters of $^6\text{Be}^*(1.7)$ are displayed in Table 6.8 of (74AJ01). Angular distributions have been reported at $E_p = 8.3$ to 144 MeV [see (79AJ01, 84AJ01)] and at 800 MeV (86KI12). The transverse spin transfer coefficient, $D_{NN}(0^\circ)$, at $E_p = 160$ MeV for the ground-state transition is -0.37 ± 0.04 in agreement with results in other light nuclei (84TA07). See also ^7Be and references cited in (88AJ01).

In more recent work, evidence for a proportionality between $\sigma_{pn}(0^\circ)$ and Gamow-Teller transition strengths were examined (87TA13). See also (89RA1G). Measurements are reported at:
- $E_p = 60$–200 MeV [$D_{NN}(0^\circ)$ (90RA08)];
- $E_p = 256, 800$ MeV [double differential cross sections (93ST06)];
- $E_p = 392$ MeV [$\sigma(\theta)$, $A_p(\theta)$ (94TO1C)];
- $E_p = 300, 400$ MeV [quasi-free excitations, $D_{NN}(0^\circ)$ (94SA43)];
- $E_p = 295$ MeV [spin-flip strength, $D_{NN}(0^\circ)$ (95WA16)];
- $E_p = 200$ MeV [$A_y(\theta)$ (95WAZW)];
- $E_p = 35$ MeV [$\sigma(\theta)$ (96ORZZ, 98OR1B)]; and
- $E_p = 280$ MeV [$\sigma(\theta)$, isospin-symmetry test (90MI10)].
For recent applications see (98HA24, 98WA12). Calculations with a dynamical multicluster model are discussed in (91DA08, 93SH1G). See also the review of two-particle neutron halo nuclei in (96DA31).

In reaction (b) some evidence has been reported at $E_p = 47$ MeV for sequential decay via $^6\text{Be}^*(15.5 \pm 2, 24 \pm 2)$: see (79AJ01). See also (88MIZX).

4. $^6\text{Li}(^3\text{He}, t)^6\text{Be}$
 \[Q_m = -4.3063 \]

Triton groups have been observed to $^6\text{Be}^*(0, 1.7)$. The width of the ground state is 89 ± 6 keV. The parameters of the excited state are displayed in Table 6.8 of (74AJ01). No other excited states have been seen with $E_x < 13$ MeV. There is no evidence for a state near 11.5 MeV: see (79AJ01). (87BO39) have studied the decay of $^6\text{Be}^*(1.7)$ at $E(^3\text{He}) = 38.7$ MeV: they report that the branching ratio for decay via the emission of ^2He [$T = 1$, $S = 0$] is 0.60 ± 0.15: see also reactions 21 in ^6He and 38 in ^6Li and (84BO49, 85BO56, 88BO1J). See also (84AJ01), (87DA1N; theor.) and ^9Be in (88AJ01).

In more recent work, kinematically complete experiments for $^6\text{Li}^3\text{He}, t^6\text{Be}^*(0, 1.7) \rightarrow \alpha + p + p$ were reported in (88BO38, 89BO1N, 89BO25, 89BO42) and in (92BO25, 93BO38 [studied decay mechanism]). Measurements of differential cross sections at $E(^3\text{He}) = 93$ MeV are described in (94DOZW).
Not observed: see (79AJ01, 84AJ01, 89GR06 6Li(π^+, π^-) at $E_{\pi^+} = 180, 240$ MeV], 93PO11 [properties of exotic light nuclei]) (98SU18).

Table 6.15: Isospin triplet components ($T = 1$) in $A = 6$ nuclei a

<table>
<thead>
<tr>
<th>6He</th>
<th>6Li</th>
<th>6Be</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_x (MeV)</td>
<td>J^π</td>
<td>E_x (MeV)</td>
</tr>
<tr>
<td>0</td>
<td>0$^+$</td>
<td>3.56</td>
</tr>
<tr>
<td>1.80</td>
<td>2$^+$</td>
<td>5.37</td>
</tr>
<tr>
<td>5.6</td>
<td>(2$^+$, 1$, 0^+$)</td>
<td></td>
</tr>
<tr>
<td>14.6</td>
<td>(1$, 2^-$)</td>
<td>17.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.59</td>
</tr>
</tbody>
</table>

a As taken from Tables 6.1, 6.4 and 6.14
b Defined as $E_x(^7\text{Li}) - E_x(^6\text{He}) - 3.56$ MeV.
c Defined as $E_x(^6\text{Be}) - E_x(^6\text{He})$.

\[^6\text{B, }^6\text{C} \]

(Not illustrated)
Figure 7: Isobar diagram, $A = 6$. For notation see Fig. 3.
References

(Closed 23 August 2001)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author’s name and then by two additional characters. Most of the references appear in the National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form 1A, 1B, etc. In response to many requests for more informative citations, we have, when possible, included up to ten authors per paper and added the authors’ initials.

66LA04 T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1
69EI06 F. Eigenbrod, Z. Phys. 228 (1969) 337
77AJ02 Ajzenberg-Selove, Nucl. Phys. A281 (1977) 1
78BO1A M.P. Bornand et al, Nucl. Phys. A294 (1978) 492
79AJ01 F. Ajzenberg-Selove, Nucl. Phys. A320 (1979) 1
83BR1B Bromley, Nucl. Phys. A400 (1983) 3c
83KU17 N. Kumar, Nucl. Phys. A410 (1983) 50
84AJ01 F. Ajzenberg-Selove, Nucl. Phys. A413 (1984) 1

61
84DO1A Donnelly and Sick, Rev. Mod. Phys. 56 (1984) 461
84FE1A Ferch et al, Indc (Ccp)-221/L (1984) 18
84NE1A Nemets, Rudchik and Chuvilski, in Alma Ata 84 (1984) 334
84PA1B Pasechnik et al, in Alma Ata 84 (1984) 288
84SH1E Shvedov, Dobrikov and Nemets, in Alma Ata 84 (1984) 332
85BA1K Barit, Balashko, Dulkov and Zuev, in Leningrad 85 (1985) 307
85ST1A Stibunov, in Leningrad 85 (1985) 341
86AJ04 F. Ajzenberg-Selove, Nucl. Phys. A460 (1986) 1
86AN26 B. Antolkovic, G. Paic and K. Kadija, Few-Body Syst. 1 (1986) 159
86BA2G Barlamov, Ishkanov, Chernyaev and Eramzhian, in Kharkov 86 (1986) 345
86BR1N Bruno et al, Few-Body Syst. Suppl. (Austria) 1 (1986) 211
86DO1K Doleschall et al, Few-Body Syst. Suppl. (Austria) 1 (1986) 206
86MO1G Mondragón and Hernández, in Harrogate (1986) B10
86RO1M Roy et al, in Harrogate (1986) C225
86SH1Q Shimoda et al, in Harrogate (1986) C159
86VU1A Vuaridel et al, in Harrogate (1986) C71
87AJ02 F. Ajzenberg-Selove, Nucl. Phys. A475 (1987) 1
87GO1S Goryunov et al, in Jurmala (1987) 474
87KO1X V.V. Komarov, A.M. Green, A.M. Popova and V.L. Shablov, Mod. Phys. Lett. A2 (1987) 81
87LE1N D.R. Lehman, AIP Conf. Proc. 162 (1987) 131
87MO1I Mondragón and Hernández, in Leuven (1988) 794
87NA1I Naumenko et al, in Jurmala (1987) 370

69
87VA1N Van Der Steenhoven et al, in Panic 87 (1987) 618
88FE06 D. Ferenc, B. Antolkovic and G. Paic, Fizika 20 (1988) 77
88HA2C S.S. Hanna, in Novosibirsk (1988) 418
88KO1C Kozchyz, Mashkarov and Rudchik, in Baku (1988) 350

72
88MO1I A. Mondragón and E. Hernández, in Belgium (1988) 794

73
89AR02 T. A. Arakelyan, L. S. Davtyan and S. G. Matinyan, Yad. Fiz. 49 (1989) 86
89BO1N Bochkarev et al, in Tashkent (1989) 334
89CH2F L. Chatterjee, Indian J. Pure Applied Phys. 27 (1989) 787
89DO1B B. Doyle, B. Goulard and N.C. Mukhopadhyay, in Wein 89 (1989) 673

89RA17 P. Raghavan, At. Data Nucl. Data Tables 42 (1989) 189

89RA1G J. Rapaport, in Santa Fe 88 (1989) 186

89RE1G H. Rebel, in Calcutta (1989) 364
89TR09 V.A. Tryasuchev, Yad. Fiz. 49 (1989) 1056
90AJ01 F. Ajzenberg-Selove, Nucl. Phys. A506 (1990) 1

90DA1H Dasgupta and Mandal, in Panic XII (1990) Paper II-41

90DAZK B.V. Danilin and N.B. Shulgina, in Leningrad 90 (1990) 227

90EIO1 A.M. Eiro and F.D. Santos, J. Phys. G16 (1990) 1139

90GH1E Ghio et al, in Panic XII (1990) Paper I-77

78
90HU09 J. Hufner and V. Kitipova, Nucl. Phys. A517 (1990) 571
90JO1D Jodice et al, in Panic XII (1990) Paper I-76
90KAZH S. Kato, N. Matsuoka, K. Hosono, T. Noro, M. Yosoi and K. Shraue, Osaka
 51 (1990) 240
 A517 (1990) 221
90KU16 V.I. Kukulin, V.M. Krasnopolsky, E.V. Kuznetsova and J. Horacek, Czech. J.
90KU23 A.V. Kuznichenko, A.S. Molev and G.M. Onishchenko, Izv. Akad. Nauk SSSR,
90LA06 J.B.J.M. Lanen, H.P. Blok, E. Jans, L. Lapikas, G. van der Steenhoven and
 P.K.A. de Witt Huberts, Phys. Rev. Lett. 64 (1990) 2250
90LE24 D.R. Lehman, J. Phys. IV, Colloq. C-6 (1990) 47
90MAZG Yu.G. Mashkarov, E.I. Koschch, N.T. Burtebaev, A.D. Duisebaev, G.N. Ivanov,
 V.I. Kanasheich, V.A. Khaimin and V.V. Adodin, in Leningrad 90 (1990) 318
90MI10 J. Mildenberger, O. Hausser, R.G. Jeppesen, B. Larson, B. Pointon, A. Trudel,
 732
90NAZZ A. Nadasen, B. Ashe, J. Brusoe, P. Schwandt, J. Winfield, G. Yoo, F.D. Becz
 1667
90VAZM V.V. Varlamov, B.S. Ishkhanov and A.P. Chernyaev, in Leningrad 90 (1990) 289

90WA1J Wagner, Prog. Part. Nucl. Phys. 24 (1990) 17

91BO1R E.T. Boschitz, Few-Body Syst. Suppl. 5 (1991) 191

81

91KR02 V.M. Krasnopolsky, V.I. Kukulin, E.V. Kuznetsova, J. Horacek and N.M. Queen, Phys. Rev. C43 (1991) 822

82
91UN02 M. Unkelbach and H.M. Hofmann, Few-Body Syst. 11 (1991) 143
91YO1C H. Yokota, in Tokyo 90 (1991) 385
92BLZX L.D. Blokhintsev, V.I. Kukulin, E.V. Kuznetsova, A.A. Sakharuk and D.A. Savin, in Adelaide (1992) 74
92JU1B K. Junker, in Penyscola (1992) 199
92LOZX M.A.K. Lodhi, P.M. Giancana and M.Y. Sulaiman, in Adelaide (1992) 100

84

N.B. Shul’gina and B.V. Danilin, in Wein 92 (1993) 603

94EL08 S. El-Sharkawy, Phys. Scr. 50 (1994) 97
94FU17 Y. Fujiwara and Y.C. Tang, Few-Body Syst. 16 (1994) 91

95MU1J A.M. Mukhamedzhanov and R.E. Tribble, Few-Body Syst. Suppl. 8 (1995) 335

94
97KU14 E.V. Kuznetsova and V.I. Kukulin, Yad. Fiz. 60 (1997) 608; Phys. Atomic Nucl. 60 (1997) 528

95

96

98GO1J S.A. Goncharov, in Dubna 97 (1998) 114

97

P. Egelhof, Pramana 53 (1999) 365

A. Volya, S. Pratt and V. Zelevinsky, Phys. Rev. C59 (1999) 305

99ZHZN J. Zhang, B. Yu and Y. Han, INDC(CPR)-049/L (1999) 35

00AB25 B.M. Abramov, Yu.A. Borodin, S.A. Bulychiev, I.A. Dukhovskoy, A.P.
Krutenkova, V.V. Kulikov, M.A. Matsyuk, I.A. Radkevich, E.N. Turdakina and
359

00AL04 D. Aleksandrov, T. Aumann, L. Axelsson, T. Baumann, M.J.G. Borge, L.V.
(2000) 51

00AN15 M. Andersson, Chr. Bargholtz, K. Fransson, L. Holmberg, K. Lindh, L. Martens-

00AN31 M. Andersson, Chr. Bargholtz, K. Fransson, L. Holmberg, K. Lindh, L. Martens-

00ANZX L.N. Andronenko, M.N. Andronenko, D.M. Selerstov and W. Neubert, in Croa-
tia (2000) 370

00AV02 M. Avrigeanu, G.S. Anagnostatos, A.N. Antonov and J. Giapitzakis, Phys. Rev.
C62 (2000) 017001

00BO45 D.V. Bolotov, O.M. Knyazkov, I.N. Kuchtina and S.A. Fayans, Yad. Fiz. 63

00DOZY A.V. Dobrovolsky, G.D. Alkhazov, M.N. Andronenko, A. Bauchet, P. Egelhof,
S. Fritz, G.E. Gavrilo, H. Geissel, C. Gross, A.V. Khanzadeev et al, GSI 2000-1
(2000) 26

63 (2000) 1881

00GO35 O.K. Gorpinich, O.M. Povoroznik, A.P. Pshedzsal and B.G. Struzhko, Bull.
100

100
01AU06 S.M. Austin and D.J. Mercer, Nucl. Phys. A688 (2001) 70c

101

01EG02 P. Egelhof, for the IKAR Collaboration, Prog. Part. Nucl. Phys. 46 (2001) 307

01NA18 S. Nakayama, Nucl. Phys. A687 (2001) 84c

102