\[^3\text{He} \text{ NMR experiments at } \sim 7 \text{ G} \]

H. Gao, R. Golub, C. Swank, Qiang Ye

November 7, 2009

1 \(^3\text{He} \text{ measurement using spin-echo pulse sequence} \]

Figure 1: A saddle coil (RF coil) \& Helmholtz-coil (receiver coil) with the 2" sphere \(^3\text{He} \text{ cell} \]

Figure 1 shows the current experimental setup. The pickup coil has a inductance of \(\sim 2.4 \text{ H} \). A inductor of \(\sim 110 \text{ mH} \) is connected in series to tune the resonance frequency around 24 kHz.

\(T_2 \) measurements:

- Run\#165: \(\pi/2 \) pulse, 421.9 us, F1 amp 44, F1 attn 12. Echo time: 40ms. \(T_2 \sim 416.9 \text{ ms} \).
• Run#218: \(\pi/2 \) pulse, 415 us, F1 amp 44, F1 attn 12. Echo time: 25ms. \(T_2 \approx 428.4 \) ms.

• Run#348: \(\pi/2 \) pulse, 415 us, F1 amp 44, F1 attn 12. Echo time: 50ms. \(T_2 \approx 470.6 \) ms.

• Run#350: \(\pi/2 \) pulse, 420 us, F1 amp 44, F1 attn 12. Echo time: 50ms. \(T_2 \approx 520.9 \) ms.

A pair of gradient coils are added. The settings on the APOLLO system: 20\(\times \)20 \(< - > \) 31.8 mG/cm, 20\(\times \)31.4 \(< - > \) 50 mG/cm, 40\(\times \)31.4 \(< - > \) 100 mG/cm.

Imaging measurements:

• Run#252: 0.1 G/cm gradient always on. Sinc pulse (for selecting a band, the whole cell) for 1.542 ms, phase modulation 00000...2222...00000...2222...0000. When the pulse is on, gradient 0.1G/cm. -0.1G/cm during the ring down for 3.855 ms. 2.313 ms with 0.1G/cm after the ring down. Acquisition for 200 ms. F1 attn=7. The FWHM in the FFT graph is XXXX Hz, equal to XXXX cm.

• Run#258: 0.1 G/cm, Sech pulse (Principles of nuclear magnetic resonance spectroscopy, page 110) with complicated phase is used since it can do a better Pi pulse with the gradient. First time trying sech pulse. F1 attn=20.

• Run#260: 0.1 G/cm, sech pulse, same as 258 with F1 attn=30.

• Run#261: 0.1 G/cm, did 10 times #260 (F1 attn=30) to find out the loss per measurement. loss261.eps \(- > \) loss=0.134 (30 degrees)

The hyperbolic secant pulse is given as

\[
A_{RF}(t) = B_1 \left[\text{sech}(\beta t) \right]^{1+i\mu} \tag{1}
\]

• Where \(\beta = \frac{\pi \Delta f}{\mu} \), \(\Delta f \) is the frequency range, so our pulse time determines the frequency range. \(\mu = 5 \) gives a excellent 180° pulse[Callaghan]. In order to be used in the APOLLO, this sequence must be seperated into the absolute value and a phase by.

\[
A_{RF}(t) = |A_{RF}| e^{i\theta(t)} \tag{2}
\]

where

\[
\cos(\theta(t)) = \text{Re} \left(|\text{sech}(\beta t)|^{1+i\mu} \right) \tag{3}
\]

Diffusion coefficient measurements:
• Run#265: 0.1 G/cm gradient always on. First a 3.854 ms Sech $\pi/2$ pulse (attn=21) in Phase X. Wait for 1.927 ms. Another π pulse (attn=15.2) for 3.854 ms in Phase Y. Wait for 2.908 ms and then acquire signal for 4.8 m. Repeat “π pulse for 3.854 ms in Phase Y. Wait for 2.908 ms and then acquire signal for 4.8 m”. Using equations from XXXXX, diffusion coefficient = 1.17 cm2/s.

• Run#266: Same as 265, but with 0.05 G/cm gradient always on. Diffusion coefficient = 1.58 cm2/s.

• Run#267: Same as 265, but with 0.052 G/cm gradient always on and with the π pulse phase flipped as Y, -Y, Y, -Y.... Diffusion coefficient = 1.50 cm2/s.

With the Q-switch installed, the cable length becomes a little longer. The resonance frequency shifts from 24 kHz to 25.1 kHz.

Q switch and filter measurements:
• Run#305: 0.6 ms mute time with Q-switch (with oscilloscope disconnected), \sim8.55 degrees tip angle, 40 us long pulse, F1 amp 44, F1 attn 12. T1 measurement on a detachable cell. T1=16.3 hrs.

• Run#320: 0.75 ms mute time with Q-switch and filter with a gain of 1, \sim8.55 degrees tip angle, 40 us long pulse, F1 amp 44, F1 attn 12. T1 measurement on a detachable cell. T1=26.3 hrs.

Dilution setup measurements:
• Run#323: 0.75 ms mute time with Q-switch only (no filter), \sim8.55 degrees tip angle, 40 us long pulse, F1 amp 44, F1 attn 12. T1 measurement on the dilution setup cell. T1=220 minutes in the dilution cell after baking out.

If the 3He is let into the dilution cell directly, 51.8% of 3He will go in to the cell. Signal should be $\sim 50000 \times 0.518 = 25900$. However the APOLLO signal has dropped to ~ 19000. So $\sim 13.8\%$ 3He has lost its polarization during the transfer process.

• Run#326: no dilution, 2” spherical cell, \sim8.55 degrees tip angle, 40 us long pulse, F1 amp 44, F1 attn 12, no Q-switch, 2.5 ms mute time. signal = 43600.

• Run#327: 3He transferred to the cylindrical cell, 51.8% should be transferred. \sim8.55 degrees tip angle, 40 us long pulse, F1 amp 44, F1 attn 12, no Q-switch, 2.5 ms mute time. signal = 13302. (30.5% of run#326.)

• Run#328: 3He diluted from cylindrical cell using the 118 cc volume, 40% should be left in the cylindrical cell. \sim8.55 degrees tip angle, 40 us long pulse, F1 amp 44, F1 attn 12, no Q-switch, 2.5 ms mute time. signal = 6098. (45.8% of run#327.)

3
Run#329: 3He diluted from cylindrical cell using the 118 cc volume again, 40% should be left in the cylindrical cell. ∼8.55 degrees tip angle, 40 us long pulse, F1 amp 44, F1 attn 12, no Q-switch, 2.5 ms mute time. signal = 2582. (42.3% of run#328.)

Run#358: transfer 3He from the spherical detachable cell into the cylindrical cell. Use the 1100 cc volume to dilute it 3.5% left in the cylindrical cell. Then use 420us Pi/2 pulse to do spin-echo. See a small FFT signal ∼2163 in the first echo. No signal further. (did not use the portable magnetic field)

Run#359: transfer 3He from the spherical detachable cell into the cylindrical cell twice. 51.8% × 51.8% = 26.8% left in the cylindrical cell, polarization unknown. use 420us Pi/2 pulse to do spin-echo. See signal in the first four echos. T2=85.2 ms. (did not use the portable magnetic field)

Run#365: The Faraday cage is made! transfer 3He from the spherical detachable cell into the cylindrical cell. Dilution factor 51.8% × 80/1180 = 3.4% left in the cylindrical cell, polarization unknown. use 420us Pi/2 pulse to do spin-echo. See signal in the first decay of the Pi/2 pulse. S/N=7270/500 ∼ 15. However the Pi pulse angle seems to be off. No echo seen. (did not use the portable magnetic field)

Run#366: transfer 3He from the spherical detachable cell into the cylindrical cell twice. Dilution factor 51.8% × 51.8% = 26.8% left in the cylindrical cell, polarization unknown. use 420us Pi/2 pulse to do spin-echo. See signal in the first decay of the Pi/2 pulse. S/N=12997/500 ∼ 26. However the Pi pulse angle seems to be off. No echo seen.

Run#379, T1 measurement after dilution at 3.5%. The faraday cage is put onto it and the signal lines are two separate BNC cables. The resonance frequency is 34.8 kHz. Pi/2 pulse is 305 us, mute time 2.5ms. Here we used 30 us@34.8 kHz for the T1 measurement every 10 minutes. loss=0.0123. T1=61.4+-5.2 mins fitted with a background.

Run#384, add Q-switch to the system, J112 FET and faraday cage. Noise level ∼250. close to the minimum of the APOLLO system. mute time 0.8 ms. resonance frequency 34.5 kHz. Try to calibrate Pi/2 pulse. Close to 335 us. Spin echo using Pi/2 and Pi pulses.

Run#390, Noise level ∼250. Mute time 0.8 ms. resonance frequency 34.5 kHz. dilute by a 0.246%. 100us pulse, loss=0.108. T1=10.8+-2.6 mins.

Run#392, Noise level ∼250. Mute time 0.8 ms. resonance frequency 34.5 kHz. dilute by a 0.1%. 120us pulse, loss=0.154. set the background to be 300, T1=4.3+-0.3 mins.

Run#413, Noise level ∼250. Mute time 0.8 ms. resonance frequency 34.5 kHz. dilute by a 0.246%. 100us pulse, loss=0.108. With no background fitting, T1=347 s. With bg fitting, T1=233 s.
• Run#414, Noise level ~250. Mute time 0.8 ms. resonance frequency 34.5 kHz. dilute by a 25%. spin echo measurement. See a big signal.

• Run#415, Noise level ~250. Mute time 0.8 ms. resonance frequency 34.5 kHz. dilute by a 0.1%. 120us pulse, 10 s interval, loss=0.154. With bg fitting, T1=49 s.

References