8 Spallation Neutron Source

8.1 Activities at TUNL

8.1.1 Workshop on Fundamental Physics with Pulsed Neutron Beams

C.R. Gould, G.L. Greene¹, F. Plasil² and M. Snow³

Low-energy neutrons from reactor and spallation neutron sources are of great interest as experimental probes for the study of important questions in nuclear, particle, and astrophysics. While the primary focus of such sources are materials science studies through neutron scattering, there is a solid tradition of their productive and symbiotic use for nuclear and particle physics at facilities such as the Institut Laue Langevin, the National Institute of Standards and Technology Cold Neutron Research Facility, and the Los Alamos Neutron Science Center. There has been and continues to be an active and energetic United States community engaged in this area of research, including a number of excellent younger scientists. The scientific opportunities in this field include the elucidation of important issues in a number of areas, including:

1. Nature of time reversal non-invariance and the origin of the cosmological baryon asymmetry,

2. Nature of the electroweak theory and the origin of parity violation,

3. Nature and description of the weak interaction between quarks,

4. Origin of the heavy elements, and other issues in stellar astrophysics,

5. Investigation of quantum mechanics and precision measurements with neutron interferometry.

In each of these areas, there are specific opportunities that can best be addressed using a pulsed spallation neutron source. The proposed Spallation Neutron Source at Oak Ridge National Laboratory will provide the highest peak flux neutron source in the world and offers the United States scientific community an unmatched opportunity in nuclear, particle, and astrophysics for the next decade.

¹Los Alamos National Laboratory, Los Alamos, NM.
²Oak Ridge National Laboratory, Oak Ridge, TN.
³Indiana University Cyclotron Facility, Bloomington, IN.
To explore the opportunities associated with pulsed neutron beams, a workshop FPPNB 2000 “Fundamental Physics with Pulsed Neutron Beams” was held June 1-3, 2000 at Research Triangle Park, North Carolina.

The workshop was sponsored by four institutions: Triangle Universities Nuclear Laboratory (TUNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL) and Indiana University and the Indiana University Cyclotron Facility (IUCF). Approximately sixty scientists from the US and abroad attended the meeting. The local organizing committee consisted of Werner Tornow and Calvin Howell (Duke and TUNL), Carl Brune and Art Champagne (UNC and TUNL) and David Haase and Gary Mitchell (NC State and TUNL).

The proceedings have been published by World Scientific Publishing Company. The contents of the proceedings are listed below:

Table 8.1-1: CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword and Acknowledgment</td>
<td>v</td>
</tr>
<tr>
<td>Workshop Schedule</td>
<td>vii</td>
</tr>
<tr>
<td>Participant List</td>
<td>xi</td>
</tr>
<tr>
<td>Spallation Neutron Source with Emphasis on Target Systems</td>
<td>1</td>
</tr>
<tr>
<td>T. A. Gabriel</td>
<td></td>
</tr>
<tr>
<td>Overview of Spallation Neutron Source Physics</td>
<td>19</td>
</tr>
<tr>
<td>G. J. Russell, E. J. Pitcher, G. Mahrer, F. Mezei and P. D. Ferguson</td>
<td></td>
</tr>
<tr>
<td>The European Spallation Source Project ESS and its Particle Physics Programme</td>
<td>49</td>
</tr>
<tr>
<td>D. Dubbers</td>
<td></td>
</tr>
<tr>
<td>Fundamental Physics with Neutrons at KEK-JAERI Joint Project</td>
<td>52</td>
</tr>
<tr>
<td>Y. Masuda</td>
<td></td>
</tr>
<tr>
<td>Neutron Decay Beyond the Standard Model</td>
<td>64</td>
</tr>
<tr>
<td>P. Herczeg</td>
<td></td>
</tr>
<tr>
<td>Hadronic Parity-Non-Conservation with $\Delta S = 0$</td>
<td>87</td>
</tr>
<tr>
<td>B. Desplanques</td>
<td></td>
</tr>
<tr>
<td>Searching for T-Violating, P-Conserving New Physics with Neutrons</td>
<td>97</td>
</tr>
</tbody>
</table>

138
M.J. Ramsey-Musolf

PNC Experiments in Heavy Nuclei
G.E. Mitchell, C.A. Grossmann, L.Y. Lowe, S.L. Stephenson,
J.D. Bowman, J. Knudson, S. Penttila, S.J. Seestrom, D.A. Smith,
Y.F. Yen, V.W. Yuan, B.E. Crawford, N.R. Roberson, P.P.J. Delheij,
T. Haseyama, A. Masaite, Y. Matsuda, H. Postma and E.I. Sharapov

Symmetry Violation in Heavy Nuclei
V. Gudkov

Neutron Nuclear Astrophysics at Spallation Neutron Sources
P.E. Kochler

A New Experiment to Search for Neutron \rightarrow Antineutron Transitions at
HFIR Reactor
Yu. Kamyshkov

The Neutron Electric Dipole Moment, UCN and Superfluid He
R. Golub and S.K. Lamoreaux

Project of New Neutron EDM Measurements
A. Serebrov, A. Fomin, S. Ivanov, A. Kharitonov, I. Krasnochtchekova,
M. Lasakov, A. Murashkin, V. Mityukhlyavev, I. Potapov, M. Sazhin,
R. Taldaev, V. Varlamov, A. Vasilev, A. Zakharov, M. Dawn, F. Atchison,

Magnetic Trapping of Ultracold Neutrons: Prospects for an Improved
Measurement of the Neutron Lifetime
P.R. Huffman, A.K. Thompson, F.E. Wietfeldt, G.L. Yang, K.J. Alvine,
C.R. Brome, S.N. Dzhosyuk, C.E.H. Mattoni, R.A. Michniak, D.N. McKinsey,

A Measurement of the Neutron Beta-Asymmetry using Ultra-Cold Neutrons
A. Young, C.L. Morris, J.M. Anaya, T.J. Bowles, B. Filippone, P. Geltenbort,
R. Hill, M. Hino, S. Hoedl, G. Hogan, T. Ito, T. Kawai, K. Kirch, S. Lamoreaux,
C.Y. Liu, M. Makela, J.W. Martin, R. Mortensen, A. Pichlmaier, M. Pitt,
A. Saunders, S.J. Seestrom, A. Serebrov, D.A. Smith, B. Tipton, M. Utsuro,
R.B. Vogelaar and J. Yuan
Neutron Polarization and Polarimetry with Laser Driven 3He Spin Filters
T.E. Chupp and K.P. Coulter

Parity-Violating Neutron Spin Rotation Observable
D.M. Markoff and F.E. Wietfeldt

Measurement of the Parity Violating Asymmetry A_γ in $\bar{N} + P \rightarrow D + \gamma$

A New Approach to Measuring the Neutron Decay Correlations with Cold Neutrons at LANSCE
W.S. Wilburn, J.D. Bowman, G.L. Greene, J.S. Kapustinsky, S.I. Penttila, T.B. Smith and G.L. Jones

Comparative Numerical Analysis of the Expected Simultaneous Parity and Time Reversal Violating Effects in the Polarized Neutron Transmission Through the Polarized 139LAALO$\overline{3}$ and 131XE Targets
V.R. Skoy and G.N. Kim

The NIST-Indiana-Hamilton Polarized 3He Spin Filter Program

Workshop Summary: Fundamental Neutron Physics in the United States: An Opportunity in Nuclear, Particle, and Astrophysics for the Next Decade
G. Greene, W.M. Snow, C. Gould and F. Plasil
8.1.2 Fundamental Neutron Physics Beamlines at the Spallation Neutron Source

T.V. Cianciolo1, C.R. Gould, G.L. Greene2, P.E. Koehler1, W. Lu, F. Plasil1, and W.M. Snow3

Low-energy neutrons have been employed in a wide variety of investigations that shed light on important issues in particle physics, nuclear physics, and astrophysics. The Spallation Neutron Source (SNS) under construction at ORNL will be the highest peak-flux pulsed neutron source in the world and offers the scientific community an important and unique opportunity to carry these investigations to an unprecedented level of precision. In support of this effort, the organizers of the FPPNB2000 workshop submitted a Letter of Intent (LoI) to the SNS proposing construction of a dedicated beamline on the first target station for the purpose of pursuing fundamental neutron physics research. Earlier this year,

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure8.1-1.png}
\caption{Neutron fluxes from IB simulations of a 15 m long neutron beam line and the SNS target station one cold moderator. The maximum flux is obtained with a straight guide in the 1.0–2.2 m region feeding into a two degree bender starting in the shutter region at 2.2 m and having an overall length of 4 m. The lowest flux is for a 2 m long bender without a feeder section close to the moderator. The guide size is 10 cm wide by 12 cm high with m = 3.5 supermirror surfaces having reflectivity R\textsubscript{0m}=1.}
\end{figure}

1Oak Ridge National Laboratory, Oak Ridge, TN.
2Los Alamos National Laboratory, Los Alamos, NM.
3Indiana University, Bloomington, IN.
the LoI was favorably reviewed by the SNS Science Advisory Committee, and design work has now begun.

We are modeling a cold neutron beamline with reference to four “flagship” experiments: neutron lifetime measurements using UCN’s from a superthermal helium source, polarized neutron decay correlations, “weak” neutron spin rotation in hydrogen and helium, and “weak” neutron capture on hydrogen. The technical approach is to develop physics models for these experiments and appraise beamline requirements using standard Monte-Carlo codes like NISTASS etc. The cold beamline will view the liquid hydrogen moderator and is expected to be similar to the liquid reflectometer line already designed by the Argonne IPNS group. We will take advantage of many of the design elements that already exist. Our first major milestone will be the physics design of the cold beamline, and the approximate cost associated with it. A similar effort will be undertaken for an epithermal beamline for astrophysics experiments and symmetry experiments using polarized beams and polarized targets. The epithermal beamline is expected to view the water moderator and so should be significantly less complicated than the cold-neutron beamline. An LDRD proposal was submitted to Oak Ridge to support these efforts.