Energy Levels of Light Nuclei

\[A = 7 \]

F. Ajzenberg-Selove

University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396

Abstract: An evaluation of \(A = 5–10 \) was published in *Nuclear Physics A*413 (1984), p. 1. This version of \(A = 7 \) differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and Introductory tables have been omitted from this manuscript. Also, Reference key numbers have been changed to the NNDC/TUNL format.

(References closed June 1, 1983)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-FG02-86ER40279]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).
Table of Contents for $A = 7$

Below is a list of links for items found within the PDF document. Figures from this evaluation have been scanned in and are available on this website or via the link below.

A. Nuclides: 7H, 7He, 7Li, 7Be, 7B, 7C

B. Tables of Recommended Level Energies:

Table 7.1: Energy levels of 7He

Table 7.2: Energy levels of 7Li

Table 7.7: Energy levels of 7Be

C. References

D. Figures: 7Li, 7Be, Isobar diagram
\(^7\text{H}\)

(Not illustrated)

\(^7\text{H}\) has not been observed. Attempts have been made to detect it in the spontaneous fission of \(^{252}\text{Cf}\) (1982AL1H) and in the \(^7\text{Li}(\pi^-, \pi^+)\) reaction (1981EV01, 1981SE1J, 1981SE1B). See also (1979AJ01).

\(^7\text{He}\)

(Fig. 10)

GENERAL: (See also (1979AJ01).)

Other topics: (1979BE1H, 1981AV02, 1982AW02, 1982NG01).

1. \(^7\text{Li}(\pi^-, \gamma)^7\text{He}\)

\[Q_m = 128.36 \]

See (1979AJ01).

Table 7.1: Energy levels of \(^7\text{He}\)

<table>
<thead>
<tr>
<th>(E_x) (MeV)</th>
<th>(J^\pi; T)</th>
<th>(\Gamma_{\text{c.m.}}) (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>((\frac{3}{2})^−; \frac{3}{2})</td>
<td>160 ± 30</td>
<td>n (^a)</td>
<td>1, 2, 3, 4</td>
</tr>
</tbody>
</table>

\(^a\) \(Q_0\) for \(^7\text{Li}(t, {}^3\text{He})^7\text{He}\) is \(-11.18\) MeV. This leads to \(26.11 ± 0.03\) MeV for the atomic mass excess of \(^3\text{He}\): \(Q_m\) for \(^7\text{He}_{\text{g.s.}}\) → \(^6\text{He} + n\) is then \(0.44 ± 0.03\) MeV: see (1979AJ01).

2. \(^7\text{Li}(n, p)^7\text{He}\)

\[Q_m = -10.42 \]

At \(E_n = 14.8\) MeV a proton group is reported corresponding to \(^7\text{He}_{\text{g.s.}}\): \(\Gamma < 0.2\) MeV: see (1979AJ01). See also (1981BR1K).

3. \(^7\text{Li}(t, {}^3\text{He})^7\text{He}\)

\[Q_m = -11.18 \]
The 3He particles to the ground state of 7He have been observed at $E_x = 22$ MeV. The width of the ground state is 160 ± 30 keV; for a radius of 2.2 fm and $l_n = 1$, this width is 0.22 of the Wigner limit. The angular distribution is peaked in the forward direction. No other states of 7He were observed for $E_x < 2.4$ MeV; see (1979AJ01).

4. 9Be(6Li, 8B)7He

$Q_m = -23.60$

At $E(^6$Li) = 80.0 and 93.3 MeV the ground state of 7He is strongly populated, indicating negative parity, as expected. There is no indication of relatively sharp states of 7He with $E_x \leq 10$ MeV (1977WE03).
GENERAL: (See also (1979AJ01).)

$\mu = +3.256424 (2) \ \text{nm}$; see (1978LEZA)

$Q = (-34 \pm 6) \ e \cdot \text{mb}$; see (1980EG03). See also (1978LEZA, 1982MO13).

$B(\text{E2: } ^{3/2}_- \rightarrow ^{1/2}^-) = 8.3 \pm 0.6 \ e^2 \cdot \text{fm}^4$; see (1973HA47). See also (1979AJ01) and (1982BA52, 1982PE06).

1. $^3\text{H(}\alpha, \gamma)^7\text{Li}$

$Q_m = 2.4681$

Excitation functions and angular distributions have been studied for $E_\alpha = 0.5$ to 1.9 MeV. The cross section rises smoothly as expected for a direct-capture process: see (1966LA04). For calculations of the low-energy S-factor see (1981WI04). See also (1979YA1C; astrophysics).

2. $^3\text{H(}\alpha, \text{n})^6\text{Li}$

$Q_m = 4.7820 \quad E_b = 2.4681$

The cross section for this reaction has been measured for $E_\alpha = 11$ to 18 MeV: the data show the effect of $^7\text{Li}^*$(7.46) and indicate a broad resonance near $E_\alpha = 16.8$ MeV [$^7\text{Li}^*$(9.6)]. The level parameters derived from this reaction and from reaction 3 are displayed in Table 7.3. The yield of ^6Li ions at 0° (lab) has also been measured for $E_\alpha = 11.310$ to 11.930 MeV with 2–3% accuracy: the data were then reduced to obtain the cm differential cross sections at 0° and 180° for the inverse reaction in the energy region corresponding to formation of $^7\text{Li}^*$(7.46) (1977BR21). See also (1977KN1A).
Table 7.2: Energy levels of 7Li

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>τ_m or $\Gamma_{c.m.}$ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>$\frac{3}{2}^-$; $\frac{1}{2}$</td>
<td>$\tau_m = 105 \pm 5$ fsec a</td>
<td>stable</td>
<td>1, 4, 5, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48</td>
</tr>
<tr>
<td>0.477612 ± 0.003</td>
<td>$\frac{1}{2}^-$; $\frac{1}{2}$</td>
<td>$\Gamma = 93 \pm 8$ keV</td>
<td>γ</td>
<td>4, 5, 6, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 24, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 41, 43, 45, 46, 47, 48</td>
</tr>
<tr>
<td>4.630 ± 9</td>
<td>$\frac{7}{2}^-$; $\frac{1}{2}$</td>
<td></td>
<td>t, α</td>
<td>3, 5, 11, 12, 15, 16, 17, 18, 19, 20, 21, 31, 32, 34, 39, 42, 47</td>
</tr>
<tr>
<td>6.68 ± 50</td>
<td>$\frac{5}{2}^-$; $\frac{1}{2}$</td>
<td>875^{+200}_{-100}</td>
<td>t, α</td>
<td>3, 12, 15, 16, 17, 18, 32, 39</td>
</tr>
<tr>
<td>7.4597 ± 1.2</td>
<td>$\frac{5}{2}^-$; $\frac{1}{2}$</td>
<td>89 ± 7</td>
<td>n, t, α</td>
<td>2, 3, 7, 10, 12, 13, 15, 16, 18, 21, 29, 31, 32, 39</td>
</tr>
<tr>
<td>9.67 ± 100 b</td>
<td>$\frac{7}{2}^-$; $\frac{1}{2}$</td>
<td>≈ 400</td>
<td>n, t, α</td>
<td>2, 3, 7, 12, 16, 18, 32</td>
</tr>
<tr>
<td>9.85</td>
<td>$\frac{3}{2}^-$; $\frac{1}{2}$</td>
<td>≈ 1200</td>
<td>n, α</td>
<td>7, 10, 29</td>
</tr>
<tr>
<td>11.24 ± 30</td>
<td>$\frac{3}{2}^-$; $\frac{3}{2}$</td>
<td>260 ± 35</td>
<td>n, p</td>
<td>7, 8, 15, 31</td>
</tr>
</tbody>
</table>

a See Table 7.2 in (1979AJ01) and Table 7.5.

b See also reactions 7 and 13 for additional states.
Table 7.3: 7Li levels from 3H + 4He a

<table>
<thead>
<tr>
<th>E_x (MeV + keV)</th>
<th>J^π</th>
<th>l_α</th>
<th>LS term</th>
<th>R (fm)</th>
<th>θ^2_α b</th>
<th>$\theta^2_{n_0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.65 ± 20</td>
<td>37−</td>
<td>3</td>
<td>$^2F_{7/2}$</td>
<td>4.0</td>
<td>0.57 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>6.64 ± 100</td>
<td>37−</td>
<td>3</td>
<td>$^2F_{5/2}$</td>
<td>4.0</td>
<td>1.36 ± 0.13</td>
<td>0.000 ± 0.002</td>
</tr>
<tr>
<td>6.79 ± 90</td>
<td>37−</td>
<td>3</td>
<td>$^2F_{5/2}$</td>
<td>4.4</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>7.47 ± 30</td>
<td>37−</td>
<td>3</td>
<td>$^4P_{5/2}$</td>
<td>4.0</td>
<td>0.011 ± 0.001</td>
<td>0.26 ± 0.02</td>
</tr>
<tr>
<td>9.67 ± 100</td>
<td>37−</td>
<td>3</td>
<td>$^4D_{7/2}$</td>
<td>4.0</td>
<td>0.53 ± 0.22</td>
<td>2.3 ± 0.7 c</td>
</tr>
</tbody>
</table>

a For references see Table 7.3 in (1979AJ01).

b $\gamma^2/(\frac{1}{2}\hbar^2/\mu a^2)$.

c $\theta^2_{n_1}$ to 6Li*(2.19).

3. 3H(α, α)3H

The excitation curves for the elastic scattering show the effects of 7Li*(4.63, 6.68, 7.46, 9.67). The derived level parameters are displayed in Table 7.3. Angular distributions have been studied for $E_\alpha = 2.13$ to 2.98 MeV [see (1979AJ01)] and $E_t = 6.0$ to 17 MeV (1977BR21, 1980JA1F, 1981JA1G; very accurate $\sigma(\theta)$). Analyzing power measurements are reported for $E_t = 6.0$ to 17 MeV (1976HA17, 1980JA1F, 1981JA1G): a polarization extremum ($A_y = -1$) occurs near $E_t = 11.1$ MeV, $\theta_{c.m.} = 95^\circ$. There is some suggestion for a $J^\pi = \frac{1}{2}^-$ state in 7Li at $E_x = 9.6$ MeV (1981JA1G; N. Jarmie, private communication): see also reaction 7. The breakup of 7Li [at kinematic energy of 70 MeV] into $\alpha + t$ proceeds sequentially via 7Li*(4.63) when 12C is bombarded. When 208Pb is hit by 7Li, both this sequential process and breakup in the nuclear field of the 208Pb nucleus appear to occur (1981SH01). See also (1977KN1A, 1978BR1A) and (1977HA1E, 1978MI13, 1978TA1A, 1978TH1A, 1979LE1B, 1979WI1B, 1981AO02, 1981BE01, 1981FR1N, 1982FU01, 1982KA11, 1983AO03; theor.).

4. 4He(α, p)7Li

$Q_m = -17.3459$

Angular distributions have been reported at $E_\alpha = 39.9$ to 49.5 MeV (p_0, p_1) and 60.2, 92.4 and 140.0 MeV (p_{0+1}) [see (1979AJ01)] and at $E_\alpha = 37.5$ to 43.0 MeV (1982SL01; p_0, p_1). See also (1978GL03, 1979AL1F), (1982RA1M; astrophys.) and 8Be.

5. 4He(3He, π^+)7Li

$Q_m = -137.118$

At $E(^3$He) = 266.5 and 280.5 MeV, 7Li*(0 + 0.48, 4.63) are populated (1982BI06). See also (1982GE1C, 1982LE1L) and (1982KL1B; theor.).
6. $^6\text{Li}(n, \gamma)^7\text{Li}$

The thermal capture cross section is 38.5 ± 3.0 mb (1981MUZQ). Gamma rays are observed corresponding to transitions to $^7\text{Li}^*(0, 0.48)$ with branching ratios of (61 ± 3) and (39 ± 2)%. $^7\text{Li}^*(4.63)$ is not involved in the decay [$\lesssim 2\%$]: see (1979AJ01). See also (1980BA34; theor.).

7. $^6\text{Li}(n, n)^6\text{Li}$

The scattering amplitude (bound) $a = 2.2 \pm 0.25 i$ fm, $\sigma_{\text{free}} = 0.45 \pm 0.08$ b. The thermal scattering cross section $\approx 0.75 \pm 0.02$ b (1981MUZQ). The total cross section has been measured from $E_n = 4$ eV to 49.6 MeV [see (1976GAYV)]. Recent measurements include those of (1982SM02: $E_n = 0.1$ to 0.8 MeV) and (1979LA1D, 1980KE1L; $E_n = 2.99$ to 49.64 MeV) and the integrated cross sections of (1979KN01; n0; 4.1 to 7.5 MeV) and (1979HO11; n0 and n1; 7.47 to 13.94 MeV). A pronounced resonance occurs at $E_n = 244.5 \pm 1.0$ keV with a peak cross section of 11.2 ± 0.2 b (1982SM02): see Table 7.4 [$E_\gamma = 7459.7 \pm 1.2$ keV]. No other clearly defined resonance is observed to $E_n = 49.6$ MeV although the total cross section exhibits a broad maximum at $E_n \approx 4.5$ MeV J.A. Harvey and N.W. Hill, private communication). The analyzing power has been measured for $E_n = 1.48$ to 4.38 MeV (1982DR06) and at 2 to 5 MeV (1975HO01, 1981CH12). An R-matrix analysis of the latter results as well as σ_t, $\sigma(\theta)$ and (n, α) results leads to a set of parameters for ^7Li states. These include a bound $\frac{1^+}{2}$ and an unbound $\frac{3^+}{2}$ state (at 9.38 ± 0.03 MeV) [neither reported in other reactions] as well as the $\frac{5}{2}^-$ state at 7.46 MeV [$\Gamma_\alpha = 33 \pm 1$ keV, reduced width 0.96 ± 0.01 MeV], a $\frac{7}{2}^-$ state at 9.16 ± 0.14 MeV [$\Gamma_\alpha = 2.09 \pm 0.18$ MeV, $\gamma^2 = 0.13 \pm 0.05$ MeV] and a $\frac{1}{2}^-$ state at 9.74 ± 0.05 MeV [no significant Γ_α, $\gamma^2 = 1.87 \pm 0.18$ MeV] (1981CH12). Another recent R-matrix analysis (1983KN1G) suggests an unbound $\frac{1^+}{2}$ state at 8.81 MeV, a $\frac{3^+}{2}$ state at 9.97 MeV and a $\frac{1}{2}^-$ state at 10.31 MeV, in addition to the previously known states. The spectroscopic factors for the $l = 0$ decay to $^6\text{Li}_{g.s.}$ are $S = 0.2$ and 0.8 for $^7\text{Li}^*(8.81, 9.97)$. The states suggested by (1983KN1G) are very broad and cannot be seen directly in reaction or compound nucleus cross-section work (see also reaction 13). The two positive-parity states in ^7Li are consistent with the $^6\text{Li} + n$ scattering and reaction cross sections and provide an explanation for the anisotropy of the $^6\text{Li}(n, t)\alpha$ reaction at low energies (1983KN1G). See also (1982ST15; theor.).

The excitation function for 3.56 MeV γ-rays exhibits an anomaly, also seen in the (n, p) reaction (reaction 8). The data are well fitted assuming $E_{\text{res}} = 3.50$ and 4.60 MeV [$E_\gamma = 10.25 \pm 0.10$ and 11.19 ± 0.05 MeV], $T = \frac{1}{2}$ and $\frac{3}{2}$, $\Gamma_{\text{c.m.}} = 1.40 \pm 0.10$ and 0.27 ± 0.05 MeV, respectively; both $J^\pi = \frac{5}{2}^-$. The reduced widths for the $T = \frac{3}{2}$ state [$^7\text{Li}^*(11.19)$] are $\theta_\alpha^2 = 2 \times 10^{-4}$, $\theta_\nu^2 = 0.16$ [to $^6\text{Li}^*(3.56)$] and $\theta_p^2 = 0.09$: see also (1979AJ01) for a discussion of these and other (unpublished) data.

Table 7.4: Resonance parameters for 7.5-7.2 MeV levels in 7Li and 7Be a

<table>
<thead>
<tr>
<th>Reaction</th>
<th>6Li + n</th>
<th>6Li + p</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_r (keV, lab)</td>
<td>262 b</td>
<td>1840</td>
</tr>
<tr>
<td>$\Gamma(E_r)$ (keV, c.m.)</td>
<td>154</td>
<td>836</td>
</tr>
<tr>
<td>E_λ (keV above g.s.)</td>
<td>7700</td>
<td>7580</td>
</tr>
<tr>
<td>$\Gamma_{n,p}(E_r)$ (keV, c.m.)</td>
<td>118</td>
<td>798</td>
</tr>
<tr>
<td>radius (n, p) in fm</td>
<td>3.94</td>
<td>4.08</td>
</tr>
<tr>
<td>$\gamma_{n,p}^2$ (MeV · fm)</td>
<td>4.85</td>
<td>5.02</td>
</tr>
<tr>
<td>$\theta_{n,p}^2$</td>
<td>0.26</td>
<td>0.28</td>
</tr>
<tr>
<td>$\Gamma_\alpha(E_r)$ (keV, c.m.)</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>radius (α) in fm</td>
<td>4.39</td>
<td>4.39</td>
</tr>
<tr>
<td>γ_{α}^2 (MeV · fm)</td>
<td>0.101</td>
<td>0.101</td>
</tr>
<tr>
<td>θ_{α}^2</td>
<td>0.012</td>
<td>0.012</td>
</tr>
</tbody>
</table>

a These states are believed to have a $^4P_{5/2}$ character, consistent with their large θ_n^2 and θ_p^2. For references see Table 7.4 in (1979AJ01).

b 244.5 ± 1.0 keV (1982SM02). See also (1981CH12).

8. (a) 6Li(n, 2n)5Li $Q_m = -5.66$ $E_b = 7.2501$
 (b) 6Li(n, p)6He $Q_m = -2.724$

For reaction (a) see (1976GO12). The excitation function, measured from threshold to $E_n = 8.9$ MeV, exhibits an anomaly at $E_n = 4.6$ MeV. The excitation function, at forward angles, of p$_0$ is approximately constant for $E_n = 4.4$ to 7.25 MeV: see (1979AJ01). See also 6He, (1980MI02) and (1982SH1K; applied).

9. 6Li(n, d)5He $Q_m = -2.37$ $E_b = 7.2501$

The excitation function, at forward angles, of deuterons increases monotonically for $E_n = 5.4$ to 6.8 MeV: see (1979AJ01), 5He and (1982SH1K).

10. 6Li(n, α)3H $Q_m = 4.7820$ $E_b = 7.2501$
The isotopic thermal cross section is 940 ± 4 b; see (1981MIZQ). See also (1981EN01). Below 5 keV, the total cross section is given by $\sigma = (149.5/\sqrt{E} \text{ (eV)}) + 0.696$ b; see (1979AJ01). See also (1981IN1B). The $1/\nu$ dependence of the cross section (strong $l = 0$ waves) is not understood in terms of the known level structure of 7Li; see e.g. (1982SM02). In the 1 eV to 10 keV energy region, the ORNL results give an energy dependence for the asymmetry in the forward-to-backward 66° cone (lab) of the form $A = 1 + 0.0055\sqrt{E_n}$, where E_n is the energy in eV (J.A. Harvey and I.G. Schroder, private communication). See, however, reaction 7.

A resonance occurs at $E_n = 241 \pm 3$ keV with $\sigma_{\text{max}} = 3.15 \pm 0.08$ b (1978LA23; $E_n = 3$ to 800 keV), 3.36 ± 0.6 b (1978RE1B; $E_n = 80$ to 470 keV). The resonance is formed by p-waves, $J^\pi = \frac{3}{2}^-$, and has a large neutron width and a small α-width: see Table 7.4. Above the resonance the cross section decreases monotonically to $E_n = 18.2$ MeV (1983BA17), except for a small bump near $E_n \approx 1.8$ MeV [see (1976GAYV, 1979AJ01)] and an inflection near $E_n = 3.5$ MeV, corresponding, presumably, to the anomaly reported in $(n, n'\gamma)$–see reaction 7–$[^7\text{Li}^*(10.25), J^\pi = \frac{3}{2}^-, T = \frac{1}{2}]$ (1979BA37; $E_n = 2.2$ to 9.7 MeV). See also (1980BA39).

Angular distributions have been measured at many energies in the range $E_n = 0.1$ to 7.3 MeV [see (1979AJ01)], 2 and 24 keV (1979ST03), 2.0 to 3.5 MeV (1982KNZZ), 2.16 to 9.66 MeV (1980BA39) and at 14.1 MeV (1982HI06). See also (1977HA1J).

(1979BO1E) report a right-left asymmetry for polarized thermal neutrons of $0.95 \pm 0.4 \times 10^{-4}$. Polarization measurements are reported by (1977KA06) for $E_n = 0.2$ to 2.4 MeV; the data suggest interference between s-waves and the p-wave resonance at 0.25 MeV. Interference between this $\frac{3}{2}^-$ state and a broad $\frac{5}{2}^-$ state 2 MeV higher also appears to contribute. At the higher energies A_φ is close to +0.9 near 90$^\circ$ and varies slowly with E_n (1977KA06). See also (1982KNZZ).

11. $^6\text{Li}(p, \pi^+)^7\text{Li}$ \hspace{2cm} $Q_m = -133.100$

At $E_p = 600$ MeV, the reaction preferentially excites $^7\text{Li}^*(4.63)$. Angular distributions have been obtained for the pions to $^7\text{Li}^*(0, 0.48, 4.63)$ at $E_p = 600$ MeV (1977BA37) and 800 MeV (1981NA1C). The $T = \frac{3}{2}$ state $^7\text{Li}^*(11.24)$ is not observed (1977BA37). See also (1980KE1D, 1981WI1F, 1982LE1L, 1982NA1K, 1982LO1B) and (1979ME2A, 1980WH1A).

12. (a) $^6\text{Li}(d, p)^7\text{Li}$ \hspace{2cm} $Q_m = 5.0255$

(b) $^6\text{Li}(d, np)^6\text{Li}$ \hspace{2cm} $Q_m = -2.22458$

(c) $^6\text{Li}(d, pt)^4\text{He}$ \hspace{2cm} $Q_m = 2.5574$

Angular distributions of proton groups have been studied for $E_d = 0.12$ to 15 MeV [see (1966LA04, 1974AJ01, 1979AJ01)] and at 698 MeV (1981BO03; $p_0 \rightarrow p_3$). $S = 0.90$ and
1.15 for $^7\text{Li}^*(0, 0.48)$ [DWBA analysis]; J^π of $^7\text{Li}^*(0.48)$ is 1^{-}. The two higher states have $E_x = 4.630 \pm 0.009$ and 7.464 ± 0.010 MeV, $\Gamma_{\text{c.m.}} = 93 \pm 8$ and 91 ± 8 keV. $^7\text{Li}^*(7.46)$ appears to be a ^2P state: see (1974AJ01). Reaction (b) at $E_d = 10$ MeV appears to proceed via $^7\text{Li}^*(7.46)$ and possibly $^7\text{Li}^*(9.6) [\Gamma = 0.5 \pm 0.1$ MeV]. Reaction (c) strongly involves $^7\text{Li}^*(4.63, 7.46)$ ($E_d = 7.5 \rightarrow 10.5$ MeV): see (1979AJ01). See also (1979HO04). For the breakup involving ^3He emission see (1979HO04). See also ^8Be, (1981CE04) and (1979ME2A, 1980WH1A, 1982LO1B).

13. (a) $^7\text{Li}(\gamma, n)^6\text{Li}$
 $Q_m = -7.2501$
(b) $^7\text{Li}(\gamma, 2n)^5\text{Li}$
 $Q_m = -12.91$
(c) $^7\text{Li}(\gamma, p)^6\text{He}$
 $Q_m = -9.975$
(d) $^7\text{Li}(\gamma, pn)^5\text{He}$
 $Q_m = -11.84$
(e) $^7\text{Li}(\gamma, d)^5\text{He}$
 $Q_m = -9.62$
(f) $^7\text{Li}(\gamma, t)^4\text{He}$
 $Q_m = -2.4681$
(g) $^7\text{Li}(\gamma, pt)^3\text{H}$
 $Q_m = -22.2821$

The total photoneutron cross section rises sharply from 10 MeV to reach a broad plateau at about 15 mb from 14 to 20 MeV, decreases more slowly to about 0.5 mb at 25 MeV and then decreases further to about 0.3 mb at $E_\gamma = 30$ MeV (monoenergetic photons): there are indications of weak structure throughout the entire region. Differential cross sections for n_0 and n_1 have been reported for $E_\gamma = 7$ to 25 MeV. The integrated cross section to 23 MeV is 39 ± 4 MeV \cdot mb for the n_0 transition and 17 ± 4 MeV \cdot mb for the n_1 transition: together these account for 0.4 of the exchange augmented dipole sum of ^7Li: see (1979AJ01). The integrated cross section for formation of $^6\text{Li}^*(3.56)$ is 4 ± 1 MeV \cdot mb to 30 MeV and 11 ± 3 MeV \cdot mb to 55 MeV (1978DE13).

The total absorption cross section for natural Li in the range 10 to 340 MeV shows a broad peak at ≈ 30 MeV ($\sigma_{\text{max}} \approx 3$ mb), a minimum centered at ≈ 150 MeV at ≈ 0.3 mb and a fairly smooth increase in cross section to ≈ 3 mb at ≈ 320 MeV (1979AH1A, 1979ZI1A). See also the references in (1979AJ01).

The cross section for the (γ, p) reaction (reaction (c)) shows a maximum at ≈ 15.6 MeV with a width of ≈ 4 MeV: see (1974AJ01). It then decreases fairly smoothly to 27 MeV (1979JU02). The integrated cross section for $11 \rightarrow 28$ MeV is 13.2 ± 2.0 MeV \cdot mb (1979JU02). For the earlier work see (1979AJ01). Differential cross sections for the $(\gamma, n_0 + n_2)$ and (γ, p_0) processes are reported by (1983SE07; $E_\gamma = 60$ to 120 MeV). Reaction (e) has been studied in the giant resonance reaction with $E_{\text{bs}} \lesssim 30$ MeV. Deuteron groups to $^3\text{He}_{g.s.}$ and possibly to the first excited state are reported. States of ^7Li with $E_x = 25 - 30$ MeV may be involved when $E_{\text{bs}} = 37$ to 50 MeV is used: see (1979AJ01). See also (1979JU02, 1982KIZW).

The cross section for reaction (f) at 90$^\circ$ displays a broad resonance at $E \approx 7.7$ MeV ($\Gamma = 7.2$ MeV) with an integrated cross section of 6.2 MeV \cdot mb, a plateau for $12 \rightarrow 22$ MeV (at ≈ 0.6 the cross section at 7.7 MeV) and a gradual decrease to 48 MeV. The (γ, t) cross section integrated from threshold to 50 MeV is 8.1 MeV \cdot mb (1979SK05; monoenergetic photons; angular distributions).

14. 7Li(γ, γ)7Li*

See Table 7.4 in (1966LA04) [summary of early measurements] for τ_m of 7Li*(0.48) = 107 ± 5 fsec. See also (1980IS1E, 1981IS06) and (1983ZH1D); theor.).

15. (a) 7Li(e, e')7Li*

(b) 7Li(e, ep)6He $Q_m = -9.975$

(c) 7Li(e, en)6Li $Q_m = -7.251$

(d) 7Li(e, et)4He $Q_m = -2.467$

The electric form factor measurements for $E_e = 100$ to 600 MeV are well accounted for by a simple harmonic oscillator shell model with a quadrupole contribution described by an undeformed p-shell: $R_{rms} = 2.39 ± 0.03$ fm, $|Q| = 42 ± 2.5$ mb. From results obtained for $E_e = 24.14$ to 97.19 MeV, $R_{rms} = 2.35 ± 0.10$ fm (model independent), 2.29 ± 0.04 fm (shell model). A study of the ratio of the electric charge scattering from 6Li and from 7Li as a function of (momentum transfer)2 yields $\langle r^2 \rangle_{^6Li}^{1/2}/\langle r^2 \rangle_{^7Li}^{1/2} = 1.001±0.008$. The rms radius of the ground-state magnetization density distribution, $\langle r^2 \rangle_{^6Li}^{1/2} = 2.98 ± 0.05$ fm. From the ratio of transverse inelastic and elastic cross sections at 180°, B(M1, ↑; 0.48) = 2.50 ± 0.12 μ_N^2. The cross section for the longitudinal excitation of 7Li*(0.48) has been found from the scattering through angles of 90° to 150°, B(C2, ↑; 0.48) = 7 ± 4 fm4; see (1979AJ01) for references. The form factor for 7Li*(0.48) has been measured at $\theta = 180°$ for $0.4 < q < 0.75$ fm$^{-1}$ (1982BU09): Γ_0(M1) = (7.5 ± 1.7) × 10$^{-3}$ eV, in good agreement with earlier values. Form factors for 7Li*(0, 0.48) are also reported for $0.8 < q < 2.9$ fm$^{-1}$ (1983LI07).

Inelastic scattering studies show peaks corresponding to 7Li*(4.63, 6.68, 7.46, 11.24) in addition to 7Li*(0.48); see (1974AJ01) and Table 7.5. Quasi-elastic processes have been studied by (1978KU06; 250 → 580 MeV/c). At $E_e = 700$ MeV the proton separation spectra (reaction (b)) are similar to those observed in (p, 2p) (1978NA05). See also (1980AS02) and 6He, 6Li for reactions (b) and (c). At $E_e = 450$ to 1096 MeV (1980TI05) have studied the contributions of longitudinal and transverse components of the cross section for inelastic scattering: the effect of meson-exchange currents is observed.

Table 7.5: Levels of 7Li from 7Li(e, e$'$) a

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>$J^\pi; T^\pi$</th>
<th>Γ_{γ_0} (eV)</th>
<th>Type</th>
<th>$\Gamma_{\gamma_0}/\Gamma_W$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48</td>
<td>$\frac{1}{2}^+; \frac{1}{2}$</td>
<td>$(2.8 \pm 1.6) \times 10^{-7}$</td>
<td>E2</td>
<td>17</td>
</tr>
<tr>
<td>4.63 ± 0.05 b</td>
<td>$\frac{7}{2}^-; \frac{7}{2}$</td>
<td>$(6.30 \pm 0.31) \times 10^{-3}$</td>
<td>M1</td>
<td>2.8</td>
</tr>
<tr>
<td>6.6 ± 0.1 c</td>
<td>$\frac{5}{2}^-; \frac{5}{2}$</td>
<td>0.6 ± 0.3</td>
<td>E2 d</td>
<td></td>
</tr>
<tr>
<td>7.5 ± 0.08</td>
<td>$\frac{3}{2}^-; \frac{3}{2}$</td>
<td>0.9 ± 0.4 e</td>
<td>E2</td>
<td></td>
</tr>
</tbody>
</table>

a For a summary of $B(E2\uparrow)$ measurements, see Table 7.6 in (1966LA04) and 7Li, the “GENERAL” section. For references see (1979AJ01). See also (1982PE06, 1983LI07).

b $B(E2\uparrow)[\frac{3}{2}^- \to \frac{7}{2}^-] = 17.5 e^2 \cdot \text{fm}^4$ (1982PE06).

c $\Gamma_{\text{c.m.}} = 875^{+200}_{-100}$ keV.

d Purely longitudinal.

e From 7Li(\gamma, n).

16. 7Li(\pi, \pi$'$)7Li*

Angular distributions have been measured at $E_{\pi^+} = 49.7$ MeV (1978DY01; elastic), $E_{\pi^\pm} = 143$ MeV (1982GI01; to 7Li*(0, 0.48, 4.63, 6.68, 7.46, 9.67)) and 164.4 MeV (1979BO1F, 1979BO1G; to 7Li*(0, 0.48, 4.63, 6.68)). Total cross sections for π on Li (from which partial cross sections were then derived) have been obtained for π^+ and π^- at several energies in the range 85 \to 315 MeV (1981AS07, 1979NA04). See also (1982OS01; theor.) and the “GENERAL” section here.

17. (a) 7Li(n, n$'$)7Li*

(b) 7Li(n, nt)4He $Q_m = -2.467$

Angular distributions have been measured at $E_n = 1.5$ to 14.6 MeV [see (1979AJ01)] and at $E_n = 4.1$ to 7.5 MeV (1979KN01; n$_{0+1}$), 6.97 to 13.94 MeV (1979HO11; n$_{0+1}$, n$_{0+2}$), 8.96 to 13.94 MeV (1979HO11; n$_2$), 9.1 MeV (1977BI12; n$_{0+1}$, n$_2$) and 10 to 18 MeV (1981DA1K; n$_0$). Reaction (b) at $E_n = 14.4$ MeV proceeds primarily via 7Li*(4.63) although some involvement of 7Li*(6.68) may also occur: see (1979AJ01). See also 6Li, (1979BA1R), (1980KA1R; applications) and (1982KO1U); theor.)

18. (a) 7Li(p, p$'$)7Li*
Angular distributions of protons have been measured for $E_p = 49.8$ to 155 MeV: see (1974AJ01) and at $E_p = 24.4$ MeV (1982PE06; p_0, p_1, p_2). Inelastic proton groups have been observed corresponding to $^7\text{Li}^*(0.48, 4.63, 6.68, 7.46, 9.6 \pm 0.2)$: see (1952AJ38, 1974AJ01).

For reaction (b) see (1980CH05; 800 MeV), 6He and (1979AJ01). For reaction (c) see (1981ER10; 670 MeV) and 5He. Reaction (d) proceeds sequentially via $^7\text{Li}^*(4.63, 6.68)$. At $E_p = 100$ MeV (1977RO02) find $S_\alpha = 0.94 \pm 0.05$, using a DWIA analysis, a value close to that predicted by simple LS-coupling shell-model predictions. See also (1978LA11, 1980KI1D, 1982GO1H) and (1979AJ01). For reaction (e) see (1979AJ01) and (1982ER06; 670 MeV). See also 8Be, (1982YA1A) and (1978BA1C, 1978WO1A, 1979KI10, 1980KO1V, 1981IS11, 1982BA1W; theor.).

19. $^7\text{Li}(d, d')^7\text{Li}^*$

Angular distributions have been reported for $E_d = 1.0$ to 28 MeV: see (1974AJ01, 1979AJ01). See also 9Be.

20. $^7\text{Li}(^3\text{He}, ^3\text{He})^7\text{Li}$

Angular distributions are reported at $E(^3\text{He}) = 11$ MeV (elastic) [see (1974AJ01)], at 44.04 MeV (1979GO07; g.s.) and at $E(^3\text{He}) = 33.3$ MeV (1981BA37; $^7\text{Li}^*(0, 0.48, 4.63)$. See also 10B and (1979KA1G). At $E(^3\text{He}) = 37.5$ MeV, the three-body final states which are most strongly populated are the $^3\text{He} + \alpha + t$ and $^3\text{He} + d + ^5\text{He}$ branches. Detection of ^3He–t coincidences lead to a most probable momentum for the spectator α-particle of 60 MeV/c; the d–^3He breakup results suggest the unlikelihood of deuteron clusters in ^7Li: see (1979AJ01).

21. (a) $^7\text{Li}(\alpha, \alpha')^7\text{Li}^*$
(b) $^7\text{Li}(\alpha, 2\alpha)^3\text{H}$ $Q_m = -2.4681$

Angular distributions (reaction (a)) have been reported for $E_\alpha = 3.6$ to 29.4 MeV [see (1974AJ01)] and at 5 and 6 MeV (1982WA23). Reaction (b) has been studied at $E_\alpha = 18$ to 64.3 MeV: see (1974AJ01) and (1980KI1D, 1980ZH1A). $^7\text{Li}^*(4.63)$ is strongly involved in the sequential decay. $^7\text{Li}^*(7.46)$ may also be involved. For pion production see (1981AB04). See also (1979ST25),

22. (a) \(^{7}\)Li\(^{6}\)Li, \(^{6}\)Li\(^{7}\)Li
 (b) \(^{7}\)Li\(^{7}\)Li, \(^{7}\)Li\(^{7}\)Li

For reaction (a) see (1981GU1B; theor.). The elastic angular distribution (reaction (b)) has been studied for \(E(\text{Li}) = 4.0\) to 6.5 MeV: see (1974AJ01).

23. \(^{7}\)Li\(^{9}\)Be, \(^{9}\)Be\(^{7}\)Li

The elastic angular distribution has been measured at \(E(\text{Li}) = 34\) MeV (1977KE09).

24. (a) \(^{7}\)Li\(^{12}\)C, \(^{12}\)C\(^{7}\)Li
 (b) \(^{7}\)Li\(^{13}\)C, \(^{13}\)C\(^{7}\)Li

The elastic scattering (reaction (a)) has been studied at \(E(\text{Li}) = 4.5\) to 36 MeV [see (1975AJ02, 1979AJ01)] and at 48, 63.0, 78.7 MeV (1979ZE01, 1980ZE03; also \(^{7}\)Li*\(^{11}\)C*(0.48) [and \(^{12}\)C*(0, 4.4)]) and 89 MeV (1979BR04; and \(^{12}\)C*(0, 4.4)). For elastic scattering studies involving \(^{13}\)C see (1979AJ01, 1981AJ01). For fusion measurements and yield curves see (1982DE30, 1982TA23). See also (1981SH01) and (1979SU1F, 1981GU1B, 1982CO16; theor.).

25. (a) \(^{7}\)Li\(^{15}\)N, \(^{15}\)N\(^{7}\)Li
 (b) \(^{7}\)Li\(^{16}\)O, \(^{16}\)O\(^{7}\)Li
 (c) \(^{7}\)Li\(^{20}\)Ne, \(^{20}\)Ne\(^{7}\)Li

The elastic scattering has been studied at \(E(\text{Li}) = 28.8\) MeV (1982WO09; reaction (a)), 68 and [reaction (c)] 89 MeV (1979BR03). See also (1979AJ01, 1979VA1B), (1980KH09, 1981GU1B; theor.) and \(^{20}\)Ne in (1983AJ01).

26. (a) \(^{7}\)Li\(^{24}\)Mg, \(^{24}\)Mg\(^{7}\)Li
 (b) \(^{7}\)Li\(^{25}\)Mg, \(^{25}\)Mg\(^{7}\)Li
 (c) \(^{7}\)Li\(^{26}\)Mg, \(^{26}\)Mg\(^{7}\)Li
 (d) \(^{7}\)Li\(^{27}\)Al, \(^{27}\)Al\(^{7}\)Li
The elastic scattering has been studied at $E(^7\text{Li}) = 89$ MeV ($^{1980\text{CO11}},^{1980\text{ST06}},^{1981\text{CO05}},^{1982\text{CO16}},^{1982\text{CO18}}$), and at 27 MeV ($^{1982\text{WO09}}$; reaction (b)). See also ($^{1982\text{HN1A}},^{1982\text{TA23}}$, reaction (b)).

Angular distributions involving $^7\text{Li}^*(0, 0.48)$ and various states of ^{28}Si and ^{40}Ca have been studied at $E(^7\text{Li}) = 45$ MeV ($^{1982\text{EC01}}$). The elastic scattering (reactions (b) and (c)) has been studied at $E(^7\text{Li}) = 28$ and 34 MeV ($^{1977\text{CU02}}$), 88.7 MeV ($^{1980\text{ST06}}$) and 89 MeV ($^{1982\text{NA14}}$; also $^7\text{Li}^*(0.48)$). See also ($^{1982\text{HN1A}},^{1982\text{CO18}},^{1983\text{CO05}}$; theor.).

28. $^7\text{Be}(\gamma)^7\text{Li}$

The decay proceeds to the ground and 0.48 MeV states. The branching ratio to $^7\text{Li}^*(0.48)$ is $10.39 \pm 0.06\%$: see Table 7.6. A recent value of $15.4 \pm 0.8\%$ has been suggested by ($^{1982\text{ROZS}}$). However subsequently a number of groups have remeasured the branching ratio and find agreement with an earlier value. [In ($^{1979\text{AJ01}}$) the value of ($^{1974\text{GO26}}$) was improperly quoted; it is $(10.35 \pm 0.08)\%$.] The adopted half-life is 53.29 ± 0.07 d. Both transitions are superallowed: $\log ft = 3.32$ and 3.55 for the decays to $^7\text{Li}^*(0, 0.48)$. See ($^{1978\text{RA2A}},^{1979\text{AJ01}}$) for references.

The energy of the γ-ray is 477.605 ± 0.003 keV ($^{1978\text{HE21}}$), 477.6064 ± 0.0026 keV ($^{1983\text{KU03}}$) [E_γ derived from the mean E_γ is 477.612 ± 0.002 keV]. See also ($^{1978\text{SA1B}},^{1981\text{SA22}},^{1974\text{AJ01}},^{1979\text{HE19}},^{1980\text{VA1D}},^{1981\text{KH1E}},^{1982\text{MC1D}},^{1975\text{ZI1A}},^{1978\text{BA1E}},^{1979\text{DA1D}},^{1980\text{PE1N}},^{1981\text{BA1L}},^{1981\text{BA2G}},^{1982\text{BA80}},^{1982\text{CO1D}},^{1983\text{LI01}},^{1983\text{TR1F}}$; astrophysics) and ($^{1979\text{DE15}}$; theor.).

29. $^9\text{Be}(\pi^-, 2n)^7\text{Li}$

The capture of stopped pions has been studied in a kinematically complete experiment: $^7\text{Li}^*(0, 0.48)$ are weakly populated. Two large peaks are attributed to the excitation of $^7\text{Li}^*(7.46, 10.25)$ [see, however, Table 7.2]. The recoil momentum distributions corresponding to these peaks are rather similar and both indicate a strong $L = 0$ component ($^{1977\text{BA51}}$).

30. $^9\text{Be}(n, t)^7\text{Li}$

The capture of neutrons has been studied in a kinematically complete experiment: $^7\text{Li}^*(0, 0.48)$ are weakly populated. Two large peaks are attributed to the excitation of $^7\text{Li}^*(7.46, 10.25)$ [see, however, Table 7.2].
Table 7.6: The branching ratio of 7Be($\bar{\nu}$)7Li to 7Li*(0.48) a

<table>
<thead>
<tr>
<th>Branching ratio (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.32 ± 0.16</td>
<td>(1962TA11)</td>
</tr>
<tr>
<td>10.42 ± 0.18</td>
<td>(1973PO10)</td>
</tr>
<tr>
<td>10.35 ± 0.08</td>
<td>(1974GO26)</td>
</tr>
<tr>
<td>10.10 ± 0.45</td>
<td>(1983BA15)</td>
</tr>
<tr>
<td>10.61 ± 0.23</td>
<td>(1983DA14)</td>
</tr>
<tr>
<td>10.6 ± 0.5</td>
<td>(1983DO1M) c</td>
</tr>
<tr>
<td>10.7 ± 0.3</td>
<td>(1983FIZV)</td>
</tr>
<tr>
<td>10.7 ± 0.2</td>
<td>(1983MA34)</td>
</tr>
<tr>
<td>9.8 ± 0.5</td>
<td>(1983NO03) c</td>
</tr>
<tr>
<td>10.39 ± 0.06</td>
<td>weighted mean b</td>
</tr>
</tbody>
</table>

b Not including the preliminary value of (1983FIZV).
c And private communication.

Angular distributions of the t_0 and t_1 groups are reported at $E_n = 13.99$ MeV: see (1979AJ01). See also (1978DR03) and 10Be.

31. 9Be(p, 3He)7Li

$Q_m = -11.201$

At $E_p = 43.7$ MeV angular distributions have been obtained for the 3He particles corresponding to 7Li*(0, 0.48, 4.63, 7.46). The 7.46 MeV state is strongly excited while the mirror state in 7Be is not appreciably populated in the mirror reaction (see reaction 15 in 7Be). The angular distribution indicates that the transition to 7Li*(7.46) involves both $L = 0$ and 2, with a somewhat dominant $L = 0$ character. The $J^\pi = \frac{3}{2}^-$, $T = \frac{3}{2}$ state is located at $E_x = 11.28 \pm 0.04$ MeV, $\Gamma = 260 \pm 50$ keV: see (1979AJ01) for references. See also (1981DE1X).

32. (a) 9Be(d, α)7Li

(b) 9Be(d, t)4He4He

$Q_m = 7.152$

$Q_m = 4.6836$

Angular distributions have been measured for $E_d = 0.4$ to 27.5 MeV: see (1966LA04, 1974AJ01, 1979AJ01). A study at 11 MeV finds $\Gamma_{c.m.} = 93 \pm 25$ and 80 ± 20 keV, respectively, for 7Li*(4.63,
7.46). No evidence is found for the $T = \frac{3}{2}$ state $^7\text{Li}^*(11.25)$. In a kinematically complete study of reaction (b) at $E_d = 26.3$ MeV, $^7\text{Li}^*(4.6, 6.5 + 7.5, 9.4)$ are strongly excited. No sharp α-decaying states of ^7Li are observed with $10 < E_\alpha < 25$ MeV. Parameters for $^7\text{Li}^*(9.7)$ are $E_\alpha = 9.36 \pm 0.05$ MeV, $\Gamma = 0.8 \pm 0.2$ MeV: see (1979AJ01). See also ^8Be, ^{11}B in (1980AJ01, 1985AJ01) and (1980DE42, 1980DE43, 1980NE11, 1982LA09).

33. $^9\text{Be}(^6\text{Li}, ^8\text{Be})^7\text{Li}$

$$Q_m = 5.585$$

Angular distributions to $^7\text{Li}^*(0, 0.48)$ have been studied at $E(^6\text{Li}) = 5.5$ and 6.5 MeV: see (1979AJ01).

34. $^{10}\text{B}(n, \alpha)^7\text{Li}$

$$Q_m = 2.790$$

Angular distributions of α_0, α_1 and of α_2 at the higher energies have been measured at $E_n = 0.2$ to 14.4 MeV [see (1979AJ01)] and at 2 and 24 keV (1979ST03; α_0, α_1). See also ^{11}B in (1980AJ01), (1978LI32) and (1980MU1D; applied).

35. $^{10}\text{B}(d, ^5\text{Li})^7\text{Li}$

$$Q_m = -1.40$$

See (1982DO1E; $E_d = 13.6$ MeV).

36. $^{10}\text{B}(\alpha, ^7\text{Be})^7\text{Li}$

$$Q_m = -16.200$$

See reaction 20 in ^7Be.

37. $^{11}\text{Be}(\beta^-)^{11}\text{B}^* \rightarrow ^7\text{Li} + \alpha$

$$Q_m = 2.844$$

Delayed α-particles have been observed in the β^- decay of ^{11}Be: they are due to the decay of $^{11}\text{B}^*(9.88) \left[J^\pi = \frac{3}{2}^+ \right]$. This state decays by α-emission $87.4 \pm 1.2\%$ to the ground state of ^7Li and $12.6 \pm 1.2\%$ to $^7\text{Li}^*(0.48)$ (1981AL03). See also ^{11}Be, ^{11}B in (1985AJ01).

38. $^{11}\text{B}(d, ^6\text{Li})^7\text{Li}$

$$Q_m = -7.189$$
At $E_d = 13.6$ and 19.5 MeV angular distributions have been measured for the transitions to $^6\text{Li}_{\text{g.s.}}$ and $^7\text{Li}^*(0, 0.48)$: see ^6Li.

39. $^{11}\text{B}(\alpha, ^8\text{Be})^7\text{Li}$ \hspace{1cm} $Q_m = -8.756$

Angular distributions have been measured at $E_\alpha = 27.2$ MeV (1983DO1F; see ^8Be) and at $E_\alpha = 28.4$ and 29.0 MeV (to $^7\text{Li}^*(0, 0.48)$ and $^8\text{Be}^*(0, 2.9)$) and at 65 MeV (to $^7\text{Li}^*(0, 4.63)$). At $E_\alpha = 65$ and 72.5 MeV, $^7\text{Li}^*(0, 4.63)$ are very strongly populated while $^7\text{Li}^*(0.48, 6.68, 7.46)$ are weakly excited. See (1979AJ01) for references.

40. (a) $^{12}\text{C}(\gamma, p\alpha)^7\text{Li}$ \hspace{1cm} $Q_m = -24.6206$
 (b) $^{12}\text{C}(p, 2p\alpha)^7\text{Li}$ \hspace{1cm} $Q_m = -24.6206$

For reaction (a) see (1979KI04). For reaction (b) see (1981AU1D; astrophysics) and (1982ZH02; theor.).

41. $^{12}\text{C}(d, ^7\text{Be})^7\text{Li}$ \hspace{1cm} $Q_m = -17.539$

At $E_d = 39.8$ MeV, angular distributions have been measured for the transitions to $^7\text{Li}(0) + ^7\text{Be}(0)$, $^7\text{Li}^*(0.48) + ^7\text{Be}(0)$, $^7\text{Li}(0) + ^7\text{Be}^*(0.43)$, and $^7\text{Li}^*(0.48) + ^7\text{Be}(0.43)$. Assymetries exceeding 20% are observed in the ratio of the cross sections to $^7\text{Li}(0)$ and $^7\text{Be}(0)$: see (1979AJ01).

42. $^{12}\text{C}(\alpha, ^9\text{B})^7\text{Li}$ \hspace{1cm} $Q_m = -24.897$

At $E_\alpha = 65$ MeV this reaction proceeds via $^7\text{Li}^*(4.63)$ (1978SA26).

43. $^{12}\text{C}(^6\text{Li}, ^{11}\text{C})^7\text{Li}$ \hspace{1cm} $Q_m = -11.471$

Angular distributions have been obtained at $E(^6\text{Li}) = 36$ MeV for the transitions to $^7\text{Li}^*(0, 0.48)$: see (1979AJ01).

44. $^{13}\text{C}(p, ^7\text{Be})^7\text{Li}$ \hspace{1cm} $Q_m = -20.261$
An angular distribution involving $^7\text{Li}_{g.s.} + ^7\text{Be}_{g.s.}$ has been measured at $E_p = 45.0$ MeV: see (1974AJ01).

45. $^{13}\text{C}(d, ^8\text{Be})^7\text{Li}$
\[Q_m = -3.5875\]

At $E_d = 14.6$ MeV angular distributions are reported for the transitions to $^7\text{Li}^*(0, 0.48)$ and $^8\text{Be}_{g.s.}$: see (1979AJ01). See also (1982DO1E) and ^8Be.

46. $^{13}\text{C}(^6\text{Li}, ^{12}\text{C})^7\text{Li}$
\[Q_m = 2.304\]

At $E(^6\text{Li}) = 34$ MeV angular distributions have been measured for the transitions involving $^7\text{Li}_{g.s.} + ^{12}\text{C}_{g.s.}$, $^7\text{Li}^*_{0.48} + ^{12}\text{C}_{g.s.}$, $^7\text{Li}_{g.s.} + ^{12}\text{C}^*_{4.4}$, and $^7\text{Li}^*_{0.48} + ^{12}\text{C}^*_{4.4}$: see (1979AJ01).

47. $^{14}\text{N}(n, 2\alpha)^7\text{Li}$
\[Q_m = -8.8217\]

At $E_n = 14.1$ MeV, $^7\text{Li}^*(0, 0.48)$ are approximately equally populated. At $E_n = 18.2$ MeV, $^7\text{Li}^*(4.63)$ may be involved: see (1979AJ01).

48. (a) $^{17}\text{O}(d, ^{12}\text{C})^7\text{Li}$
\[Q_m = -2.580\]

(b) $^{18}\text{O}(d, ^{13}\text{C})^7\text{Li}$
\[Q_m = -5.678\]

(c) $^{19}\text{F}(d, ^{14}\text{N})^7\text{Li}$
\[Q_m = -6.122\]

At $E_d = 14.6$ to 15.0 MeV, angular distributions have been measured for the transitions to $^{12}\text{C}(0) + ^7\text{Li}^*(0, 0.48)$ [reaction (a)], $^{13}\text{C}(0) + ^7\text{Li}^*(0, 0.48)$ [reaction (b)] and $^{14}\text{N}(0) + ^7\text{Li}^*(0, 0.48)$ [reaction (c)]: see (1979AJ01). Angular distributions involving $^7\text{Li}^*(0, 0.48)$ are also reported at $E_d = 13.6$ MeV (reaction (b)) (1980GA1K).
7Be
(Figs. 9 and 10)

GENERAL: (See also (1979AJ01).)

Other topics: (1979BE1H, 1982NG01).

Ground state of 7Be: (1982FI13, 1982NG01).

1. 7Be(\(\epsilon\))7Li

\[Q_m = 0.862 \]

The decay is complex: see 7Li.

2. 4He(3He, \(\gamma\))7Be

\[Q_m = 1.5876 \]

The capture cross section has been measured for \(E_\alpha = 0.38 \) to 5.80 MeV [see (1974AJ01)], 0.250 to 2.954 MeV (1982KR05), 0.385 to 2.730 MeV (1982OS02), at \(E_{c.m.} = 0.897\) MeV (1983RO1C) and for \(E(3He) = 19 \) to 26 MeV (1983WA05; \(\gamma_{0+1} \) excitation function at 90°).

The branching ratios \(DC \rightarrow 429/DC \rightarrow 0\) and the cross section for the \(DC \rightarrow 429\) branch have been measured for \(E_{c.m.} = 107\) to 1266 keV: the branching ratio is approximately constant at 0.43 ± 0.02 over that energy range; the cross section is 0.117 ± 0.016 nb at 107 keV. It increases to 421 ± 39 nb at \(E_{c.m.} = 1266\) keV (1982KR05). These data lead to a value of \(S(0) = 0.56 \pm 0.03\) keV \(\cdot\) b (using microscopic DC model calculations, and a branching ratio, 10.42 ± 0.06%, for the 7Be decay to 7Li*(0.48)) [see reaction 28 in 7Li] (1983VO01).
Table 7.7: Energy levels of 7Be

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^π; T^e$</th>
<th>τ or $\Gamma_{c.m.}$</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.s.</td>
<td>$\frac{1}{2}^-; \frac{1}{2}$</td>
<td>$\tau_{1/2} = 53.29 \pm 0.07$ d</td>
<td>ϵ</td>
<td>1, 2, 5, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30</td>
</tr>
<tr>
<td>0.42908 ± 0.10</td>
<td>$\frac{1}{2}^-; \frac{1}{2}$</td>
<td>$\tau_{m} = 192 \pm 25$ fsec</td>
<td>γ</td>
<td>2, 5, 9, 10, 11, 12, 13, 14, 15, 17, 19, 22, 23, 24, 25, 27, 28, 29, 30</td>
</tr>
<tr>
<td>4.57 ± 50</td>
<td>$\frac{7}{2}^-; \frac{1}{2}$</td>
<td>$\Gamma = 175 \pm 7$ keV</td>
<td>3He, α</td>
<td>3, 10, 13, 14, 15</td>
</tr>
<tr>
<td>6.73 ± 100</td>
<td>$\frac{5}{2}^-; \frac{1}{2}$</td>
<td>1.2 MeV</td>
<td>3He, α</td>
<td>3, 8, 9, 13, 15</td>
</tr>
<tr>
<td>7.21 ± 60</td>
<td>$\frac{5}{2}^-; \frac{1}{2}$</td>
<td>≤ 0.5 MeV</td>
<td>p, 3He, α</td>
<td>3, 6, 8, 9, 13</td>
</tr>
<tr>
<td>9.27 ± 100</td>
<td>$\frac{3}{2}^-; \frac{1}{2}$</td>
<td>≈ 1.8 MeV</td>
<td>p, 3He, α</td>
<td>3</td>
</tr>
<tr>
<td>9.9</td>
<td>$\frac{5}{2}^-; \frac{1}{2}$</td>
<td>≈ 1.8 MeV</td>
<td>p, 3He, α</td>
<td>3, 6</td>
</tr>
<tr>
<td>11.01 ± 30</td>
<td>$\frac{3}{2}^-; \frac{1}{2}$</td>
<td>320 ± 30</td>
<td>p, 3He, α</td>
<td>3, 6, 13, 15</td>
</tr>
<tr>
<td>17</td>
<td>$\frac{3}{2}^-; \frac{1}{2}$</td>
<td>≈ 6.5 MeV</td>
<td>3He</td>
<td>3, 13</td>
</tr>
</tbody>
</table>

(1982OS02) obtain $S(0) = 0.52 \pm 0.03$ keV · b and (1983RO1C) find 0.63 ± 0.04 keV · b. See also (1974AJ01) and (1981WI04; theor.). (1983RO1C) suggest, prior to (1983VO01), that $S(0) = 0.56 \pm 0.07$ keV · b should be adopted. $C^2 S = 1.0$ for 7Be*(0, 0.43) (1982KR05). See also (1980BA1P, 1980BA2M, 1980PE1N, 1981BA2F, 1981RO1W, 1982BA80; astrophysics) and (1981KI01, 1981LI01, 1982TA1G, 1983WA1M; theor.).

3. (a) 4He(3He, 3He)4He
(b) 4He(3He, p)6Li

$E_b = 1.5876$

| Q_m | -4.0182 |

Elastic scattering studies have been reported for $E = 1.72$ to 140 MeV [see (1974AJ01, 1979AJ01)] and at $E_\alpha = 0.25$ to 2.95 MeV (1982KR05) and 140 MeV (1980RO03) and at $E(^3$He) = 18 to 70 MeV (1978BA75) and 198.4 MeV (1980RO03). Polarization measurements have been carried out at $E = 4.3$ to 98 MeV; see (1979AJ01).

For $l \leq 4$, only f-wave phase shifts show resonance structure for $E(^3$He) < 18 MeV, corresponding to 7Be*(4.57, 6.73, 9.27): see Table 7.7. No structure corresponding to 7Be*(7.21) ($J^π = \frac{5}{2}^-$) is seen in the elastic data. The s-wave phase shift is somewhat greater than hard-sphere. The decay of 7Be*(9.27) ($J^π = \frac{7}{2}^-$) to 6Li(0) requires f-shell configuration admixture. An estimate of the yield of ground-state protons relative to those corresponding to 6Li*(2.19) yields $\gamma^2(p_0)/\gamma^2(p_1) = (16^{+5}_{-10})%$. A phase-shift analysis (single-level R-matrix) has been carried out for

23
Table 7.8: 7Be levels from 3He + 4He a

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>J^π</th>
<th>l_α</th>
<th>LS term</th>
<th>θ_α^2 b</th>
<th>θ_α^2 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.57 ± 50</td>
<td>$^7/2^-$</td>
<td>3</td>
<td>$^2F_{7/2}$</td>
<td>0.70 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>6.73 ± 100</td>
<td>$^5/2^-$</td>
<td>3</td>
<td>$^2F_{5/2}$</td>
<td>1.36 ± 0.13</td>
<td>0.000 ± 0.002</td>
</tr>
<tr>
<td>7.21 ± 60</td>
<td>$^5/2^-$</td>
<td>3</td>
<td>$^4P_{5/2}$</td>
<td>0.010 ± 0.001</td>
<td>0.26 ± 0.02</td>
</tr>
<tr>
<td>9.27 ± 100</td>
<td>$^7/2^-$</td>
<td>3</td>
<td>$^4D_{7/2}$</td>
<td>0.70 ± 0.26</td>
<td>0.29 ± 0.09 f</td>
</tr>
<tr>
<td>10.0 c</td>
<td>$^3/2^-$</td>
<td>1</td>
<td>$(^4P_{3/2})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\approx 10.0 d</td>
<td>$^1/2^-$</td>
<td>(4P1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.00 ± 50 e</td>
<td>$^5/2^-$</td>
<td>1</td>
<td>$(^2P_{3/2}, ^2D_{3/2})$</td>
<td>0.13 ± 0.02 g</td>
<td></td>
</tr>
</tbody>
</table>

a See also Table 7.10 in (1966LA04). For references see Table 7.7 in (1979AJ01).

b $\gamma^2/(3h^2/\mu a^2)$. $R = 4.0$ fm.

c $\Gamma = 1.8$ MeV.

d Broad.

e $\Gamma = 0.4 \pm 0.05$ MeV; $T = \frac{3}{2}$.

f $\theta_\pi^2 = 1.8 \pm 0.5$

g θ_α^2.

$E(^3\text{He}) = 18$ to 32 MeV: the p-wave phase shifts indicate a $^1\!_2^-$ state at $E_x \approx 16.7$ MeV ($E_r = 26.4$ MeV), with $\Gamma = 6.5$ MeV (1978LU05). The work of (1978BA75) is consistent with the results of (1978LU05) and, in addition, suggests broad $l = 4$ and 5 states at $E(^3\text{He}) > 30$ MeV [$E_x > 19$ MeV].

The differential cross section for reaction (b) has been determined for $E(^3\text{He}) = 8$ to 28 MeV [see (1979AJ01)] and at $E_x = 22.2$ to 26.5 MeV (1980NE08; p_0). Resonances are observed corresponding to $^7\text{Be}^*(7.21, 9.27)$ in the p_0 yield, to $^7\text{Be}^*(9.27)$ in the p_1 yield and to states at $E_x \approx 10$ MeV ($T = \frac{1}{2}$) and 11.0 MeV ($T = \frac{3}{2}$) in the yield of 3.56 MeV γ-rays. The evidence for the latter derives mainly through interference arguments. There is also some evidence for an extremely broad $J^\pi = \frac{1}{2}^-$ structure at $E_x \geq 10$ MeV [see also $^6\text{Li}(p, p)$]: see Table 7.8 and (1974AJ01). See also (1980NE08). See also (1981BA1Q), (1978BR1A, 1979KA1G, 1982YA1A) and (1978DU1D, 1978TA1A, 1979KOZV, 1979LE11, 1979WI1B, 1981FI1B, 1981SH07, 1982AZ01, 1982FU01, 1982KA11, 1982LE23, 1983HO1F, 1983SA1G; theor.).

4. $^4\text{He}(\alpha, n)^7\text{Be}$

$Q_m = -18.9902$

See (1978GL03, 1979AL1F), (1979AJ01) and ^8Be.

5. $^6\text{Li}(p, \gamma)^7\text{Be}$

$Q_m = 5.606$

24
Gamma transitions are observed to the ground (γ_0) and to the 0.43 MeV (γ_1) states. The yield shows no evidence of resonance for $E_p = 0.2$ to 1.0 MeV and the branching ratio remains approximately constant at $(62 \pm 5)\%$ to the ground state, 38% to $^7\text{Be}^*(0.43)$, $< 4\%$ to $^7\text{Be}^*(4.57)$: see (1974AJ01). The total cross section for $E_p = 0.2$ to 1.2 MeV has been obtained by (1979SW02): at $E_p = 0.8$ MeV it is $3.1 \pm 0.4 \mu$b, in good agreement with previous values. The branching ratio to $^7\text{Be}^*(0.43)$ is $(41 \pm 3)\%$ (1979SW02). The weighted mean of this and previous measurements is $(39 \pm 2)\%$ (1979SW02). See also (1980BA34).

6. (a) $^6\text{Li}(p, p)^6\text{Li}$
(b) $^6\text{Li}(p, 2p)^5\text{He}$
(c) $^6\text{Li}(p, p\alpha)^2\text{H}$

$Q_m = -4.59$
$Q_m = -1.4753$

Measurements of elastic angular distributions have been reported for $E_p = 0.5$ to 600 MeV: see (1966LA04, 1974AJ01) and ^6Li. Two resonances are reported at $E_p = 1.84$ and 5 MeV in the elastic yield [$^7\text{Be}^*(7.21, 9.9)$]. The parameters of the lower resonance are shown in Table 7.4. The 5 MeV resonance has $\Gamma \approx 1.8$ MeV and appears to also be formed by p-waves: γ_2^p is then 3 ± 2 MeV · fm. A weak rise near $E_p = 8$ to 9 MeV may indicate a further level, $^7\text{Be}^* \approx 13$ MeV. A broad resonance at $E_p = 14$ MeV has also been suggested. Polarization measurements have been carried out for $E_p = 1.2$ to 155 MeV [see (1974AJ01, 1979AJ01)] and at $E_p = 25$ and 35 MeV (1982ROZT; p_0, p_1) and 800 MeV (1979GL1C; p_2). A phase shift analysis for $E_p = 0.5$ to 5.6 MeV shows that only ^2S, ^4S and ^4P are involved. The $^4\text{P}_{5/2}$ phase resonates at $E_p = 1.8$ MeV, and the broad resonance at 5 MeV can be reproduced equally well by either $^4\text{P}_{3/2}$ or $^4\text{P}_{1/2}$: tensor polarization measurements are necessary to distinguish between the two: see (1974AJ01).

The reaction cross section for formation of $^6\text{Li}^*(2.19)$ has been measured for $E_p = 3.6$ to 9.40 MeV: a broad resonance indicates the presence of a state with $E_x \approx 10$ MeV, $\Gamma = 1.8$ MeV, $J^\pi = (\frac{3}{2}, \frac{5}{2})^-$, $T = \frac{1}{2}$. The cross section and angular distributions of p_2 ($^6\text{Li}^*(3.56)$) for $E_p = 4.26$ to 9.40 MeV is analyzed in terms of two $J^\pi = \frac{3}{2}^-$ states at $E_x \approx 10$ and 11 MeV; see reaction 3. The total cross section for formation of $^6\text{Li}^*(3.56)$ decreases slowly with energy for $E_p = 24.3$ to 46.4 MeV. The reaction cross section has been measured for $E_p = 25.0$ to 48 MeV: see (1979AJ01).

For reaction (b) see ^5He, (1978NA18; $E_p = 635$ MeV) and (1979AJ01). For reaction (c) see ^6Li and (1979AJ01). Studies of inclusive cross sections are reported at 640 MeV (1981ER07) and 400 GeV (1979BA28, 1979FR12, 1980NI09). For pion and kaon production see (1980NI09; 400 GeV). See also (1982AB1D) and (1981FR1R, 1981FR1T, 1981KR15, 1982ST15; theor.).

7. $^6\text{Li}(p, n)^6\text{Be}$

$Q_m = -5.070$
$E_b = 5.606$

The yield of neutrons increases approximately monotonically from threshold to $E_p = 14.3$ MeV. Polarization measurements are reported at $E_p = 30$ and 50 MeV: see (1974AJ01). See also ^6Be.
8. $^6\text{Li}(p, \alpha)^3\text{He}$

$$Q_m = 4.0182$$

$$E_b = 5.606$$

$$Q_0 = 4018.2 \pm 1.1 \text{ keV}; \text{ see (1981RO02)}$$

Over the range $E_p = 25$ to 50 keV, the cross section rises from 0.8 to 72 μb: in the formula

$$\sigma \approx E^{-1} e^{-B/\sqrt{E}}, \quad B = 90 \pm 6 \text{ keV}^{1/2}. $$

Cross-section measurements for $E_p = 62$ to 188 keV show deviation from an s-wave Gamow plot above $\approx 130 \text{ keV}$ (1966GE11). Using cross-section measurements at $E_p = 136 \rightarrow 297 \text{ keV}$, as well as the (1966GE11) results, (1979EL10) calculate $S(0) = 3.145 \text{ MeV} \cdot \text{b} \mid E_c, m, \mu = 1 \text{ keV}$. Thermonuclear reaction rates are also derived (1979EL10). See also (1979SH14; 125 \rightarrow 700 \text{ keV}; S(0) = 3 \text{ MeV} \cdot \text{b}) and (1979AJ01).

At higher energies the cross section exhibits a broad, low maximum near $E_p = 1.85 \text{ MeV}$ ($\Gamma < 0.5 \text{ MeV}$). No other structure is reported up to $E_p = 1.9 \text{ MeV}$ resonance appears in A_1 and A_2: see (1974AJ01).

Angular distributions have been reported for $E_p = 0.15$ to 45 MeV [see (1974AJ01, 1979AJ01)] and at $E_p = 125$ to 700 keV (1979SH14), 136 to 297 keV (1979EL10) and 47.8, 53.5, 58.5 and 62.5 MeV (1982BA1V). See also (1979DE1E, 1979HA1C, 1980HA1Y, 1981JA1F; applied), (1981HO1E) and (1978PL1A; theor.).

9. $^6\text{Li}(d, n)^7\text{Be}$

$$Q_m = 3.381$$

Angular distributions of the n_0 and n_1 groups have been measured at $E_d = 0.20$ to 15.25 MeV: see (1974AJ01, 1979AJ01). The n-\gamma correlations are isotropic, indicating $J^\pi = \frac{1}{2}^-$ for $^7\text{Be}^*(0.43)$. Broad maxima are observed in the ratio of low-energy to high-energy neutrons at $E_d = 4.2$ and 5.1 MeV [$^7\text{Be}^*(6.5, 7.2), \Gamma_{c.m.} = 1.2$ and 0.5 MeV, respectively]: see (1966LA04). See also (1979HO04, 1980GU26) in ^8Be.

10. $^6\text{Li}(^3\text{He}, d)^7\text{Be}$

$$Q_m = 0.112$$

Angular distributions of the d_0 and d_1 groups to $^7\text{Be}^*(0, 0.43)$ have been measured at $E(^3\text{He}) = 8, 10, 14$ and 18 MeV: all the distributions show an $l = 1$ maximum at small angles: see (1974AJ01). At $E(^3\text{He}) = 33.3$ MeV angular distributions and A_y measurements to $^7\text{Be}^*(0, 0.43)$ have been analyzed using coupled channels and DWBA. $^7\text{Be}^*(4.57)$ is also populated (1981BA38).

11. $^6\text{Li}(\alpha, t)^7\text{Be}$

$$Q_m = -14.208$$

See (1979AJ01).
12. (a) $^7\text{Li}(\gamma, \pi^-)^7\text{Be}$ \quad $Q_m = -140.429$
(b) $^7\text{Li}(\pi^+, \pi^-)^7\text{Be}$ \quad $Q_m = 3.742$

For reaction (a) see (1979BO23). Forward-angle differential cross sections to $^7\text{Be}_{g.s.}$ have been measured at $E_{\pi^+} = 48$ MeV (1982LEZY), and $70 \rightarrow 180$ MeV (1980BA27, 1982DO02). See also (1982AL35).

13. $^7\text{Li}(p, n)^7\text{Be}$ \quad $Q_m = -1.644$

The excitation energy of $^7\text{Be}^*(0.43)$ is 429.20 ± 0.10 keV, $\tau_m = 192 \pm 25$ fsec: see (1979AJ01). Angular distributions of n_0 and n_1 are reported at $E_p = 1.9$ to 50 MeV [see (1974AJ01, 1979AJ01)] and at 119.8 MeV (1979GO16, 1980GO07; n_{0+1}). The population of $^7\text{Be}^*(4.55, 6.51, 7.19, 10.79)$ has also been observed: see (1974AJ01, 1979AJ01). The ratios σ_1/σ_0 ($^7\text{Be}^*(0.43)/^7\text{Be}_{g.s}$) have been measured at 24.8, 35 and 45 MeV: an analysis of these yields the ratio of spin-flip to spin-nonflip strength $|V_{\sigma\tau}/V_{\tau\tau}|^2$ (1980AU02). (1983TAZY) report cross-section measurements at $E_p = 60$ to 200 MeV. See also (1981SH1F, 1982KI1F, 1982TAZQ), (1979CH1B, 1980SE1D, 1982SA1M; applied), (1982GO1C, 1982PE06, 1982TA03), (1982GU1D, 1983GU1G; theor.) and ^8Be.

14. $^7\text{Li}^3\text{He}, t)^7\text{Be}$ \quad $Q_m = -0.881$

Angular distributions of t_0 and t_1 have been measured at $E(\text{}^3\text{He}) = 3.0$ to 4.0 MeV [see (1974AJ01)] and at $E(\text{}^3\text{He}) = 33.3$ MeV (1981BA37). The width of $^7\text{Be}^*(4.57)$, $\Gamma_{c.m.} = 175 \pm 7$ keV: see (1974AJ01). See also ^{10}B.

15. $^9\text{Be}(p, t)^7\text{Be}$ \quad $Q_m = -12.082$

Angular distributions of tritons have been measured at $E_p = 43.7$ MeV ($^7\text{Be}^*(0, 0.43, 4.57, 6.51, 11.01)$) and 46 MeV ($^7\text{Be}^*(0 + 0.43, 4.57, 6.51, 10.69)$), and at $E_p = 50$ and 72 MeV (1982ZA1B; t_0, t_1). The 11 MeV state has $E_x = 11.01 \pm 0.04$ MeV, $\Gamma = 298 \pm 25$ keV, $J^\pi = 3^-$, $T = \frac{3}{2}$ [the J^π; T assignments are based on the similarity of the angular distribution to that in the $(p, ^3\text{He})$ reaction to $^7\text{Li}^*(11.13)$]: see (1979AJ01).

16. $^9\text{Be}^3\text{He}, ^5\text{He})^7\text{Be}$ \quad $Q_m = -0.88$
See reaction 23 in 5He.

17. $^{10}\text{B}(p, \alpha)^7\text{Be}$
$$Q_m = 1.146$$

Angular distributions have been measured for $E_p = 2.8$ to 7.0 MeV: see (1974AJ01). $E_x = 428.89 \pm 0.13$ keV (1979RI12). See also ^{11}C in (1980AJ01, 1985AJ01).

18. $^{10}\text{B}(d, ^5\text{He})^7\text{Be}$
$$Q_m = -1.97$$

See (1982DO1E).

19. $^{10}\text{B}(^3\text{He}, ^6\text{Li})^7\text{Be}$
$$Q_m = -2.873$$

See ^6Li.

20. $^{10}\text{B}(\alpha, ^7\text{Li})^7\text{Be}$
$$Q_m = -16.200$$

At $E_\alpha = 45.6$ MeV the angular distributions of the ^7Li and of the ^7Be ions, corresponding to the ground-state transitions, have been measured. At a given angle the intensities of the two ions are the same, implying that the wave functions of the ground states of ^7Li and ^7Be are very similar: see (1974AJ01).

21. $^{12}\text{C}(\gamma, n\alpha)^7\text{Be}$
$$Q_m = -26.265$$

See (1979KI04).

22. $^{12}\text{C}(p, ^6\text{Li})^7\text{Be}$
$$Q_m = -22.565$$

See ^6Li.

23. $^{12}\text{C}(d, ^7\text{Li})^7\text{Be}$
$$Q_m = -17.539$$
See \(^7\)Li.

24. \(^{12}\)C(\(^3\)He, \(^8\)Be)\(^7\)Be \(Q_m = -5.779\)

Angular distributions are reported at \(E(\(^3\)He) = 25.5\) to 30 MeV involving \(^7\)Be\(^*(0, 0.43)\) [see (1979AJ01)] and at 41 MeV (1981LE01) and \(^{16}\)O in (1981AJ01).

25. \(^{12}\)C(\(\alpha\), \(^9\)Be)\(^7\)Be \(Q_m = -24.691\)

At \(E_\alpha = 42\) MeV, angular distributions have been measured involving \(^7\)Be\(^*(0, 0.43)\) and \(^9\)Be\(_{g.s.}\); see (1974AJ01).

26. \(^{13}\)C(p, \(^7\)Li)\(^7\)Be \(Q_m = -20.261\)

See \(^7\)Li.

27. \(^{16}\)O(\(^3\)He, \(^{12}\)C)\(^7\)Be \(Q_m = -5.5744\)

Angular distributions are reported at \(E(\(^3\)He) = 25.5, 30\) and 70 MeV to \(^7\)Be\(^*(0, 0.43)\) and various states of \(^{12}\)C [see \(^{12}\)C in (1980AJ01)] and at 41 MeV (1981LE01).

28. \(^{16}\)O(\(\alpha\), \(^{13}\)C)\(^7\)Be \(Q_m = -21.2058\)

See \(^{13}\)C in (1981AJ01).

29. \(^{19}\)F(d, \(^{14}\)C)\(^7\)Be \(Q_m = -7.140\)

The angular distributions to \(^7\)Be\(^*(0, 0.43)\) + \(^{14}\)C\(_{g.s.}\) has been measured at \(E_d = 14.9\) MeV; see (1974AJ01).

30. (a) \(^{19}\)F(\(^3\)He, \(^{15}\)N)\(^7\)Be \(Q_m = -2.426\)

(b) \(^{20}\)Ne(\(^3\)He, \(^{16}\)O)\(^7\)Be \(Q_m = -3.146\)
See 15N in (1981AJ01) and 16O in (1982AJ01).

7B
(Fig. 10)

GENERAL: (See also (1979AJ01).)

See (1979BE1H, 1982NG01).

Mass of 7B: This nucleus has been studied in the 7Li($\pi^+, \pi^-)^7$B and 10B(3He, 6He)7B reactions. In the (π^+, π^-) work (1981SE1B; preliminary) find the mass excess to be 27.80 ± 0.10 MeV and Γ for the ground state is 1.2 ± 0.2 MeV. In the earlier (3He, 6He) work [see (1974AJ01)] $M - A$ was reported to be 27.94 ± 0.10 MeV, $\Gamma = 1.4 \pm 0.2$ MeV. We adopt 27.87 ± 0.10 MeV, $\Gamma = 1.3 \pm 0.2$ MeV. The isobaric quartet mass law would predict $M - A = 27.76 \pm 0.17$ MeV. 7B is unbound with respect to 6Be + p ($Q = 2.21$), 5Li + 2p ($Q = 1.61$), 4He + 3p ($Q = 3.58$). The expected single-particle width is $\Gamma = 0.64$ MeV; it is suggested that the two-proton and three-proton decays make an appreciable contribution to the width: see (1974AJ01).

7C
(Not illustrated)

Not observed: see (1982NG01; theor.).
References

(Closed 1 June 1983)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author’s name and then by two additional characters. Most of the references appear in the National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form 1A, 1B, etc. In response to many requests for more informative citations, we have, when possible, included up to ten authors per paper and added the authors’ initials.

1952AJ38 F. Ajzenberg and T. Lauritsen, Revs. Mod. Phys. 24 (1952) 321
1966LA04 T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1
1975ZI1A Zimmerman, Fowler and Caughlan, OAP-399 (1975)
<table>
<thead>
<tr>
<th>Year</th>
<th>Author(s)</th>
<th>Journal/Conference/Book Title</th>
<th>Volume/Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>Bahcall</td>
<td>Rev. Mod. Phys.</td>
<td>50</td>
<td>(1978) 881</td>
</tr>
<tr>
<td>1978</td>
<td>Cherkasov</td>
<td>Yad. Fiz.</td>
<td>28</td>
<td>(1978) 639</td>
</tr>
<tr>
<td>1978</td>
<td>Denisov and Chubukov</td>
<td>Yad. Fiz.</td>
<td>27</td>
<td>(1978) 882</td>
</tr>
</tbody>
</table>
1978DU1B Dubna-Warsaw-Leningrad Collaboration, Yad. Fiz. 27 (1978) 1246
1978HE1D Heitzmann, Atomkernenergie 31 (1978) 262
1978KN1C Knoll, Jufner and Bouyssy, Nucl. Sci. Eng. 69 (1979) 223

33

1978OR1A Orth, Buffington, Smoot and Mast, Astrophys. J. 226 (1978) 1147

1978PO1A B. Povh, Ann. Rev. Nucl. Part. Sci. 28 (1978) 1

1978RE1B Renner et al., Bull. Amer. Phys. Soc. 23 (1978) 526

1979AF1A Afanasev et al., Int. Conf. Nucl. Phys. With Electromag. Interact., Mainz (1979) 3.1
1979AJ01 F. Ajzenberg-Selove, Nucl. Phys. A320 (1979) 1
1979AL1J Alster and Warszawski, Phys. Rept. 52 (1979) 87
1979BA1R Baba et al., Bull. Amer. Phys. Soc. 24 (1979) 862
1979BA37 C.M. Bartle, Nucl. Phys. A330 (1979) 1
1979BE1H Benenson and Kashy, Rev. Mod. Phys. 51 (1979) 527
1979BO1F Bolger et al., in Houston, AIP Conf. Proc. 54 (1979) 519
1979BU1C Bunyatov et al., Yad. Fiz. 30 (1979) 1054
1979CH1B Chaudhri, Templer and Rouse, Int. J. Appl. Rad. Isotopes 30 (1979) 504

35
1979CO1C Cooper, in Houston, AIP Conf. Proc. 54 (1979) 222
1979DO1E Donnelly and Peccei, Phys. Rept. 50 (1979) 1
1979EN1C Engfer et al., in Houston, AIP Conf. Proc. 54 (1979) 176
1979FU1E Fujii et al., Isotopenpraxis 15 (1979) 203
1979GA1D Gal, in Houston, in AIP Conf. Proc. 54 (1979) 680
1979GE1A Gelbke, in BNL-51115 (1979) 1
Ingram, in Houston, AIP Conf. Proc. 54 (1979) 455
V.V. Kirichenko, A.F. Khodyachikh, P.I. Vatset, I.V. Dogyust and V.A. Zolenko, Yad. Fiz. 29 (1979) 572; Sov. J. Nucl. Phys. 29 (1979) 292
Kim and Primakoff, in “Mesons in Nucl.”, Eds. Rho and Wilkenson (North-Holland, Amsterdam, 1979) 69
Mathews and Viola, Astrophys. J. 228 (1979) 375
1979PE1D Petrov and Shabelskii, Sov. J. Nucl. Phys. 30 (1979) 66
1979RE1A Redwine, in Houston, AIP Conf. Proc. 54 (1979) 501
1979RO1A Robert, Merlivat and Javoy, Nature 282 (1979) 785
1979SC1D Scott, Prog. Nucl. Phys. 4 (1979) 5
1980GO1Q Gorbatov, Krylov and Solovei, Yad. Fiz. 32 (1980) 636

40

1980JA1F Jarmie, Correll, Brown, Hardekopf and Ohlsen, LA-8492 (1980) 1

1980KO1V Koptev, Maev, Makarov and Khanzadeev, Yad. Fiz. 31 (1980) 1501

1980MO1M Molinari, Phys. Rept. 64 (1980) 283

1980RO03 P.G. Roos, A. Nadasen, P.E. Frisbee, N.S. Chant, T.A. Carey, M.T. Collins, B.T. Lee-
1980SC24 I. Schwanner, R. Abela, G. Backenstoss, W. Kowald, P. Pavlopoulos, L. Tauscher,
1980SE1D Seguin, CEA-N-2132 (June 1980)
1980UC1A Uchida et al., J. Nucl. Mater. 89 (1980) 92
1980VA1D van der Leun, Helmer and van Assche, Proc. Conf. in Atomic Masses and Fund.
 (1980) 2108
1980ZU01 P. Zupranski, W. Dreves, P. Egelhof, K.-H. Mobius, E. Steffens, G. Tungate and D.
1981AB04 A.Kh. Abdurakhimov, M.Kh. Anikina, V.S. Buttsev, L.D. Chikovani, L.V. Chkhaidze,
 E.A. Dementjev, L.L. Gabunia, M. Gazdzicki, N.S. Glagoleva, A.I. Golokhvastov et
1981AU1D Audouze, Prog. Part. Nucl. Phys. 6 (1981) 125
1981AU1G Austin, Prog. Part. Nucl. Phys. 7 (1981) 1
1981BA1L Bahcall, IAS (1981) 1
1981BA2F Barnes, Prog. Part. Nucl. Phys. 6 (1981) 235
1981BA2G Bahcall, Prog. Part. Nucl. Phys. 6 (1981) 111

43
1981SC1M Schatzman, CERN 81-11
1982AB1D Abramovich, Gushovskii and Protopopov, in Kiev (1982) 566
1982AL1H Aleksandrov et al., in Kiev (1982) 367
1982AP1A Apokin et al., Yad. Fiz. 35 (1982) 382
1982BA1V Barit et al., in Kiev (1982) 305
1982BA1W Badalov and Filippov, in Kiev (1982) 196
1982BO1G Bogdanov, Kerimov and Safin, in Kiev (1982) 400
1982BO1Y Bogatin et al., Yad. Fiz. 36 (1982) 33
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Journal/Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>Gogitidze et al.</td>
<td>in Kiev (1982) 338</td>
</tr>
<tr>
<td>1982</td>
<td>Hale, Stewart and Young</td>
<td>in ENDF-301, BNL-NCS-51619 (1982) 25</td>
</tr>
<tr>
<td>1982</td>
<td>Klingenstein, Hupke and Huber</td>
<td>in MSU (1982) 5</td>
</tr>
</tbody>
</table>