Energy Levels of Light Nuclei

\(A = 16 \)

F. Ajzenberg-Selove

University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396

Abstract: An evaluation of \(A = 16 \)–17 was published in Nuclear Physics A166 (1971), p. 1. This version of \(A = 16 \) differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format.

(References closed November 30, 1970)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-AC02-76-ER02785]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).
Table of Contents for $A = 16$

Below is a list of links for items found within the PDF document. Figures from this evaluation have been scanned in and are available on this website or via the link below.

A. Nuclides: $^{16}B, ^{16}C, ^{16}N, ^{16}O, ^{16}F, ^{16}Ne$

B. Tables of Recommended Level Energies:

Table 16.1: Energy levels of ^{16}C

Table 16.2: Energy levels of ^{16}N

Table 16.9: Energy levels of ^{16}O

Table 16.32: Energy levels of ^{16}F

C. References

D. Figures: $^{16}C, ^{16}N, ^{16}O, ^{16}F$, Isobar diagram

E. Erratum to this Publication: PS or PDF
\(^{16}\text{B} \)
(Fig. 5)

\(^{16}\text{B} \) is predicted to be unstable with respect to decay into \(^{15}\text{B} + \text{n} \) by \(1.0 \pm 0.4 \text{ MeV} \) \((1966\text{GA25})\).

\(^{16}\text{C} \)
(Figs. 1 and 5)

GENERAL:

Mass of \(^{16}\text{C} \): From the \(Q \)-value of the \(^{14}\text{C}(\text{t}, \text{p})^{16}\text{C} \) reaction \([Q_0 = -3.014 \pm 0.016 \text{ MeV} \ (1961\text{HI01})]\) and the \((1965\text{MA54}) \) masses for \(^{14}\text{C}, \text{t} \) and \(\text{p} \), the mass excess of \(^{16}\text{C} \) is \(13.695 \pm 0.016 \text{ MeV} \).

See \((1968\text{CE1A}) \) and \((1960\text{GO1B}, 1961\text{BA1C})\).

1. \(^{16}\text{C}(\beta^-)^{16}\text{N} \)

\[Q_m = 8.010 \]

The half-life of \(^{16}\text{C} \) is \(0.74 \pm 0.03 \text{ sec} \) \((1961\text{HI01})\).

2. \(^{14}\text{C}(\text{t}, \text{p})^{16}\text{C} \)

\[Q_m = -3.014 \]
\[Q_0 = -3.014 \pm 0.016 \ (1961\text{HI01}) \]

Proton groups have been observed at \(E_t = 12 \text{ MeV} \) to the ground state and to an excited state of \(^{16}\text{C} \) at \(E_x = 1.753 \pm 0.012 \text{ MeV} \). The corresponding angular distributions show \(L = 0 \) for \(^{16}\text{C}(0) \) and indicate \(L = 2 \) for \(^{16}\text{C}^*(1.75) \): \(J^\pi \) are then \(0^+ \) and \((2^+) \), respectively \((1964\text{MI05})\).

Table 16.1: Energy levels of \(^{16}\text{C} \)

<table>
<thead>
<tr>
<th>(E_x) (MeV ± keV)</th>
<th>(J^\pi; T)</th>
<th>(\tau_{1/2}) (sec)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0^+; 2)</td>
<td>0.74 ± 0.03</td>
<td>(\beta^-)</td>
<td>1, 2</td>
</tr>
<tr>
<td>1.753 ± 12</td>
<td>((2^+))</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
\(^{16}\text{N} \)
(Figs. 2 and 5)

GENERAL:

Other topics: (1964LI1B, 1968AR1F, 1970BA1M).

1. \(^{16}\text{N}(\beta^-)^{16}\text{O} \quad Q_m = 10.422\)

The half-life of \(^{16}\text{N}\) is \(7.13 \pm 0.02\) sec: see Table 16.3. From the character of the beta decay [see Table 16.24] it is concluded that \(^{16}\text{N}(0)\) has \(J^\pi = 2^-\). See \(^{16}\text{O}\).

2. \(^7\text{Li}(^{14}\text{N}, ^{5}\text{Li})^{16}\text{N} \quad Q_m = 0.407\)

See (1958AL1D).

3. (a) \(^9\text{Be}(^{7}\text{Li}, \alpha)^{12}\text{B} \quad Q_m = 10.463 \quad E_b = 20.573\)
(b) \(^{9}\text{Be}(^{7}\text{Li}, ^{8}\text{Li})^{8}\text{Be} \quad Q_m = 0.367\)

The yields of \(\alpha_0\) and \(\alpha_2\) (reaction (a)) have been measured at \(E(^{7}\text{Li}) = 3.3\) MeV and 5.0 to 6.2 MeV (1969SN02). The cross section for reaction (b) rises monotonically for \(E(^{7}\text{Li}) = 1.1\) to 4 MeV (1957NO17, 1959NO40). At 4 MeV, the cross section is 70 mb (1960NO1A). See also (1960GE1B; theor.).

4. (a) \(^{10}\text{B}(^{7}\text{Li}, p)^{16}\text{N} \quad Q_m = 13.985\)
(b) \(^{11}\text{B}(^{6}\text{Li}, p)^{16}\text{N} \quad Q_m = 9.782\)
(c) \(^{11}\text{B}(^{7}\text{Li}, d)^{16}\text{N} \quad Q_m = 4.754\)

At \(E(\text{Li}) = 4.7\) to 5.2 MeV, proton and deuteron groups are observed to a number of known states of \(^{16}\text{N}\) with \(E_x < 9.5\) MeV, including states at \(E_x = 7.66, 8.10, 8.36, 8.83\) and 9.47 MeV (±50 keV). Angular distributions are also reported (1966MC05). See also (1963MO1B).
Table 16.2: Energy levels of 16N

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>τ or $\Gamma_c.m.$ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$2^-; 1$</td>
<td>$\tau_{1/2} = 7.13 \pm 0.02$ sec</td>
<td>β^-</td>
<td>1, 6, 11, 12, 13, 14, 15, 18, 21, 22, 23, 24, 28, 29, 30</td>
</tr>
<tr>
<td>0.1206 ± 0.5</td>
<td>0^-</td>
<td>$\tau_m = 7.58 \pm 0.09$ µsec</td>
<td>γ</td>
<td>4, 11, 13, 18, 24, 28, 30</td>
</tr>
<tr>
<td>0.2970 ± 0.7</td>
<td>3^-</td>
<td>95 ± 20 psec</td>
<td>γ</td>
<td>4, 11, 12, 13, 18, 24, 28, 29, 30</td>
</tr>
<tr>
<td>0.3973 ± 0.7</td>
<td>1^-</td>
<td>42 ± 10 psec</td>
<td>γ</td>
<td>4, 11, 13, 18, 24, 28, 30</td>
</tr>
<tr>
<td>3.355 ± 5</td>
<td>1^+</td>
<td>$\Gamma = 20 \pm 5$ keV</td>
<td>n</td>
<td>4, 11, 13, 15, 18, 27, 28</td>
</tr>
<tr>
<td>3.520 ± 5</td>
<td>$0^(-)$</td>
<td>$\leq 7 \pm 4$</td>
<td>n</td>
<td>4, 11, 13, 15, 18, 28</td>
</tr>
<tr>
<td>3.961 ± 5</td>
<td>$(2, 3)^+$</td>
<td>$\leq 7 \pm 4$</td>
<td>n</td>
<td>4, 11, 12, 13, 15, 18, 28</td>
</tr>
<tr>
<td>4.318 ± 5</td>
<td>1^+</td>
<td>20 ± 5</td>
<td>n</td>
<td>4, 11, 13, 15, 18, 28</td>
</tr>
<tr>
<td>4.389 ± 6</td>
<td>1^-</td>
<td>68 ± 9</td>
<td>n</td>
<td>4, 11, 13, 15, 28</td>
</tr>
<tr>
<td>4.720 ± 7</td>
<td>1^-</td>
<td>260 ± 25</td>
<td>13, 18</td>
<td></td>
</tr>
<tr>
<td>4.776 ± 5</td>
<td>2^+</td>
<td>61 ± 5</td>
<td>n</td>
<td>4, 11, 13, 15, 18, 28</td>
</tr>
<tr>
<td>4.97 ± 100</td>
<td>2^-</td>
<td>1050 ± 200</td>
<td>n</td>
<td>14</td>
</tr>
<tr>
<td>5.049 ± 5</td>
<td>$(1, 2)^-$</td>
<td>20 ± 7</td>
<td>n</td>
<td>11, 13, 15, 18, 28</td>
</tr>
<tr>
<td>5.129 ± 7</td>
<td></td>
<td>$\leq 7 \pm 4$</td>
<td>(n)</td>
<td>11, 13, 15, 18, 28</td>
</tr>
<tr>
<td>5.150 ± 7</td>
<td></td>
<td>$\leq 7 \pm 4$</td>
<td>(n)</td>
<td>11, 13, 15, 18</td>
</tr>
<tr>
<td>5.232 ± 5</td>
<td></td>
<td>$\leq 7 \pm 4$</td>
<td></td>
<td>11, 13, 18, 28</td>
</tr>
<tr>
<td>5.306 ± 7</td>
<td>2^-</td>
<td>270 ± 30</td>
<td>n</td>
<td>13, 15, 18</td>
</tr>
<tr>
<td>5.523 ± 6</td>
<td></td>
<td>$\leq 7 \pm 4$</td>
<td></td>
<td>4, 13, 18, 28</td>
</tr>
<tr>
<td>5.736 ± 6</td>
<td>(5^+)</td>
<td>$\leq 7 \pm 4$</td>
<td>(n)</td>
<td>4, 12, 13, 15, 18, 28</td>
</tr>
<tr>
<td>6.005 ± 9</td>
<td>(3^-)</td>
<td>270 ± 30</td>
<td>(n)</td>
<td>13, 15, 28</td>
</tr>
<tr>
<td>6.168 ± 6</td>
<td></td>
<td>$\leq 7 \pm 4$</td>
<td></td>
<td>13, 18, 28</td>
</tr>
<tr>
<td>6.373 ± 7</td>
<td>2</td>
<td>30 ± 6</td>
<td>n</td>
<td>13, 15, 18, 28</td>
</tr>
<tr>
<td>6.426 ± 7</td>
<td>(2^-)</td>
<td>300 ± 30</td>
<td>n</td>
<td>13, 15, 18</td>
</tr>
<tr>
<td>6.511 ± 6</td>
<td>2</td>
<td>34 ± 6</td>
<td>n</td>
<td>13, 15, 18</td>
</tr>
<tr>
<td>6.613 ± 6</td>
<td></td>
<td>$\leq 7 \pm 4$</td>
<td>13, 18</td>
<td></td>
</tr>
<tr>
<td>6.851 ± 6</td>
<td></td>
<td>$\leq 7 \pm 4$</td>
<td>(n)</td>
<td>13, 15, 18</td>
</tr>
<tr>
<td>6.98 ± 20</td>
<td>1</td>
<td>22 ± 5</td>
<td>n</td>
<td>13, 15, 28</td>
</tr>
<tr>
<td>7.03 ± 10</td>
<td>(0)</td>
<td>28 ± 20</td>
<td>n</td>
<td>15, 18, 28</td>
</tr>
<tr>
<td>7.135 ± 6</td>
<td></td>
<td>$\leq 7 \pm 4$</td>
<td>13, 18</td>
<td></td>
</tr>
<tr>
<td>7.248 ± 6</td>
<td>3</td>
<td>17 ± 5</td>
<td>n</td>
<td>13, 15, 18</td>
</tr>
<tr>
<td>7.575 ± 7</td>
<td>≥ 4</td>
<td>$\leq 7 \pm 4$</td>
<td>n</td>
<td>13, 15, 18</td>
</tr>
<tr>
<td>7.639 ± 7</td>
<td>≥ 1</td>
<td>$\leq 7 \pm 4$</td>
<td>n</td>
<td>4, 13, 15, 18, 28</td>
</tr>
</tbody>
</table>
Table 16.2: Energy levels of 16N (continued)

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>τ or $\Gamma_{c.m.}$ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.678 ± 8</td>
<td></td>
<td>$\leq 7 \pm 4$</td>
<td>n</td>
<td>4, 13, 15, 18</td>
</tr>
<tr>
<td>7.857 ± 8</td>
<td>4, 5</td>
<td>100 ± 15</td>
<td>n</td>
<td>13, 15, 18, 28</td>
</tr>
<tr>
<td>8.038 ± 9</td>
<td>≥ 2</td>
<td>70 ± 20</td>
<td>n</td>
<td>4, 13, 15, 28</td>
</tr>
<tr>
<td>8.183 ± 10</td>
<td></td>
<td>28 ± 8</td>
<td>4, 13, 28</td>
<td></td>
</tr>
<tr>
<td>8.282 ± 8</td>
<td></td>
<td>24 ± 8</td>
<td>13, 28</td>
<td></td>
</tr>
<tr>
<td>8.365 ± 8</td>
<td></td>
<td>18 ± 8</td>
<td>4, 13, 28</td>
<td></td>
</tr>
<tr>
<td>8.49 ± 30</td>
<td></td>
<td>≤ 50</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>8.819 ± 15</td>
<td></td>
<td>≤ 50</td>
<td>4, 28</td>
<td></td>
</tr>
<tr>
<td>9.035 ± 15</td>
<td></td>
<td>≤ 50</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>(9.16 ± 30)</td>
<td></td>
<td>≤ 50</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>(9.34 ± 30)</td>
<td></td>
<td>≤ 50</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>9.459 ± 15</td>
<td></td>
<td>≤ 50</td>
<td>4, 28</td>
<td></td>
</tr>
<tr>
<td>(9.66 ± 40)</td>
<td></td>
<td>≤ 50</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>9.760 ± 10</td>
<td>$T = 1$</td>
<td>15 ± 8</td>
<td>11, 28</td>
<td></td>
</tr>
<tr>
<td>9.813 ± 10</td>
<td>$T = 1$</td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>9.928 ± 7</td>
<td>$0^+; 2$</td>
<td>< 12</td>
<td>11, 27, 28</td>
<td></td>
</tr>
<tr>
<td>10.055 ± 15</td>
<td></td>
<td>≤ 50</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>(10.17 ± 30)</td>
<td></td>
<td>≤ 50</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>(10.26 ± 30)</td>
<td></td>
<td>≤ 50</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>11.61</td>
<td></td>
<td>220</td>
<td>n, d</td>
<td>7</td>
</tr>
<tr>
<td>11.701 ± 7</td>
<td>$1^-, 2^+; 2$</td>
<td>< 12</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>(11.91)</td>
<td></td>
<td>390</td>
<td>n, d</td>
<td>7</td>
</tr>
<tr>
<td>12.25</td>
<td></td>
<td>290</td>
<td>n, p, d</td>
<td>7, 9</td>
</tr>
<tr>
<td>12.60</td>
<td></td>
<td>180</td>
<td>n, p, d</td>
<td>7, 9</td>
</tr>
<tr>
<td>12.88</td>
<td></td>
<td>155</td>
<td>n, p, d</td>
<td>7, 9</td>
</tr>
<tr>
<td>(12.97)</td>
<td></td>
<td>175</td>
<td>n, d</td>
<td>7</td>
</tr>
</tbody>
</table>

In reaction (c), the τ_m for 14N*(0.30, 0.40) are, respectively, > 0.7 and > 0.9 psec. The two transition energies are 297.6 ± 0.9 and 397.8 ± 1.0 keV. The (0.40 → 0.12) transition energy is 276.2 ± 0.8 keV (1969TH01). See also (1964HA09).

5. 13C(α, p)16N

$Q_m = -7.425$

Not reported.
Table 16.3: The half-life of 16N

<table>
<thead>
<tr>
<th>$\tau_{1/2}$ (sec)</th>
<th>Refs. a</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.35 ± 0.05</td>
<td>(1947BL1A)</td>
</tr>
<tr>
<td>7.38 ± 0.05</td>
<td>(1954MA1B)</td>
</tr>
<tr>
<td>7.352 ± 0.009</td>
<td>(1959EL41)</td>
</tr>
<tr>
<td>7.31 ± 0.04</td>
<td>(1962MA38)</td>
</tr>
<tr>
<td>7.14 ± 0.02</td>
<td>(1964BI02)</td>
</tr>
<tr>
<td>7.16 ± 0.04</td>
<td>(1965GR21)</td>
</tr>
<tr>
<td>7.10 ± 0.03</td>
<td>(1966SC05)</td>
</tr>
<tr>
<td>7.13 ± 0.04</td>
<td>(1970AL21)</td>
</tr>
<tr>
<td>7.13 ± 0.02</td>
<td>Weighted mean of last four values</td>
</tr>
</tbody>
</table>

a See also (1961AL05, 1965CR01).

6. 14C(d, γ)16N

$Q_m = 10.471$

The cross section has been measured for $1.2 < E_d < 2.6$ MeV. It shows some evidence of structure. Assuming compound nucleus formation at $E_d = 2.0$ MeV, and taking $\sigma = 5$ μb, Γ_γ (total) ≈ 20 eV (1964NE09). See also (1959AJ76).

7. 14C(d, n)15N

$Q_m = 7.984$

$E_b = 10.471$

Observed resonances in the yield of ground state neutrons are displayed in Table 16.4 (1961CH14, 1963IM01). The yield of neutrons to 15N*(5.3, 6.32) has been measured by (1967LA11) for $2.9 < E_d < 3.1$ MeV. See also (1964NE09) and 15N in (1970AJ04).

8. 14C(d, p)15C

$Q_m = -1.007$

$E_b = 10.471$

The cross section of the γ-rays to 15C*(0.75) rises monotonically for $2.7 < E_d < 3.4$ MeV. At $E_d = 3.4$ MeV it is ≈ 75 mb (1962CH14). Observed resonances are shown in Table 16.4 (1956DO37). See also (1959AJ76) and 15C in (1970AJ04).
Table 16.4: Resonances in 14C + d

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Resonant for</th>
<th>$\Gamma_{c.m.}$ (keV)</th>
<th>E_x (MeV)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.30 a</td>
<td>n_0</td>
<td>220</td>
<td>11.61</td>
<td>(1961CH14, 1963IM01)</td>
</tr>
<tr>
<td>1.65</td>
<td>n_0</td>
<td>390</td>
<td>11.91</td>
<td>(1961CH14)</td>
</tr>
<tr>
<td>2.04 a</td>
<td>n_0, p</td>
<td>290</td>
<td>12.25</td>
<td>(1956DO37, 1961CH14, 1963IM01)</td>
</tr>
<tr>
<td>2.44 a</td>
<td>n_0, p</td>
<td>180</td>
<td>12.60</td>
<td>(1956DO37, 1961CH14)</td>
</tr>
<tr>
<td>2.75</td>
<td>n_0, p</td>
<td>155</td>
<td>12.88</td>
<td>(1956DO37, 1961CH14, 1963IM01)</td>
</tr>
<tr>
<td>2.86</td>
<td>n_0</td>
<td>175</td>
<td>12.97</td>
<td>(1961CH14)</td>
</tr>
<tr>
<td>(3.10)</td>
<td>n_0</td>
<td>(175)</td>
<td>(13.18)</td>
<td>(1961CH14)</td>
</tr>
</tbody>
</table>

a See also (1964NE09).

9. 14C(d, α)12B

$Q_m = 0.361 \quad E_b = 10.471$

See 12B in (1968AJ02).

10. 14C(t, n)16N

$Q_m = 4.213$

Not reported.

11. 14C(3He, p)16N

$Q_m = 4.977$

Thirteen proton groups have been observed corresponding to states of 16N with $0 < E_x < 5.3$ MeV (1966GA08); see Table 16.5. At $E(^3$He) = 12 MeV, four proton groups are observed corresponding to two $T = 1$ states, and to two $T = 2$ states at $E_x = 9.93$ and 11.70 MeV with $J^\pi = 0^+$ and $(1^-, 2^+)$, respectively, corresponding to the first two states of 16C (1968HE03). See also (1969BA1Z). Angular distributions of the protons to 16N*(0, 3.36, 3.52, 3.96) have been measured at $E(^3$He) = 1 to 9 MeV; 16N(0) has odd parity; the three excited states have even parity (1968DA1N, 1970LI1F). See also (1964DU1A, 1964WE1A, 1966DU1B, 1966GO1J).

12. 14C(α, d)16N

$Q_m = -13.376$

At $E_\alpha = 46$ MeV, the angular distributions of five deuteron groups [see Table 16.5] have been determined: J^π of 16N*(5.74) (the most strongly populated state) is (5^+) (1969LU07).
Table 16.5: Excited states in 16N from 14C(3He, p)16N and 14C(α, d)16N

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>Γ (keV)</th>
<th>$J^\pi; T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C(3He, p)16N</td>
<td>14C(α, d)16N</td>
<td>14C(3He, p)16N</td>
</tr>
<tr>
<td>0.121 ± 6</td>
<td>0.121 ± 6</td>
<td>0.307 ± 20</td>
</tr>
<tr>
<td>0.298 ± 6</td>
<td>0.298 ± 6</td>
<td>3.961 ± 20</td>
</tr>
<tr>
<td>0.396 ± 7</td>
<td>0.396 ± 7</td>
<td>5.745 ± 20</td>
</tr>
<tr>
<td>3.348 ± 7</td>
<td>3.348 ± 7</td>
<td>7.599 ± 30</td>
</tr>
<tr>
<td>3.517 ± 7</td>
<td>3.517 ± 7</td>
<td>5.745 ± 20</td>
</tr>
<tr>
<td>3.958 ± 7</td>
<td>3.958 ± 7</td>
<td>7.599 ± 30</td>
</tr>
<tr>
<td>4.313 ± 9</td>
<td>4.313 ± 9</td>
<td>15 ± 8</td>
</tr>
<tr>
<td>4.386 ± 9</td>
<td>4.386 ± 9</td>
<td>15 ± 8</td>
</tr>
<tr>
<td>4.768 ± 11</td>
<td>4.768 ± 11</td>
<td>< 12</td>
</tr>
<tr>
<td>5.052 ± 9</td>
<td>5.052 ± 9</td>
<td>< 12</td>
</tr>
<tr>
<td>5.137 ± 9</td>
<td>5.137 ± 9</td>
<td>< 12</td>
</tr>
<tr>
<td>5.234 ± 9</td>
<td>5.234 ± 9</td>
<td>< 12</td>
</tr>
</tbody>
</table>

a 14C(3He, p)16N.

b 14C(α, d)16N.
Proton groups observed at $E_t = 2.2$ to 2.6 MeV (1961SI04) and at 12 MeV (1966HE10) are displayed in Table 16.6. Angular distributions are reported at $E_t = 1.8$ MeV (1964SC09; $p_0 \rightarrow p_i$) and at 12 MeV (1966HE10). At the latter energy they have been analyzed by PWBA: see Table 16.6. See also (1961JA14).

Table 16.6: States in 16N from 14N(t, p)16N

<table>
<thead>
<tr>
<th>(1961SI04)</th>
<th>(1966HE10)</th>
<th>J^π</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_x (MeV ± keV)</td>
<td>Γ (keV)</td>
<td>E_x (MeV ± keV)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.120 ± 10</td>
</tr>
<tr>
<td>0.121 ± 10</td>
<td></td>
<td>0.120 ± 10</td>
</tr>
<tr>
<td>0.297 ± 10</td>
<td></td>
<td>0.300 ± 10</td>
</tr>
<tr>
<td>0.396 ± 10</td>
<td></td>
<td>0.399 ± 10</td>
</tr>
<tr>
<td>3.340 ± 25</td>
<td>$\leq 25 \pm 17$</td>
<td>3.359 ± 10</td>
</tr>
<tr>
<td>3.506 ± 25</td>
<td>$\leq 25 \pm 8$</td>
<td>3.519 ± 10</td>
</tr>
<tr>
<td>3.956 ± 25</td>
<td>$\leq 25 \pm 8$</td>
<td>3.957 ± 10</td>
</tr>
<tr>
<td>4.318 ± 25</td>
<td>$\leq 25 \pm 8$</td>
<td>4.318 ± 10</td>
</tr>
<tr>
<td>4.392 ± 25</td>
<td>110 ± 31</td>
<td>4.391 ± 10</td>
</tr>
<tr>
<td>4.725 ± 10</td>
<td></td>
<td>4.725 ± 10</td>
</tr>
<tr>
<td>4.773 ± 25</td>
<td>66 ± 7</td>
<td>4.774 ± 10</td>
</tr>
<tr>
<td>5.059 ± 25</td>
<td>$\leq 25 \pm 8$</td>
<td>5.053 ± 10</td>
</tr>
<tr>
<td>5.130 ± 10</td>
<td></td>
<td>5.130 ± 10</td>
</tr>
<tr>
<td>5.141 ± 25</td>
<td>38 ± 12</td>
<td>5.150 ± 10</td>
</tr>
<tr>
<td>5.230 ± 25</td>
<td>$\leq 20 \pm 8$</td>
<td>5.226 ± 10</td>
</tr>
<tr>
<td>5.305 ± 10</td>
<td></td>
<td>5.305 ± 10</td>
</tr>
<tr>
<td>5.526 ± 25</td>
<td>$\leq 20 \pm 8$</td>
<td>5.520 ± 10</td>
</tr>
<tr>
<td>5.730 ± 10</td>
<td></td>
<td>5.730 ± 10</td>
</tr>
<tr>
<td>6.009 ± 10</td>
<td></td>
<td>6.009 ± 10</td>
</tr>
<tr>
<td>6.167 ± 10</td>
<td></td>
<td>6.167 ± 10</td>
</tr>
<tr>
<td>6.317 ± 10</td>
<td></td>
<td>6.317 ± 10</td>
</tr>
<tr>
<td>6.422 ± 10</td>
<td></td>
<td>6.422 ± 10</td>
</tr>
<tr>
<td>6.512 ± 10</td>
<td></td>
<td>6.512 ± 10</td>
</tr>
</tbody>
</table>
Table 16.6: States in 16N from 14N(t, p)16N (continued)

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>Γ (keV)</th>
<th>E_x (MeV ± keV)</th>
<th>Γ (keV)</th>
<th>J^p</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.613 ± 10</td>
<td>≤ 7 ± 4</td>
<td>6.613 ± 10</td>
<td>≤ 7 ± 4</td>
<td></td>
</tr>
<tr>
<td>6.854 ± 10</td>
<td>≤ 7 ± 4</td>
<td>6.854 ± 10</td>
<td>≤ 7 ± 4</td>
<td></td>
</tr>
<tr>
<td>7.006 ± 10</td>
<td>22 ± 5</td>
<td>7.006 ± 10</td>
<td>22 ± 5</td>
<td></td>
</tr>
<tr>
<td>7.133 ± 10</td>
<td>≤ 7 ± 4</td>
<td>7.133 ± 10</td>
<td>≤ 7 ± 4</td>
<td></td>
</tr>
<tr>
<td>7.250 ± 10</td>
<td>17 ± 5</td>
<td>7.250 ± 10</td>
<td>17 ± 5</td>
<td></td>
</tr>
<tr>
<td>7.573 ± 10</td>
<td>≤ 7 ± 4</td>
<td>7.573 ± 10</td>
<td>≤ 7 ± 4</td>
<td></td>
</tr>
<tr>
<td>7.640 ± 10</td>
<td>≤ 7 ± 4</td>
<td>7.640 ± 10</td>
<td>≤ 7 ± 4</td>
<td></td>
</tr>
<tr>
<td>7.675 ± 10</td>
<td>≤ 7 ± 4</td>
<td>7.675 ± 10</td>
<td>≤ 7 ± 4</td>
<td></td>
</tr>
<tr>
<td>7.876 ± 10</td>
<td>100 ± 15</td>
<td>7.876 ± 10</td>
<td>100 ± 15</td>
<td></td>
</tr>
<tr>
<td>8.043 ± 10</td>
<td>85 ± 15</td>
<td>8.043 ± 10</td>
<td>85 ± 15</td>
<td></td>
</tr>
<tr>
<td>8.183 ± 10</td>
<td>28 ± 8</td>
<td>8.280 ± 10</td>
<td>24 ± 8</td>
<td></td>
</tr>
<tr>
<td>8.361 ± 10</td>
<td>18 ± 8</td>
<td>8.361 ± 10</td>
<td>18 ± 8</td>
<td></td>
</tr>
</tbody>
</table>

14. 15N(n, γ)16N

$Q_m = 2.487$

The thermal cross section is $24 \pm 8 \mu b$ (1958HU18).

15. 15N(n, n)15N

$E_b = 2.487$

The total cross section has been measured for $E_n = 0.4$ to 6.5 MeV: see (1959SC30, 1962SI05, 1964DO09, 1964DO1D, 1964FO07, 1966FO11). See also (1960SI03, 1960SI12). Observed resonances are displayed in Table 16.7. See also (1964ST25). Angular distributions of elastically scattered neutrons have been measured at a number of energies for $E_n = 0.4$ to 5 MeV (1962SI05, 1964DO09, 1964DO1D). See also (1963GO1J). See also (1964LE20, 1965BA1N, 1967EB02, 1967EB03, 1968AG1E, 1968HU1F, 1969AN1K, 1969DO05, 1970PO1B).

16. 15N(n, p)15C

$Q_m = -8.990$

$E_b = 2.487$
Table 16.7: Resonances in 15N(n, n)15N

<table>
<thead>
<tr>
<th>E_{res} a (MeV ± keV)</th>
<th>Γ_{lab} (keV)</th>
<th>E_x (MeV)</th>
<th>J^π</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.93 ± 20</td>
<td>30 ± 10</td>
<td>3.36</td>
<td>1⁺</td>
<td>(1964DO09, 1964FO07)</td>
</tr>
<tr>
<td>1.11 ± 20</td>
<td>20 ± 10</td>
<td>3.53</td>
<td>(0⁺)</td>
<td>(1964FO07)</td>
</tr>
<tr>
<td>1.57 ± 20</td>
<td>≤ 10</td>
<td>3.96</td>
<td>(1⁻)</td>
<td>(1964FO07)</td>
</tr>
<tr>
<td>1.94 ± 20</td>
<td>≤ 15</td>
<td>4.30</td>
<td>(1⁺)</td>
<td>(1962SI05, 1964DO09, 1964FO07)</td>
</tr>
<tr>
<td>2.04 ± 20</td>
<td>65 ± 10</td>
<td>4.40</td>
<td>1⁻</td>
<td>(1962SI05, 1964FO07)</td>
</tr>
<tr>
<td>2.45 ± 20</td>
<td>90 ± 15</td>
<td>4.78</td>
<td>2⁺(1⁺)</td>
<td>(1962SI05)</td>
</tr>
<tr>
<td>(2.55)</td>
<td>(1200)</td>
<td>(4.88)</td>
<td>(1⁻)</td>
<td>(1962SI05)</td>
</tr>
<tr>
<td>2.65 ± 100</td>
<td>1100 ± 200</td>
<td>4.97</td>
<td>2⁻</td>
<td>(1962SI05)</td>
</tr>
<tr>
<td>2.74 ± 30</td>
<td>50 ± 15</td>
<td>5.05</td>
<td>(1, 2⁻)</td>
<td>(1962SI05)</td>
</tr>
<tr>
<td>2.82 ± 30</td>
<td>≤ 40</td>
<td>5.13</td>
<td>(3⁻, 4⁻, 5⁻)</td>
<td>(1962SI05)</td>
</tr>
<tr>
<td>2.98 ± 30</td>
<td>200 ± 30</td>
<td>5.28</td>
<td>(2, 3)</td>
<td>(1956BA1A, 1959SC30, 1962SI05)</td>
</tr>
<tr>
<td>(3.48 ± 25)</td>
<td>(30)</td>
<td>(5.75)</td>
<td>(0)</td>
<td>(1964DO1D, 1966FO11)</td>
</tr>
<tr>
<td>3.73 ± 25</td>
<td>broad</td>
<td>5.98</td>
<td>(1, 2)</td>
<td>(1966FO11)</td>
</tr>
<tr>
<td>(4.00 ± 25)</td>
<td>(75)</td>
<td>(6.23)</td>
<td>(0)</td>
<td>(1964DO1D, 1966FO11)</td>
</tr>
<tr>
<td>(4.2 ± 25)</td>
<td>(broad)</td>
<td>(6.4)</td>
<td>(3)</td>
<td>(1966FO11)</td>
</tr>
<tr>
<td>4.27 ± 25</td>
<td>60 ± 20</td>
<td>6.49</td>
<td>2</td>
<td>(1964DO1D, 1966FO11)</td>
</tr>
<tr>
<td>4.78 ± 25</td>
<td>30 ± 10</td>
<td>6.96</td>
<td>1</td>
<td>(1966FO11)</td>
</tr>
<tr>
<td>4.86 ± 25</td>
<td>30 ± 20</td>
<td>7.04</td>
<td>(0)</td>
<td>(1966FO11)</td>
</tr>
<tr>
<td>5.05 ± 25</td>
<td>25 ± 10</td>
<td>7.22</td>
<td>3</td>
<td>(1966FO11)</td>
</tr>
<tr>
<td>5.42 ± 25</td>
<td>≤ 20</td>
<td>7.56</td>
<td>≥ 4</td>
<td>(1966FO11)</td>
</tr>
<tr>
<td>5.50 ± 25</td>
<td>≤ 25</td>
<td>7.64</td>
<td>≥ 1</td>
<td>(1966FO11)</td>
</tr>
<tr>
<td>(5.55 ± 25)</td>
<td>(7.69)</td>
<td></td>
<td></td>
<td>(1966FO11)</td>
</tr>
<tr>
<td>5.72 ± 25</td>
<td>150 ± 50</td>
<td>7.85</td>
<td>4, 5</td>
<td>(1966FO11)</td>
</tr>
<tr>
<td>5.89 ± 25</td>
<td>40 ± 20</td>
<td>8.00</td>
<td>≥ 2</td>
<td>(1966FO11)</td>
</tr>
<tr>
<td>(6.25 ± 25)</td>
<td>(8.34)</td>
<td></td>
<td></td>
<td>(1966FO11)</td>
</tr>
</tbody>
</table>

a See also (1964ST25).
At $E_n = 14.8$ MeV, $\sigma = 16 \pm 4 \text{ mb}$ (1966PR1A).

17. $^{15}\text{N}(n, \alpha)^{12}\text{B}$
 $Q_m = -7.623$
 $E_b = 2.487$

 See (1948JE03, 1964GA1A).

18. $^{15}\text{N}(d, p)^{16}\text{N}$
 $Q_m = 0.262$
 $Q_0 = 0.270 \pm 0.010$ (1966HE10);
 $Q_0 = 0.267 \pm 0.008$ (1963SP1B).

Levels derived from observed proton groups and γ-rays are listed in Table 16.8 (1957FR56, 1957WA01, 1957WI1B, 1963GI11, 1966HE10). Gamma transitions are shown in the inset of Fig. 2 (1963GI11).

The half-life of $^{16}\text{N}^*(0.12) = 6.7 \pm 0.5$ μsec (1957FR56), 5.43 ± 0.22 μsec (1959ZI18), 7.58 ± 0.09 μsec (1967BE14), together with the stripping results, leads to $J^\pi = 0^-$ for $^{16}\text{N}^*(0.12)$; this is confirmed also by the measured α_K which is consistent with that for an E2 transition (1963GI11). The stripping pattern leads to $J^\pi = 0^-$ or 1^- for $^{16}\text{N}^*(0.40)$. However, since it decays to both $^{16}\text{N}^*(0, 0.12)$ [$J^\pi = 2^-, 0^-$, respectively], $J^\pi = 1^-$ is indicated: see (1956ZI1A, 1957WA01, 1957WI1B). The assignment $J^\pi = 3^-$ for $^{16}\text{N}^*(0.30)$ is strongly favored by the $(p-\gamma)$ angular correlation (1957FR56).

19. $^{15}\text{N}(t, d)^{16}\text{N}$
 $Q_m = -3.771$

 Not reported.

20. $^{15}\text{N}(\alpha, ^3\text{He})^{16}\text{N}$
 $Q_m = -18.091$

 Not reported.

21. $^{15}\text{N}(^{11}\text{B}, ^{10}\text{B})^{16}\text{N}$
 $Q_m = -8.969$

 See (1969BR1D).

22. $^{16}\text{C}(\beta^-)^{16}\text{N}$
 $Q_m = 8.010$

 See ^{16}C.
Table 16.8: Levels of 16N from 15N(d, p)16N and 18O(d, α)16N

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>(1957WA01, 1963GI11) a</th>
<th>(1966HE10) a</th>
<th>(1966HE10) $^{b, f}$</th>
<th>(1970BO08) b</th>
<th>J^π c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>2$^-$</td>
</tr>
<tr>
<td>0.1201 ± 0.5 d</td>
<td>0.125 ± 10</td>
<td>0.119 ± 15</td>
<td></td>
<td></td>
<td>0$^-$</td>
</tr>
<tr>
<td>0.2962 ± 1.0 d</td>
<td>0.299 ± 10</td>
<td>0.301 ± 15</td>
<td></td>
<td></td>
<td>3$^-$</td>
</tr>
<tr>
<td>0.3973 ± 1.0 d</td>
<td>0.398 ± 10</td>
<td>0.400 ± 15</td>
<td></td>
<td></td>
<td>1$^-$</td>
</tr>
<tr>
<td></td>
<td>3.365 ± 10</td>
<td>3.358 ± 15</td>
<td></td>
<td></td>
<td>(1$^+$)</td>
</tr>
<tr>
<td>(3.53 ± 30)</td>
<td>3.523 ± 10</td>
<td>3.524 ± 15</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.98 ± 20</td>
<td>3.964 ± 10</td>
<td>3.964 ± 15</td>
<td></td>
<td></td>
<td>(2, 3)$^+$</td>
</tr>
<tr>
<td></td>
<td>4.325 ± 10</td>
<td>4.324 ± 15</td>
<td>(1$^+$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.715 ± 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.80 ± 50 e</td>
<td>4.780 ± 10</td>
<td>4.787 ± 15</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4.90 ± 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5.01 ± 50)</td>
<td>5.032 ± 10</td>
<td>5.065 ± 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.128 ± 10</td>
<td>5.139 ± 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.150 ± 10</td>
<td>5.139 ± 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.25 ± 50 e</td>
<td>5.231 ± 10</td>
<td>5.240 ± 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.310 ± 10</td>
<td>5.240 ± 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.523 ± 10</td>
<td>5.528 ± 15</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.739 ± 10</td>
<td>5.740 ± 15</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.01 ± 15 k</td>
<td></td>
<td></td>
<td></td>
<td>h</td>
</tr>
<tr>
<td></td>
<td>6.170 ± 10</td>
<td>6.168 ± 15</td>
<td></td>
<td></td>
<td>h</td>
</tr>
<tr>
<td>(6.28 ± 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>h</td>
</tr>
<tr>
<td>6.376 ± 10</td>
<td>6.37 ± 15 k</td>
<td></td>
<td></td>
<td></td>
<td>h</td>
</tr>
<tr>
<td>6.431 ± 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>h</td>
</tr>
<tr>
<td>6.514 ± 10</td>
<td>6.512 ± 15</td>
<td></td>
<td></td>
<td></td>
<td>h</td>
</tr>
<tr>
<td>6.609 ± 10</td>
<td>6.620 ± 15</td>
<td></td>
<td></td>
<td></td>
<td>h</td>
</tr>
<tr>
<td>(6.79 ± 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>h</td>
</tr>
<tr>
<td>6.847 ± 10</td>
<td>6.852 ± 15</td>
<td></td>
<td></td>
<td></td>
<td>h</td>
</tr>
</tbody>
</table>
Table 16.8: Levels of $^{15}\text{N}(d, p)^{16}\text{N}$ and $^{18}\text{O}(d, \alpha)^{16}\text{N}$ (continued)

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$^a(1957\text{WA01}, 1963\text{GI11})$</th>
<th>$^a(1966\text{HE10})$</th>
<th>$^b,f(1966\text{HE10})$</th>
<th>$^{b}(1970\text{BO08})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.034 ± 10</td>
<td></td>
<td></td>
<td>7.01 ± 15 k</td>
<td></td>
</tr>
<tr>
<td>7.135 ± 10</td>
<td></td>
<td>7.141 ± 15</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>7.250 ± 10</td>
<td></td>
<td>7.247 ± 15</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>7.577 ± 10</td>
<td></td>
<td>7.596 ± 15</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>7.638 ± 10</td>
<td></td>
<td></td>
<td>7.64 ± 15 k</td>
<td></td>
</tr>
<tr>
<td>7.676 ± 10</td>
<td></td>
<td>7.683 ± 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.840 ± 10</td>
<td></td>
<td></td>
<td>7.88 ± 15 k</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.06 ± 15 k</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.18 ± 15 k</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.49 ± 30 i</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.819 ± 15 j</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.035 ± 15</td>
<td>(9.16 ± 30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(9.34 ± 30)</td>
<td>(9.459 ± 15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(9.66 ± 40)</td>
<td>(9.794 ± 15 j)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.90 ± 30</td>
<td>10.055 ± 15 j</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10.17 ± 30)</td>
<td>(10.26 ± 30)</td>
</tr>
</tbody>
</table>
a $^{15}\text{N}(d, p)^{16}\text{N}$.
b $^{18}\text{O}(d, \alpha)^{16}\text{N}$.
c J^π assignment from angular distribution analyses and gamma decay (1956ZI1A, 1957WA01, 1970BO08).
d From γ-decay studies (1963GI11). (1957FR56, 1957WI1B) found $E_x = 120 \pm 1, 294 \pm 5$ and 392 ± 3 keV.
e $\Gamma_{\text{c.m.}} = 230 \pm 40$ and 290 ± 50 keV, respectively (1957WA01).
f See also (1970BO08).
g Angular distribution reported in $^{18}\text{O}(d, \alpha)^{16}\text{N}$ at $E_d = 10.0 - 11.2$ MeV but L not determined (1970BO08).
h Alpha group seen but E_x not determined.
i Γ for this level and the ones listed below $\leq 40 - 50$ keV (1970BO08).
j These levels appear to be correlated with thresholds for neutron emission to excited states of ^{15}N (1970BO08, 1970BO09).
k T.I. Bonner, private communication.

23. $^{16}\text{O}(n, p)^{16}\text{N}$ \hspace{1cm} $Q_m = -9.639$

At $E_n = 14.4$ MeV, the angular distribution of the neutrons to the (unresolved) first four states of ^{16}N has been measured by (1964PA11). See also (1959PR73, 1961KA06, 1963AL18, 1964AL22, 1964BI02, 1965GR21, 1966SC05, 1966SC1G).

24. $^{16}\text{O}(t, ^3\text{He})^{16}\text{N}$ \hspace{1cm} $Q_m = -10.403$

At $E_t = 22$ MeV, ^3He groups have been observed to the first four states of ^{16}N: $E_x = 0, 0.121, 0.305$ and 0.395 MeV (± 15 keV) (F. Ajzenberg-Selove and O. Hansen, private communication).

25. $^{17}\text{O}(d, ^3\text{He})^{16}\text{N}$ \hspace{1cm} $Q_m = -8.288$

Not reported.

26. $^{18}\text{O}(n, t)^{16}\text{N}$ \hspace{1cm} $Q_m = -13.346$

Not reported.

27. $^{18}\text{O}(p, ^3\text{He})^{16}\text{N}$ \hspace{1cm} $Q_m = -14.110$
At $E_p = 43.7$ MeV, the angular distribution of the ^3He nuclei corresponding to a state at $E_x = 9.9$ MeV fixes $L = 0$ and therefore $J^\pi = 0^+$ for $^{16}\text{N}^*(9.9)$: it is presumably the $T = 2$ analog of the ground state of ^{16}C. Some lower-lying $T = 1$ states were also observed (1964CE05). See also (1969GA1P).

28. $^{18}\text{O}(d, \alpha)^{16}\text{N}$

$Q_m = 4.244$

$Q_0 = 4.249 \pm 0.015$ (1966HE10);

$Q_0 = 4.244 \pm 0.004$ (1967SP09).

Forty-three α-particle groups have been observed at $E_d \leq 12$ MeV, corresponding to states of ^{16}N with $E_x < 10.3$ MeV: see Table 16.8 (1966HE10, 1970BO08, 1970BO09). $^{16}\text{N}^*(8.82, 9.8, 10.06)$ may be related to nearly bound virtual states of a $2s_{1/2}$ neutron with $^{15}\text{N}^*(6.32, 7.30, 7.57)$ (1970BO08, 1970BO09). τ_m for $^{16}\text{N}^*(0.4) = 42 \pm 10$ psec; $|M|^2$ for the M1 transition to $^{16}\text{N}^*(0.1)$ is 0.0350 W.u. (1969NI09). See also (1961LO10, 1964AM1A, 1964MA57) and ^{20}F in (1972AJ02).

29. $^{18}\text{O}(^6\text{Li}, ^8\text{Be})^{16}\text{N}$

$Q_m = 2.677$

τ_m for $^{16}\text{N}^*(0.3) = 95 \pm 20$ psec; $|M|^2 = 0.0126$ W.u. (1969NI09).

30. $^{19}\text{F}(n, \alpha)^{16}\text{N}$

$Q_m = -1.524$

Angular distributions have been reported for $E_n = 4.7$ to 14.4 MeV: see (1966BH05, 1966KN02, 1968AN1F, 1968RE07). See also (1959KO60, 1960BO1B, 1965HA1G), (1959AJ76) and ^{20}F in (1972AJ02).
\(^{16}\text{O}\)
(Figs. 3 and 5)

GENERAL: (See also \(1959\text{AJ76}.\))

Mass measurement: 15.994 9121 (±12) amu (1968MA45).

1. $^6\text{Li}(^{14}\text{N}, \alpha)^{16}\text{O}$

 $Q_m = 19.264$

 The angular distribution of the α-particles corresponding to $^{16}\text{O}(0)$ has been measured at $E(^{14}\text{N}) = 27.6$ MeV (1964WA1B). See also reaction 37.

2. (a) $^{10}\text{B}(^6\text{Li}, p)^{15}\text{N}$
 (b) $^{10}\text{B}(^6\text{Li}, d)^{14}\text{N}$
 (c) $^{10}\text{B}(^6\text{Li}, t)^{13}\text{N}$
 (d) $^{10}\text{B}(^6\text{Li}, ^3\text{He})^{13}\text{C}$
 (e) $^{10}\text{B}(^6\text{Li}, \alpha)^{12}\text{C}$

 $Q_m = 18.751$ (a) $E_b = 30.877$ $Q_m = 10.141$ $Q_m = 5.845$ $Q_m = 8.085$ $Q_m = 23.716$

 At $E(^6\text{Li}) = 4.9$ MeV, the cross sections for reactions (a) to (e) leading to low-lying states in the residual nuclei are proportional to $(2J_f + 1)$: this is interpreted as indicating that the reactions proceed via a statistical compound nucleus mechanism. For highly excited states, the cross section is higher than would be predicted by a $(2J_f + 1)$ dependence (1966MC05). The yield curves for α_0 and α_1 (reaction (e)) measured at 0° for $E(^6\text{Li}) = 3.2$ to 13.6 MeV show broad structures. At 90°, for $E(^6\text{Li}) = 9.7$ to 13.0 MeV no structure is apparent, suggesting that the 0° yield is explainable in terms of Ericson fluctuations (1967SE08). See also (1963MO1B, 1964GA1E, 1967CA1D, 1970GI05).
<table>
<thead>
<tr>
<th>E_x in 16O (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>$\Gamma_{c.m.}$ (keV) or τ_m</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0$^+; 0$</td>
<td>–</td>
<td>stable</td>
<td>1, 3, 5, 11, 12, 13, 14, 15, 16, 17, 18, 24, 25, 26, 27, 28, 35, 36, 37, 38, 39, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81</td>
</tr>
<tr>
<td>6.0502 ± 1.0</td>
<td>0$^+; 0$</td>
<td>72 ± 7 psec</td>
<td>π</td>
<td>11, 12, 24, 27, 35, 36, 37, 44, 47, 55, 56, 58, 61, 66, 67, 70, 71, 79, 80</td>
</tr>
<tr>
<td>6.13066 ± 0.18</td>
<td>3$^−; 0$</td>
<td>24 ± 2 psec</td>
<td>γ</td>
<td>3, 4, 11, 12, 25, 27, 35, 36, 37, 43, 44, 47, 55, 56, 57, 58, 61, 64, 66, 67, 70, 71, 74, 79, 80</td>
</tr>
<tr>
<td>6.9168 ± 0.6</td>
<td>2$^+; 0$</td>
<td>6.8 ± 0.4 fsec</td>
<td>γ</td>
<td>11, 12, 25, 27, 35, 36, 37, 43, 44, 55, 56, 57, 58, 61, 64, 66, 70, 71, 74, 79</td>
</tr>
<tr>
<td>7.11867 ± 0.35</td>
<td>1$^−; 0$</td>
<td>10.6 ± 0.9 fsec</td>
<td>γ</td>
<td>9, 11, 12, 25, 27, 35, 36, 37, 43, 44, 47, 55, 56, 57, 58, 61, 64, 66, 67, 70, 71, 74</td>
</tr>
<tr>
<td>8.8717 ± 0.5</td>
<td>2$^−; 0$</td>
<td>180 ± 16 fsec</td>
<td>γ</td>
<td>4, 11, 12, 25, 35, 36, 43, 44, 47, 56, 57, 61, 66, 67, 70, 74</td>
</tr>
<tr>
<td>9.597 ± 21</td>
<td>1$^−; 0$</td>
<td>$\Gamma = 510 \pm 60$</td>
<td>γ, α</td>
<td>5, 9, 11, 12, 35, 44, 47, 61</td>
</tr>
<tr>
<td>9.8469 ± 2.8</td>
<td>2$^+; 0$</td>
<td>1.1</td>
<td>γ, α</td>
<td>5, 9, 11, 12, 25, 35, 36, 43, 44, 47, 55, 57, 61, 70, 74, 79</td>
</tr>
<tr>
<td>10.353 ± 4</td>
<td>4$^+; 0$</td>
<td>27 ± 4</td>
<td>γ, α</td>
<td>5, 9, 11, 12, 25, 35, 36, 44, 57, 61, 66, 74</td>
</tr>
<tr>
<td>10.952 ± 3</td>
<td>0$^−; 0$</td>
<td>$\tau_m = 8 \pm 5$ fsec</td>
<td>γ</td>
<td>35, 36, 43, 44</td>
</tr>
<tr>
<td>11.080 ± 3</td>
<td>3$^+; 0$</td>
<td>57 ± 19 fsec</td>
<td>γ</td>
<td>35, 36, 43, 44, 57, 74</td>
</tr>
<tr>
<td>11.096 ± 3</td>
<td>4$^+; 0$</td>
<td>$\Gamma = 0.3 \pm 0.1$</td>
<td>α</td>
<td>9, 11, 12, 25, 35, 36, 43, 44, 57, 74</td>
</tr>
<tr>
<td>11.26</td>
<td>0$^+; 0$</td>
<td>2500</td>
<td>α</td>
<td>9, 43, 44</td>
</tr>
<tr>
<td>(11.44)</td>
<td>3$^−; 0$</td>
<td>830</td>
<td>α</td>
<td>9</td>
</tr>
<tr>
<td>11.521 ± 4</td>
<td>2$^+; 0$</td>
<td>74 ± 4</td>
<td>γ, α</td>
<td>5, 11, 35, 36, 55, 61</td>
</tr>
<tr>
<td>11.63</td>
<td>3$^−; 0$</td>
<td>1200</td>
<td>α</td>
<td>9, 11</td>
</tr>
<tr>
<td>12.053 ± 3</td>
<td>0$^+; 0$</td>
<td>1.5 ± 0.5</td>
<td>α</td>
<td>9, 11, 35, 36, 55, 76, 61</td>
</tr>
<tr>
<td>12.441 ± 4</td>
<td>1$^−; 0$</td>
<td>97 ± 6</td>
<td>γ, p, α</td>
<td>5, 7, 9, 11, 35, 36, 39, 40, 42, 43, 44</td>
</tr>
<tr>
<td>12.528 ± 1</td>
<td>2$^−; 0$</td>
<td>≤ 0.5</td>
<td>γ, p, α</td>
<td>11, 35, 36, 39, 40, 42, 43, 44, 55, 77</td>
</tr>
<tr>
<td>12.795 ± 5</td>
<td>0$^−; 1$</td>
<td>38 ± 4</td>
<td>γ, p</td>
<td>35, 39, 40, 43, 44</td>
</tr>
</tbody>
</table>
Table 16.9: Energy Levels of 16O 8 (continued)

<table>
<thead>
<tr>
<th>E_x in 16O (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>$\Gamma_{c.m.}$ (keV) or τ_m</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.9666 ± 0.9</td>
<td>$2^−; 1$</td>
<td>$2.0 ± 0.2$</td>
<td>γ, p, α</td>
<td>35, 39, 40, 42, 43, 44, 45, 55</td>
</tr>
<tr>
<td>13.02 ± 10</td>
<td>2^+</td>
<td>$150 ± 11$</td>
<td>α</td>
<td>9, 55</td>
</tr>
<tr>
<td>13.093 ± 6</td>
<td>$1^−; 1$</td>
<td>$127 ± 8$</td>
<td>γ, p, α</td>
<td>5, 7, 9, 11, 34, 35, 39, 40, 42, 44, 55</td>
</tr>
<tr>
<td>13.129 ± 10</td>
<td>$3^−; 0$</td>
<td>$128 ± 11$</td>
<td>p, α</td>
<td>7, 9, 36, 44</td>
</tr>
<tr>
<td>13.14 ± 100</td>
<td>2^+</td>
<td>$≈ 250$</td>
<td>γ, p, α</td>
<td>5, 42</td>
</tr>
<tr>
<td>13.2582 ± 2.5</td>
<td>$3^−; 1$</td>
<td>$21 ± 1$</td>
<td>γ, p, α</td>
<td>5, 7, 9, 11, 35, 40, 42, 43, 44, 67</td>
</tr>
<tr>
<td>13.6634 ± 2.7</td>
<td>$1^+; 0$</td>
<td>$64 ± 3$</td>
<td>p, α</td>
<td>35, 36, 40, 42, 57</td>
</tr>
<tr>
<td>13.869 ± 10</td>
<td>4^+</td>
<td>$85 ± 14$</td>
<td>p, α</td>
<td>9, 11, 35, 42, 57</td>
</tr>
<tr>
<td>13.9782 ± 2.4</td>
<td>$2^−$</td>
<td>$22 ± 2$</td>
<td>p, α</td>
<td>35, 40, 42, 61</td>
</tr>
<tr>
<td>14.00 ± 50</td>
<td>0^+</td>
<td>$170 ± 50$</td>
<td>γ</td>
<td>55</td>
</tr>
<tr>
<td>14.0</td>
<td>0^+</td>
<td>4800</td>
<td>α</td>
<td>9</td>
</tr>
<tr>
<td>14.39 ± 25</td>
<td>$4^+; 0$</td>
<td>$30 ± 30$</td>
<td></td>
<td>11, 25, 35, 36</td>
</tr>
<tr>
<td>(14.53)</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>14.82 ± 30</td>
<td>$6^+; 0$</td>
<td>$69 ± 30$</td>
<td>α</td>
<td>9, 11, 25, 36</td>
</tr>
<tr>
<td>14.922 ± 6</td>
<td>4^+</td>
<td>$51 ± 7$</td>
<td>p, α</td>
<td>34, 35, 40, 42, 61</td>
</tr>
<tr>
<td>15.22 ± 35</td>
<td>$2^−$</td>
<td>$70 ± 15$</td>
<td>p, α</td>
<td>11, 40, 42, 57, 67</td>
</tr>
<tr>
<td>15.26 ± 50</td>
<td>$2^+; (0)$</td>
<td>$660 ± 90$</td>
<td>γ, p, α</td>
<td>11, 39, 40, 42, 55</td>
</tr>
<tr>
<td>15.42 ± 40</td>
<td>$(1^−, 3^−)$</td>
<td>$95 ± 25$</td>
<td>p, α</td>
<td>7, 9, 34, 40, 42, 67</td>
</tr>
<tr>
<td>15.792 ± 14</td>
<td>$(T = 0)$</td>
<td>$≈ 60$</td>
<td></td>
<td>11, 35, 36</td>
</tr>
<tr>
<td>16.218 ± 13</td>
<td>$1^+; 1$</td>
<td>$19 ± 6$</td>
<td>γ, n, p</td>
<td>35, 39, 40, 41, 48, 55, 57</td>
</tr>
<tr>
<td>16.23 ± 15</td>
<td>$6^+; 0$</td>
<td>$125 ± 50$</td>
<td>α</td>
<td>9, 11, 12, 34, 35, 36</td>
</tr>
<tr>
<td>16.30 ± 30</td>
<td>$0(−)$</td>
<td>$240 ± 30$</td>
<td>n, p</td>
<td>41</td>
</tr>
<tr>
<td>16.407 ± 24</td>
<td>2^+</td>
<td>45</td>
<td>γ, n, p, α</td>
<td>5, 6, 7, 9, 55</td>
</tr>
<tr>
<td>16.80 ± 100</td>
<td>(3^+)</td>
<td>$≤ 100$</td>
<td>γ</td>
<td>55</td>
</tr>
<tr>
<td>16.94</td>
<td>2^+</td>
<td>$≈ 280$</td>
<td>$\alpha, ^8$Be</td>
<td>10</td>
</tr>
<tr>
<td>17.142 ± 12</td>
<td>$1^−; 1$</td>
<td>$33 ± 5$</td>
<td>γ, n, p, α</td>
<td>6, 7, 9, 35, 36, 39, 40, 41, 44, 48, 55, 57</td>
</tr>
<tr>
<td>17.17</td>
<td>2^+</td>
<td>200</td>
<td>$\alpha, ^8$Be</td>
<td>10, 44</td>
</tr>
<tr>
<td>17.30 ± 15</td>
<td>$1^−; 1$</td>
<td>$90 ± 10$</td>
<td>γ, n, p, α</td>
<td>6, 9, 39, 40, 41, 48, 55</td>
</tr>
<tr>
<td>17.55</td>
<td>(4^+)</td>
<td>165</td>
<td>$(\gamma), n, \alpha$</td>
<td>6, 9, 48</td>
</tr>
<tr>
<td>17.63 ± 15</td>
<td>$≥ 1; 1$</td>
<td>$59 ± 10$</td>
<td>$(\gamma), n, p, \alpha$</td>
<td>7, 9, 41, 55, 57</td>
</tr>
<tr>
<td>17.755 ± 15</td>
<td>$0^+, 2^+$</td>
<td>$≈ 30$</td>
<td>$\alpha, ^8$Be</td>
<td>10, 35</td>
</tr>
<tr>
<td>17.82 ± 40</td>
<td>4^+</td>
<td>225</td>
<td>$n, \alpha, ^8$Be</td>
<td>6, 9, 10, 35</td>
</tr>
<tr>
<td>17.86 ± 15</td>
<td>$≥ 1; 1$</td>
<td>$101 ± 10$</td>
<td>n, p</td>
<td>41</td>
</tr>
<tr>
<td>18.018 ± 15</td>
<td>$4^+; 0$</td>
<td>14</td>
<td>$(n), p, \alpha, ^8$Be</td>
<td>7, 9, 10, 35, 41</td>
</tr>
<tr>
<td>18.05 ± 15</td>
<td>$(4^+); 1$</td>
<td>$26 ± 5$</td>
<td>γ, n, p, α</td>
<td>6, 9, 35, 39, 41</td>
</tr>
</tbody>
</table>
Table 16.9: Energy Levels of 16O $^\pi$ (continued)

<table>
<thead>
<tr>
<th>E_π in 16O (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>$\Gamma_{c.m.}$ (keV) or τ_m</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.132 ± 24</td>
<td></td>
<td>220 ± 60</td>
<td>n, p, α</td>
<td>6, 41</td>
</tr>
<tr>
<td>18.18 ± 25</td>
<td>2$^+$</td>
<td>390 ± 80</td>
<td>n, α</td>
<td>6</td>
</tr>
<tr>
<td>18.46 ± 25</td>
<td></td>
<td>≈ 160</td>
<td>n, p</td>
<td>41</td>
</tr>
<tr>
<td>18.6 (1$^−$, 5$^−$)</td>
<td></td>
<td>140</td>
<td>α</td>
<td>9</td>
</tr>
<tr>
<td>18.71 (0$^+$, 2$^+$)</td>
<td></td>
<td>260 ± 30</td>
<td>n, p, α, 8Be</td>
<td>10, 41</td>
</tr>
<tr>
<td>18.79 (4$^+$)</td>
<td></td>
<td>220</td>
<td>n, p, α, 8Be</td>
<td>6, 7, 9, 10</td>
</tr>
<tr>
<td>(18.983 ± 15)</td>
<td></td>
<td>≈ 25</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>18.99 ± 30</td>
<td>1$^−$; 1</td>
<td>300 ± 100</td>
<td>γ, p</td>
<td>39, 55</td>
</tr>
<tr>
<td>19.04 ± 50</td>
<td>2$^−$; 1</td>
<td>400 ± 50</td>
<td>γ, α</td>
<td>9, 55</td>
</tr>
<tr>
<td>19.06 ± 60</td>
<td>2$^+$; 1</td>
<td>≈ 120</td>
<td>γ, p</td>
<td>39, 40, 48</td>
</tr>
<tr>
<td>19.12 (2$^+$, 4$^+$)</td>
<td></td>
<td>41</td>
<td>(n), α</td>
<td>6, 9</td>
</tr>
<tr>
<td>19.24 ± 25</td>
<td>2$^−$; 1</td>
<td>90 ± 10</td>
<td>γ, n, p</td>
<td>39, 41</td>
</tr>
<tr>
<td>19.25 (5$^−$)</td>
<td></td>
<td>23</td>
<td>(n), α</td>
<td>6, 9</td>
</tr>
<tr>
<td>19.34 6$^+$</td>
<td></td>
<td>50</td>
<td>α, 8Be</td>
<td>10</td>
</tr>
<tr>
<td>(19.382 ± 15)</td>
<td>π = +</td>
<td>≈ 30</td>
<td>α</td>
<td>9, 35</td>
</tr>
<tr>
<td>19.48 ± 30</td>
<td>1$^−$; 1</td>
<td>300 ± 80</td>
<td>γ, n, p, α</td>
<td>9, 39, 41, 48, 55</td>
</tr>
<tr>
<td>19.62</td>
<td></td>
<td>240</td>
<td>n, α</td>
<td>6</td>
</tr>
<tr>
<td>19.80 ± 150</td>
<td>(2, 3; 1)</td>
<td>120 ± 40</td>
<td>γ, n, p, α</td>
<td>9, 35, 39, 41</td>
</tr>
<tr>
<td>20.087</td>
<td></td>
<td>310</td>
<td>n, α</td>
<td>6</td>
</tr>
<tr>
<td>20.3</td>
<td></td>
<td>≈ 1500</td>
<td>p, α</td>
<td>7</td>
</tr>
<tr>
<td>(20.348 ± 15)</td>
<td></td>
<td>≈ 30</td>
<td>γ, n</td>
<td>35, 48</td>
</tr>
<tr>
<td>20.36 ± 70</td>
<td>2$^−$</td>
<td>500 ± 100</td>
<td>γ</td>
<td>55</td>
</tr>
<tr>
<td>20.39 ± 25</td>
<td>≥ 2</td>
<td>150 ± 30</td>
<td>γ, n, p, α</td>
<td>6, 9, 39, 41</td>
</tr>
<tr>
<td>20.55 ± 25</td>
<td>≥ 1</td>
<td>140 ± 30</td>
<td>n, p, α</td>
<td>9, 41</td>
</tr>
<tr>
<td>20.8 (8$^+$)</td>
<td></td>
<td>≈ 600</td>
<td>γ</td>
<td>11, 12, 39</td>
</tr>
<tr>
<td>20.81</td>
<td></td>
<td>< 25</td>
<td>n, α</td>
<td>6</td>
</tr>
<tr>
<td>20.89 ± 25</td>
<td></td>
<td>≈ 250</td>
<td>γ, n, p</td>
<td>39, 41, 48, 49</td>
</tr>
<tr>
<td>(21.0) (7$^−$)</td>
<td></td>
<td>750</td>
<td>(γ), α</td>
<td>9, 48</td>
</tr>
<tr>
<td>21.01 ± 20</td>
<td>1$^−$; 1</td>
<td>260 ± 60</td>
<td>γ, n, α</td>
<td>5, 48, 55</td>
</tr>
<tr>
<td>21.02 ± 20</td>
<td></td>
<td>55</td>
<td>(γ), n, α</td>
<td>6, 48</td>
</tr>
<tr>
<td>(21.1) (5$^−$)</td>
<td></td>
<td>900</td>
<td>α</td>
<td>9</td>
</tr>
<tr>
<td>(21.2) (6$^+$)</td>
<td></td>
<td>450</td>
<td>n, α</td>
<td>6, 9, 11</td>
</tr>
<tr>
<td>21.68</td>
<td></td>
<td>55</td>
<td>γ, n, α</td>
<td>6, 48</td>
</tr>
<tr>
<td>21.79</td>
<td></td>
<td>55</td>
<td>γ, n, p, d, α</td>
<td>6, 29, 39, 48</td>
</tr>
<tr>
<td>22.04</td>
<td></td>
<td>60</td>
<td>γ, n, d, α</td>
<td>6, 11, 29, 39</td>
</tr>
<tr>
<td>22.07</td>
<td></td>
<td>340</td>
<td>n, α</td>
<td>6, 11</td>
</tr>
</tbody>
</table>
Table 16.9: Energy Levels of 16O a (continued)

<table>
<thead>
<tr>
<th>E_x in 16O (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>$\Gamma_{c.m.}$ (keV) or τ_m</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.13</td>
<td></td>
<td>< 150</td>
<td>γ, n, d, α</td>
<td>6, 11, 28, 29, 33, 48</td>
</tr>
<tr>
<td>22.26 ± 38</td>
<td>$1^-; 1$</td>
<td>15 ± 6</td>
<td>γ, n, d, α</td>
<td>28, 29, 33, 39, 41, 48, 49, 55</td>
</tr>
<tr>
<td>22.52</td>
<td></td>
<td>375</td>
<td>n, d, α</td>
<td>6, 11, 33</td>
</tr>
<tr>
<td>22.720 ± 4</td>
<td>$0^+; T = 2$</td>
<td>60</td>
<td>γ, n, d, α</td>
<td>6, 11, 28, 29, 31, 33, 55</td>
</tr>
<tr>
<td>23.11</td>
<td></td>
<td>20</td>
<td>d, α</td>
<td>9, 31, 33</td>
</tr>
<tr>
<td>23.15 ± 34</td>
<td></td>
<td>500</td>
<td>$\gamma, n, (p), d, \alpha$</td>
<td>9, 33, 48, 49</td>
</tr>
<tr>
<td>23.40</td>
<td></td>
<td>< 40</td>
<td>n, d, α</td>
<td>6, 31, 33</td>
</tr>
<tr>
<td>23.54</td>
<td></td>
<td>300</td>
<td>n, p, d, α</td>
<td>9, 29, 30, 31, 33</td>
</tr>
<tr>
<td>23.75</td>
<td></td>
<td>120</td>
<td>n, α</td>
<td>6</td>
</tr>
<tr>
<td>23.89</td>
<td></td>
<td>25</td>
<td>α</td>
<td>9, 11</td>
</tr>
<tr>
<td>23.93</td>
<td></td>
<td>165</td>
<td>n, α</td>
<td>6</td>
</tr>
<tr>
<td>(24.05)</td>
<td></td>
<td>70</td>
<td>$n, ^3$He</td>
<td>19</td>
</tr>
<tr>
<td>24.05 ± 100</td>
<td></td>
<td>450</td>
<td>$\gamma, n, ^3$He</td>
<td>18, 48</td>
</tr>
<tr>
<td>24.4</td>
<td>$(T = 1)$</td>
<td>250</td>
<td>$\gamma, n, p, ^3$He, α</td>
<td>19, 28, 29, 30, 31, 33, 48, 49, 55</td>
</tr>
<tr>
<td>24.522 ± 11</td>
<td>$2^+; T = 2$</td>
<td>50</td>
<td>$(\gamma), p, d, ^3$He, α</td>
<td>22, 30, 31, 33, 39</td>
</tr>
<tr>
<td>24.74</td>
<td>$(T = 1)$</td>
<td>650</td>
<td>$\gamma, n, p, d, ^3$He</td>
<td>18, 29, 30, 48, 49</td>
</tr>
<tr>
<td>25.12 ± 50</td>
<td></td>
<td>1000</td>
<td>$\gamma, n, p, ^3$He, α</td>
<td>20, 22, 39, 48, 55</td>
</tr>
<tr>
<td>25.55 ± 50</td>
<td>$(1^-; 1)$</td>
<td>600 ± 200</td>
<td>$d, ^3$He, α</td>
<td>22, 31, 33</td>
</tr>
<tr>
<td>25.94</td>
<td>$(T = 1)$</td>
<td>600 ± 200</td>
<td>(γ, n, p)</td>
<td>39, 48, 49</td>
</tr>
<tr>
<td>(26.38 ± 180)</td>
<td></td>
<td></td>
<td>3He, α</td>
<td>22, 33, 55</td>
</tr>
<tr>
<td>26.7 ± 250</td>
<td>$(1^+; 1)$</td>
<td>600 ± 200</td>
<td>$(\gamma, n), d, ^3$He, $\alpha, ^8$Be</td>
<td>22, 23, 31, 48</td>
</tr>
<tr>
<td>27.32 ± 92</td>
<td>$(2^+; 1)$</td>
<td>600 ± 200</td>
<td>$p, ^3$He, α</td>
<td>20, 21, 22</td>
</tr>
<tr>
<td>27.6 ± 100</td>
<td>$(3^-; 0)$</td>
<td>500</td>
<td>$d, ^3$He, α</td>
<td>22, 33</td>
</tr>
<tr>
<td>(28.1 ± 100)</td>
<td>$(T = 1)$</td>
<td>600 ± 200</td>
<td>3He, α</td>
<td>22</td>
</tr>
<tr>
<td>(28.3 ± 100)</td>
<td>$(T = 0)$</td>
<td></td>
<td>3He, α</td>
<td>22</td>
</tr>
<tr>
<td>(28.9 ± 100)</td>
<td>$(T = 1)$</td>
<td>600 ± 200</td>
<td>$(\gamma, n), d, ^3$He, α</td>
<td>22, 31, 48</td>
</tr>
<tr>
<td>29.7 ± 100</td>
<td>$(T = 1)$</td>
<td>600 ± 200</td>
<td>3He, α</td>
<td>9, 22</td>
</tr>
<tr>
<td>(30.4 ± 100)</td>
<td>$(T = 1)$</td>
<td>600 ± 200</td>
<td>$(\gamma, n), d, ^3$He, α</td>
<td>22, 48, 49, 54</td>
</tr>
<tr>
<td>31.2 ± 200</td>
<td>$(T = 1)$</td>
<td>600 ± 200</td>
<td>$(\gamma, n), p, ^3$He, α</td>
<td>48</td>
</tr>
<tr>
<td>(33.0 ± 300)</td>
<td></td>
<td></td>
<td>(γ, n)</td>
<td>55</td>
</tr>
<tr>
<td>44.5</td>
<td>$(1^-; 1)$</td>
<td>2000 − 3000</td>
<td>γ</td>
<td>55</td>
</tr>
<tr>
<td>49</td>
<td>$(1^-; 1)$</td>
<td>2000 − 3000</td>
<td>γ</td>
<td>54, 55</td>
</tr>
</tbody>
</table>

a See also Tables 16.12, 16.19 and 16.26.
3. 10B(14N, 8Be)16O \hspace{1cm} Q_m = 14.708 \\
\tau_m \text{ for } ^{16}$O*$(6.13) = 21^{+1}_{-1}$ psec. The ground state E3 transition has a strength of 62 W.u. (1969NI09).

4. 11B(7Li, 2n)16O \hspace{1cm} Q_m = 12.169 \\
\tau_m \text{ for } ^{16}$O*$(8.88) = 0.37 \pm 0.13$ psec. The transition energy for 8.88 \rightarrow 6.13 is 2740.4 \pm 1.0 keV (1969TH01).

5. 12C(α, γ)16O \hspace{1cm} Q_m = 7.161 \\
The yield of capture γ-rays has been studied for $E_\alpha < 23.5$ MeV: see Table 16.10. The cross section rises from $(1.1 \pm 0.4) \times 10^{-3}$ μb at $E_\alpha = 1.86$ MeV to $(29 \pm 4) \times 10^{-3}$ μb at $E_\alpha = 3.11$ MeV. At $E_\alpha = 1.6$ MeV, the capture cross section is $< 0.3 \times 10^{-3}$ μb (1970JA09). At higher energies resonances are observed. These are displayed in Table 16.11 (1960ME02, 1964LA16, 1965MI05, 1967SU02). Widths for γ-emission have been measured for several of the corresponding 16O states: see Table 16.12 (1963GO31, 1964LA16, 1966GO18, 1967GO08, 1967SU02). See also (1969BR1L) and (1967GI1C, 1969GI1B; theor.). The asymmetries in the angular distributions in this reaction and in the inverse reaction 16O(γ, α)12C are the same within one standard deviation: there is no evidence for failure of time reversal invariance (1970VO13). The relevance of this reaction to the buildup of elements in stars is discussed by (1967ST1M, 1967WI1B, 1970TO1C, 1970WE1A, 1970WE1F) and in earlier papers listed in (1959AJ76).

6. 12C(α, n)15O \hspace{1cm} Q_m = -8.507 \hspace{1cm} E_b = 7.161 \\
Cross section measurements have been made from threshold to $E_\alpha = 24.7$ MeV: see Table 16.10. Observed resonances are displayed in Table 16.11 (1963NE05, 1968BL08, 1970BE1T). See also (1962GO1J, 1963GO1J, 1965AL1J, 1965TS1A) and (1963KE1A; theor.). See also 15O in (1970AJ04).

7. 12C(α, p)15N \hspace{1cm} Q_m = -4.965 \hspace{1cm} E_b = 7.161 \\
The yield of protons corresponding to the ground state of 15N has been studied for $E_\alpha = 7.7$ to 23 MeV: see Table 16.10. Observed resonances are displayed in Table 16.11 (1960PR13, 1964AT1A, 1964CA07, 1965MI05, 1968MO1H, 1970BE1T, 1970NE1H). See also (1963KE1A; theor.) and 15N in (1970AJ04).
Table 16.10: Recent 12C + α yield curves a

<table>
<thead>
<tr>
<th>E_α (MeV)</th>
<th>Yield of</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.91 − 3.16</td>
<td>$\gamma_{\text{capt.}}$</td>
<td>(1968JA1K, JA69K)</td>
</tr>
<tr>
<td>2.60 − 3.25</td>
<td>$\gamma_{\text{capt.}}$</td>
<td>(1968AD1D)</td>
</tr>
<tr>
<td>2.8 − 8.3</td>
<td>$\gamma_{\text{capt.}}$</td>
<td>(1964LA16)</td>
</tr>
<tr>
<td>6.9 − 8.4</td>
<td>$\gamma_{\text{capt.}}$</td>
<td>(1964MI12, 1965MI05)</td>
</tr>
<tr>
<td>8.75 − 23.50</td>
<td>$\gamma_{\text{capt.}}$</td>
<td>(1967SU02)</td>
</tr>
<tr>
<td>thresh. − 19</td>
<td>n(σ_t)</td>
<td>(1963NE05)</td>
</tr>
<tr>
<td>thresh. − 22.7</td>
<td>n(σ_t)</td>
<td>(1968BL08)</td>
</tr>
<tr>
<td>13 − 16</td>
<td>n$_0$</td>
<td>(1970BE1T)</td>
</tr>
<tr>
<td>13.7 − 24.7</td>
<td>15O</td>
<td>(1969SP1B)</td>
</tr>
<tr>
<td>15 − 19</td>
<td>n(σ_t)</td>
<td>(1962CA03)</td>
</tr>
<tr>
<td>7.7 − 8.4</td>
<td>p$_0$</td>
<td>(1965MI05)</td>
</tr>
<tr>
<td>9.6 − 17.6</td>
<td>p$_0$</td>
<td>(1964CA07)</td>
</tr>
<tr>
<td>12.4 − 16.0</td>
<td>p$_0$</td>
<td>(1967IV1B)</td>
</tr>
<tr>
<td>13 − 16</td>
<td>p$_0$</td>
<td>(1970BE1T)</td>
</tr>
<tr>
<td>13 − 23</td>
<td>p$_0$</td>
<td>(1968BL08)</td>
</tr>
<tr>
<td>15.8 − 19.0</td>
<td>p$_0$</td>
<td>(1960PR13)</td>
</tr>
<tr>
<td>15.9 − 26.3</td>
<td>p$_0$</td>
<td>(1965TE01)</td>
</tr>
<tr>
<td>19 − 23</td>
<td>p$_1$ + p$_2$</td>
<td>(1968BL08)</td>
</tr>
<tr>
<td>19.7 − 22.1</td>
<td>p$_0$</td>
<td>(1963YA1C)</td>
</tr>
<tr>
<td>20 − 23</td>
<td>p$_0$</td>
<td>(1964AT1A)</td>
</tr>
<tr>
<td>2.5 − 4.8</td>
<td>α_0</td>
<td>(1962JO09)</td>
</tr>
<tr>
<td>2.8 − 6.6</td>
<td>α_0</td>
<td>(1968CL04)</td>
</tr>
<tr>
<td>4 − 13.3</td>
<td>α_0</td>
<td>(1969MA1U)</td>
</tr>
<tr>
<td>5.2 − 5.3</td>
<td>α_0</td>
<td>(1966LA09)</td>
</tr>
<tr>
<td>6 − 17</td>
<td>$\gamma_{4.4}$</td>
<td>(1964MI08)</td>
</tr>
<tr>
<td>6.5 − 6.6</td>
<td>α_0</td>
<td>(1966LA09)</td>
</tr>
<tr>
<td>6.6 − 8.5</td>
<td>α_0</td>
<td>(1968MO08)</td>
</tr>
<tr>
<td>7.3 − 8.4</td>
<td>$\gamma_{4.4}$</td>
<td>(1964MI12)</td>
</tr>
<tr>
<td>7.4 − 10.6</td>
<td>$\gamma_{4.4}$</td>
<td>(1964LA16)</td>
</tr>
<tr>
<td>7.7 − 8.3</td>
<td>α_1, $\gamma_{4.4}$</td>
<td>(1965MI05)</td>
</tr>
<tr>
<td>8.5 − 10.5</td>
<td>α_0, α_1</td>
<td>(1970OP01)</td>
</tr>
</tbody>
</table>
Table 16.10: Recent $^{12}\text{C} + \alpha$ yield curves a (continued)

<table>
<thead>
<tr>
<th>E_α (MeV)</th>
<th>Yield of</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5 – 19</td>
<td>α_1</td>
<td>(1964MI08)</td>
</tr>
<tr>
<td>9.8 – 19.1</td>
<td>α_0</td>
<td>(1964CA07)</td>
</tr>
<tr>
<td>10.7 – 11.8</td>
<td>α_0</td>
<td>(1967KR1D)</td>
</tr>
<tr>
<td>12.0 – 17.3</td>
<td>α_2</td>
<td>(1970MO22)</td>
</tr>
<tr>
<td>12.8 – 26.3</td>
<td>α_0, α_1</td>
<td>(1966IF01)</td>
</tr>
<tr>
<td>13.5 – 23.5</td>
<td>α_1</td>
<td>(1963LU08)</td>
</tr>
<tr>
<td>13.5 – 30.5</td>
<td>α_0</td>
<td>(1963LU08)</td>
</tr>
<tr>
<td>14.4 – 18.8</td>
<td>$\gamma_{4.4}$</td>
<td>(1962CA03)</td>
</tr>
<tr>
<td>14.5</td>
<td>α_0, α_1</td>
<td>(1968MO1H)</td>
</tr>
<tr>
<td>14.6 – 18.1</td>
<td>α_3</td>
<td>(1970MO22)</td>
</tr>
<tr>
<td>15 – 22.7</td>
<td>α_0</td>
<td>(1962JO14)</td>
</tr>
<tr>
<td>16.2 – 19.2</td>
<td>α_2</td>
<td>(1964MI08)</td>
</tr>
<tr>
<td>17.3 – 23.4</td>
<td>α_0, α_1</td>
<td>(1964JO14)</td>
</tr>
<tr>
<td>18.9 – 30.1</td>
<td>α_0, α_1</td>
<td>(1970MO06)</td>
</tr>
<tr>
<td>20 – 24</td>
<td>α_0</td>
<td>(1968AG03, 1969AG06)</td>
</tr>
<tr>
<td>20.2 – 22.8</td>
<td>α_1</td>
<td>(1964AT1A)</td>
</tr>
<tr>
<td>27.0 – 35.5</td>
<td>α_0, α_1</td>
<td>(1961MI03)</td>
</tr>
<tr>
<td>11.9 – 19.4</td>
<td>^8Be</td>
<td>(1967CH21)</td>
</tr>
</tbody>
</table>

a See also (1959AJ76).

8. $^{12}\text{C}(\alpha, d)^{14}\text{N}$ \hspace{2cm} $Q_m = -13.575$ \hspace{2cm} $E_h = 7.161$

See ^{14}N in (1970AJ04). See also (1968NO1C; theor.).

9. $^{12}\text{C}(\alpha, \alpha)^{12}\text{C}$ \hspace{2cm} $E_h = 7.161$

Table 16.11: Resonances in $^{12}\text{C} + \alpha$

<table>
<thead>
<tr>
<th>E_α (MeV ± keV)</th>
<th>$\Gamma_{\text{c.m.}}$ (keV)</th>
<th>Outgoing particlesa (x)</th>
<th>Γ_x (keV)</th>
<th>$^{16}\text{O}^*$ (MeV)</th>
<th>$J^\pi; T$</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.322 ± 30</td>
<td>550</td>
<td>γ_0 α_0</td>
<td>(2.2 ± 0.5) x 10^{-5}</td>
<td>9.58</td>
<td>1$^-$</td>
<td>(1953HI1A, 1962JO09, 1964LA16, 1968CL04)</td>
</tr>
<tr>
<td>3.575 ± 10</td>
<td>1.1</td>
<td>γ_0 α_0</td>
<td>(5.9 ± 0.6) x 10^{-6}</td>
<td>9.842</td>
<td>2$^+$</td>
<td>(1953HI1A, 1960ME02, 1962JO09, 1964LA16)</td>
</tr>
<tr>
<td>4.241 ± 25</td>
<td>195</td>
<td>α_0</td>
<td></td>
<td>10.341</td>
<td>4$^+$</td>
<td>(1962JO09)</td>
</tr>
<tr>
<td>4.260 ± 15</td>
<td>27 ± 4</td>
<td>γ_0 α_0</td>
<td></td>
<td>10.355</td>
<td></td>
<td>(1964LA16)</td>
</tr>
<tr>
<td>5.245 ± 8</td>
<td>0.3 ± 0.1</td>
<td>α_0</td>
<td></td>
<td>11.094</td>
<td>4$^+$</td>
<td>(1966LA09)</td>
</tr>
<tr>
<td>5.47</td>
<td>2500</td>
<td>α_0</td>
<td></td>
<td>11.26</td>
<td>0$^+$</td>
<td>(1954BI1A)</td>
</tr>
<tr>
<td>5.71</td>
<td>830</td>
<td>α_0</td>
<td></td>
<td>11.44</td>
<td>3$^-$</td>
<td>(1968CL04)</td>
</tr>
<tr>
<td>5.809 ± 18</td>
<td>73 ± 5</td>
<td>γ_0</td>
<td>(0.66 ± 0.09) x 10^{-3}</td>
<td>11.517</td>
<td></td>
<td>(1960ME02, 1964LA16)</td>
</tr>
<tr>
<td>5.96</td>
<td>1200</td>
<td>α_0</td>
<td></td>
<td>11.63</td>
<td>3$^-$</td>
<td>(1954BI1A)</td>
</tr>
<tr>
<td>6.518 ± 10</td>
<td>1.5 ± 0.5</td>
<td>α_0</td>
<td></td>
<td>12.048</td>
<td>0$^+$</td>
<td>(1966LA09)</td>
</tr>
<tr>
<td>7.045 ± 5</td>
<td>99 ± 7</td>
<td>γ_0</td>
<td>(7 ± 1) x 10^{-3}</td>
<td>12.443</td>
<td>1$^-$; 0</td>
<td>(1954BI1A, 1964LA16, 1964MI12, 1968MO08)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>α_0</td>
<td>98 ± 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>α_1</td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.82 ± 10</td>
<td>150 ± 11</td>
<td>α_0</td>
<td>150 ± 11</td>
<td>13.02</td>
<td>2$^+$</td>
<td>(1968MO08)</td>
</tr>
<tr>
<td>7.915 ± 10</td>
<td>113 ± 15</td>
<td>γ_0</td>
<td>8.8 x 10^{-2}</td>
<td>13.095</td>
<td>1$^-$; 1</td>
<td>(1964LA16, 1964MI12, 1965MI05, 1968MO08)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>α_0</td>
<td>45 ± 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>α_1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>α_0</td>
<td>90 ± 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>α_1</td>
<td>\approx 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.98 ± 100</td>
<td>\approx 250</td>
<td>γ_0</td>
<td></td>
<td>13.14</td>
<td>2$^+$</td>
<td>(1964LA16, 1965MI05)</td>
</tr>
</tbody>
</table>

a Notation: γ_0, α_0, α_1; p
Table 16.11: Resonances in 12C + α (continued)

<table>
<thead>
<tr>
<th>E_α (MeV ± keV)</th>
<th>$\Gamma_{\text{c.m.}}$ (keV)</th>
<th>Outgoing particles a</th>
<th>Γ_x (keV)</th>
<th>$^{16}\text{O}^*$ (MeV)</th>
<th>$J^\pi; T$</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.130 ± 15</td>
<td>26 ± 7</td>
<td>γ_0</td>
<td></td>
<td>13.257</td>
<td>3$^-$; 1</td>
<td>(1964LA16, 1964MI08, 1964MI12, 1965MI05, 1968MO08)</td>
</tr>
<tr>
<td>8.96</td>
<td>70</td>
<td>$\alpha_0, \gamma_{4.4}$</td>
<td></td>
<td>13.88</td>
<td>4$^+$</td>
<td>(1964LA16, 1964MI08, 1970OP01)</td>
</tr>
<tr>
<td>9.1</td>
<td>4800</td>
<td>α_0</td>
<td></td>
<td>14.0</td>
<td>0$^+$</td>
<td>(1968CL04)</td>
</tr>
<tr>
<td>10.08</td>
<td>400</td>
<td>$\gamma_{4.4}, (\alpha_0)$</td>
<td></td>
<td>14.72</td>
<td></td>
<td>(1964CA07, 1964LA16, 1964MI08)</td>
</tr>
<tr>
<td>10.18</td>
<td>40</td>
<td>$\alpha_0, \alpha_1, \gamma_{4.4}$</td>
<td></td>
<td>14.79</td>
<td>6$^+$</td>
<td>(1964CA07, 1964LA16, 1964MI08, 1970OP01)</td>
</tr>
<tr>
<td>10.25</td>
<td>55</td>
<td>p_0, α_0</td>
<td></td>
<td>14.85</td>
<td></td>
<td>(1964CA07)</td>
</tr>
<tr>
<td>11.02</td>
<td>≈ 100</td>
<td>$p_0, \alpha_0, \alpha_1, \gamma_{4.4}$</td>
<td></td>
<td>15.42</td>
<td>$(1^-, 3^-)$</td>
<td>(1964CA07, 1964MI08)</td>
</tr>
<tr>
<td>(11.08)</td>
<td>280</td>
<td>p_0, α_0</td>
<td></td>
<td>15.47</td>
<td></td>
<td>(1964CA07)</td>
</tr>
<tr>
<td>11.5</td>
<td>≈ 400</td>
<td>$\alpha_0, \alpha_1, \gamma_{4.4}$</td>
<td></td>
<td>15.8</td>
<td>3$^-$</td>
<td>(1964CA07, 1964MI08)</td>
</tr>
<tr>
<td>12.1</td>
<td>280</td>
<td>α_0</td>
<td></td>
<td>16.2</td>
<td>6$^+$</td>
<td>(1964CA07)</td>
</tr>
<tr>
<td>12.32 ± 25</td>
<td>45</td>
<td>$\gamma_0, n, p_0, \alpha_0, \alpha_1, \gamma_{4.4}$</td>
<td></td>
<td>16.40b</td>
<td>2$^+$</td>
<td>(1964CA07, 1964MI08, 1967SU02, 1968BL08)</td>
</tr>
<tr>
<td>12.5</td>
<td>730</td>
<td>p_0, α_0</td>
<td></td>
<td>16.5</td>
<td></td>
<td>(1964CA07)</td>
</tr>
<tr>
<td>12.9</td>
<td>400</td>
<td>α_0</td>
<td></td>
<td>16.8</td>
<td>(4^+)</td>
<td>(1964CA07)</td>
</tr>
<tr>
<td>13.0</td>
<td>700</td>
<td>α_0</td>
<td></td>
<td>16.9</td>
<td>5$^-$</td>
<td>(1964CA07)</td>
</tr>
<tr>
<td>13.05</td>
<td>≈ 280</td>
<td>^8Be</td>
<td></td>
<td>16.94</td>
<td>2$^+$</td>
<td>(1967CH21)</td>
</tr>
<tr>
<td>13.26</td>
<td>110</td>
<td>$n, (p_0), \alpha_0, \alpha_1, \gamma_{4.4}$</td>
<td></td>
<td>17.10</td>
<td>$(1^-, 2^+, 0^+)$</td>
<td>(1964CA07, 1964MI08, 1968BL08)</td>
</tr>
<tr>
<td>13.35</td>
<td>200</td>
<td>^8Be</td>
<td></td>
<td>17.17</td>
<td>2$^+$</td>
<td>(1967CH21)</td>
</tr>
<tr>
<td>13.50</td>
<td>< 100</td>
<td>n</td>
<td></td>
<td>17.28</td>
<td></td>
<td>(1968BL08)</td>
</tr>
<tr>
<td>13.59</td>
<td>150</td>
<td>$\alpha_1, \gamma_{4.4}$</td>
<td></td>
<td>17.35</td>
<td></td>
<td>(1964MI08)</td>
</tr>
<tr>
<td>13.86</td>
<td>165</td>
<td>n, α_0</td>
<td></td>
<td>17.55</td>
<td>(4^+)</td>
<td>(1964CA07, 1968BL08)</td>
</tr>
<tr>
<td>13.95</td>
<td>110</td>
<td>p_0, α_0</td>
<td></td>
<td>17.62</td>
<td></td>
<td>(1964CA07, 1970BE1T)</td>
</tr>
<tr>
<td>14.1</td>
<td>^8Be</td>
<td></td>
<td></td>
<td>17.7</td>
<td>0$^+$, 2$^+$</td>
<td>(1967CH21)</td>
</tr>
<tr>
<td>14.21</td>
<td>225</td>
<td>$n, \alpha_1, \gamma_{4.4}, ^8\text{Be}$</td>
<td></td>
<td>17.81</td>
<td>4$^+$</td>
<td>(1964MI08, 1967CH21)</td>
</tr>
</tbody>
</table>
Table 16.11: Resonances in 12C + α (continued)

<table>
<thead>
<tr>
<th>E_{α} (MeV ± keV)</th>
<th>$\Gamma_{c.m.}$ (keV)</th>
<th>Outgoing particles a (x)</th>
<th>Γ_x (keV)</th>
<th>16O* (MeV)</th>
<th>$J^\pi; T$</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.483 ± 15</td>
<td>14</td>
<td>$p_0, \alpha_0, \alpha_1, ^8$Be</td>
<td>18.018</td>
<td>4$^+$; 0</td>
<td>(1967CH21, 1968MO1H)</td>
<td></td>
</tr>
<tr>
<td>14.50</td>
<td>40</td>
<td>$n, \alpha_0, \alpha_1, \gamma_{4.4}$</td>
<td>18.03</td>
<td>(4$^+$)</td>
<td>(1964CA07, 1964MI08, 1968BL08)</td>
<td></td>
</tr>
<tr>
<td>14.59 ± 40</td>
<td>220 ± 60</td>
<td>n_0</td>
<td>18.10</td>
<td></td>
<td>(1963NE05, 1968BL08, 1970BE1T)</td>
<td></td>
</tr>
<tr>
<td>14.70 ± 25</td>
<td>390 ± 80</td>
<td>n</td>
<td>18.18</td>
<td>2$^+$</td>
<td>(1967SU02)</td>
<td></td>
</tr>
<tr>
<td>14.85</td>
<td>280</td>
<td>$p_0, (\alpha_0), \alpha_1, \gamma_{4.4}$</td>
<td>18.29</td>
<td></td>
<td>(1964CA07, 1964MI08)</td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td>510</td>
<td>$\alpha_0, (\alpha_1, \gamma_{4.4})$</td>
<td>18.4</td>
<td>5$^-$</td>
<td>(1964CA07, 1964MI08)</td>
<td></td>
</tr>
<tr>
<td>15.2</td>
<td>55</td>
<td>α_0</td>
<td>18.6</td>
<td>0$^+$, 2$^+$</td>
<td>(1967CH21)</td>
<td></td>
</tr>
<tr>
<td>15.2</td>
<td>140</td>
<td>$\alpha_0, (\alpha_1, \gamma_{4.4})$</td>
<td>18.6</td>
<td>(1$^-$, 5$^-$)</td>
<td>(1964CA07, 1964MI08)</td>
<td></td>
</tr>
<tr>
<td>15.46</td>
<td>55</td>
<td>α_0</td>
<td>18.75</td>
<td>1$^-$</td>
<td>(1964CA07)</td>
<td></td>
</tr>
<tr>
<td>15.52</td>
<td>220</td>
<td>$n, p_0, \alpha_0, \alpha_1, ^8$Be</td>
<td>18.79</td>
<td>(4$^+$)</td>
<td>(1964CA07, 1964MI08, 1967CH21, 1968BL08)</td>
<td></td>
</tr>
<tr>
<td>15.88</td>
<td>broad</td>
<td>$\alpha_1, \gamma_{4.4}$</td>
<td>19.06</td>
<td></td>
<td>(1964MI08)</td>
<td></td>
</tr>
<tr>
<td>15.96</td>
<td>41</td>
<td>(n), α_0</td>
<td>19.12</td>
<td>(2$^+$, 4$^+$)</td>
<td>(1964CA07, 1968BL08)</td>
<td></td>
</tr>
<tr>
<td>16.13</td>
<td>23</td>
<td>(n), α_0</td>
<td>19.25</td>
<td>(5$^-$)</td>
<td>(1964CA07, 1968BL08)</td>
<td></td>
</tr>
<tr>
<td>16.25</td>
<td>50</td>
<td>8Be</td>
<td>19.34</td>
<td>6$^+$</td>
<td>(1967CH21)</td>
<td></td>
</tr>
<tr>
<td>16.30</td>
<td>23</td>
<td>α_0</td>
<td>19.38</td>
<td>(4$^+$, 0$^+$)</td>
<td>(1964CA07)</td>
<td></td>
</tr>
<tr>
<td>16.4</td>
<td>broad</td>
<td>α_1</td>
<td>19.5</td>
<td></td>
<td>(1964MI08)</td>
<td></td>
</tr>
<tr>
<td>16.62</td>
<td>240</td>
<td>n</td>
<td>19.62</td>
<td></td>
<td>(1968BL08)</td>
<td></td>
</tr>
<tr>
<td>16.73</td>
<td>17</td>
<td>α_0</td>
<td>19.70</td>
<td>even</td>
<td>(1964CA07)</td>
<td></td>
</tr>
<tr>
<td>(17.0)</td>
<td>825</td>
<td>α_0</td>
<td>(19.9)</td>
<td>(4$^+$)</td>
<td>(1964CA07)</td>
<td></td>
</tr>
<tr>
<td>17.10</td>
<td>140</td>
<td>α_0, α_1</td>
<td>19.98</td>
<td>(2$^+$, 0$^+$, 1$^-$)</td>
<td>(1964CA07, 1964MI08)</td>
<td></td>
</tr>
<tr>
<td>17.22</td>
<td>310</td>
<td>n</td>
<td>20.07</td>
<td></td>
<td>(1968BL08)</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>≈ 1500</td>
<td>p_0</td>
<td>20.3</td>
<td></td>
<td>(1960PR13)</td>
<td></td>
</tr>
<tr>
<td>17.66</td>
<td>< 150</td>
<td>n</td>
<td>20.40</td>
<td></td>
<td>(1968BL08)</td>
<td></td>
</tr>
<tr>
<td>(17.75)</td>
<td>110</td>
<td>α_0</td>
<td>(20.47)</td>
<td>(4$^+$)</td>
<td>(1964CA07)</td>
<td></td>
</tr>
<tr>
<td>17.90</td>
<td></td>
<td>α_1</td>
<td>20.58</td>
<td></td>
<td>(1964MI08)</td>
<td></td>
</tr>
<tr>
<td>18.21</td>
<td>< 25</td>
<td>n</td>
<td>20.81</td>
<td></td>
<td>(1968BL08)</td>
<td></td>
</tr>
<tr>
<td>18.4</td>
<td>750</td>
<td>α_0</td>
<td>21.01</td>
<td>7$^-$</td>
<td>(1964CA07)</td>
<td></td>
</tr>
</tbody>
</table>
Table 16.11: Resonances in 12C + α (continued)

<table>
<thead>
<tr>
<th>E_α (MeV ± keV)</th>
<th>$\Gamma_{c.m.}$ (keV)</th>
<th>Outgoing particles a</th>
<th>Γ_x (keV)</th>
<th>16O* (MeV)</th>
<th>$J^\pi; T$</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.48</td>
<td>55</td>
<td>n</td>
<td>21.03</td>
<td>(1968BL08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.50 ± 25</td>
<td>240 ± 80</td>
<td>γ_0</td>
<td>21.0</td>
<td>1$^-$</td>
<td>(1967SU02)</td>
<td></td>
</tr>
<tr>
<td>18.5</td>
<td>900</td>
<td>α_0</td>
<td>21.1</td>
<td>(5$^-$)</td>
<td>(1962JO14, 1964CA07)</td>
<td></td>
</tr>
<tr>
<td>(18.6)</td>
<td>450</td>
<td>n, α_0, α_1</td>
<td>(21.2)</td>
<td>(6$^+$)</td>
<td>(1964CA07, 1964MI08, 1968BL08)</td>
<td></td>
</tr>
<tr>
<td>19.37</td>
<td>55</td>
<td>n</td>
<td>21.68</td>
<td>(1968BL08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.52</td>
<td>55</td>
<td>n</td>
<td>21.79</td>
<td>(1968BL08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.85</td>
<td>60</td>
<td>n</td>
<td>22.04</td>
<td>(1968BL08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.89</td>
<td>340</td>
<td>n</td>
<td>22.07</td>
<td>(1968BL08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.97</td>
<td>< 150</td>
<td>n</td>
<td>22.13</td>
<td>(1968BL08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.49</td>
<td>375</td>
<td>n</td>
<td>22.52</td>
<td>(1968BL08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.71</td>
<td>60</td>
<td>n</td>
<td>22.68</td>
<td>(1968BL08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.760 ± 5</td>
<td>15 ± 6</td>
<td>p_0, (α_0), α_2</td>
<td>22.721</td>
<td>0$^+$; (T = 2)</td>
<td>(1970NE1H)</td>
<td></td>
</tr>
<tr>
<td>(21.2)</td>
<td>680</td>
<td>α_0</td>
<td>(23.1)</td>
<td>(1968AG03, 1969AG06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.28</td>
<td>≈ 20</td>
<td>α_0, α_1</td>
<td>23.11</td>
<td>(1970HA15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.67</td>
<td>< 40</td>
<td>n</td>
<td>23.40</td>
<td>(1968BL08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.85</td>
<td>300</td>
<td>α_0, α_1</td>
<td>23.54</td>
<td>(1955RA1B, 1970HA15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.14</td>
<td>120</td>
<td>n</td>
<td>23.75</td>
<td>(1968BL08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.32</td>
<td>≈ 25</td>
<td>α_0, α_1</td>
<td>23.89</td>
<td>(1970HA15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.37</td>
<td>165</td>
<td>n</td>
<td>23.93</td>
<td>(1968BL08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>broad</td>
<td>α_0, α_1</td>
<td>30</td>
<td>(1961MI03)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a p_0, α_0, and α_1 correspond to groups to 15N(0), 12C(0) and 12C*(4.4); $\gamma_4.4$ corresponds to the γ-decay of 12C*(4.4); γ_0 corresponds to capture γ-rays.

b $\Gamma_{\gamma}/\Gamma = 0.2$, 0.7 and 6 eV, respectively for 16O*(16.40, 18.19, 21.04) (1967SU02).
Table 16.12: Radiative decays in 16O

<table>
<thead>
<tr>
<th>E_i (MeV)</th>
<th>J_i^π: T</th>
<th>E_f (MeV)</th>
<th>J_f^π: T</th>
<th>Branch (%)</th>
<th>Γ_γ (eV)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.05</td>
<td>0(^\pm):0</td>
<td>0</td>
<td>0(^\pm):0</td>
<td>100</td>
<td>3.66 ± 0.55(^b)</td>
<td>(1968ST31)</td>
</tr>
<tr>
<td>6.13</td>
<td>3(^\pm):0</td>
<td>0</td>
<td>0(^\pm):0</td>
<td>100</td>
<td>(2.3 ± 1.1) × 10(^{-5})</td>
<td>(1968ST31)</td>
</tr>
<tr>
<td>6.92</td>
<td>2(^\pm):0</td>
<td>0</td>
<td>0(^\pm):0</td>
<td>> 99</td>
<td>(80 ± 7) × 10(^{-3})</td>
<td>(1968ST04, 1968ST31)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.05</td>
<td>0(^\pm):0</td>
<td>(2.7 ± 0.7) × 10(^{-2})</td>
<td>(93 ± 10) × 10(^{-3})</td>
<td>(1968ST04, 1968ST31)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2(^\pm):0</td>
<td>(2.9 ± 1.1) × 10(^{-2})</td>
<td>(100 ± 15) × 10(^{-3})</td>
<td>(1967AR1A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7(^\pm):0</td>
<td>(2.3 ± 0.5) × 10(^{-2})</td>
<td>(110 ± 5) × 10(^{-3})</td>
<td>(1970SW03)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9(^\pm):0</td>
<td>(2.9 ± 0.4) × 10(^{-2})</td>
<td>≥ 9 × 10(^{-3})</td>
<td>(1965FU05)</td>
</tr>
<tr>
<td></td>
<td>7.12</td>
<td>1(^\pm):0</td>
<td>0</td>
<td>> 99</td>
<td>2.7 × 10(^{-5})</td>
<td>(1963GO31)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.05</td>
<td>0(^\pm):0</td>
<td>≤ 3.5 × 10(^{-3})</td>
<td>≤ 3.0 × 10(^{-6})</td>
<td>(1970SW03)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3(^\pm):0</td>
<td>(8 ± 2) × 10(^{-2})</td>
<td>(5.3 ± 2.1) × 10(^{-5})</td>
<td>(1963GO31)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7(^\pm):0</td>
<td>(7 ± 1.4) × 10(^{-2})</td>
<td>≥ 6 × 10(^{-4})</td>
<td>(1967LO08)</td>
</tr>
<tr>
<td></td>
<td>8.87(^d)</td>
<td>2(^\pm):0</td>
<td>0</td>
<td>7 ± 2</td>
<td>9 ± 4</td>
<td>(1957BE61)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0(^\pm):0</td>
<td>7.2 ± 0.8</td>
<td>(2.41 ± 0.35) × 10(^{-4})</td>
<td>(1957MC35)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0(^\pm):0</td>
<td>0.112 ± 0.033</td>
<td>(2.9 ± 1.0) × 10(^{-6})</td>
<td>(1957MC35)</td>
</tr>
<tr>
<td>6.13</td>
<td>3(^\pm):0</td>
<td>74</td>
<td>7(^\pm):0</td>
<td>76.0 ± 3.0</td>
<td>(1.70(^+0.35)(^{-0.50})) × 10(^{-3}) (E2)</td>
<td>(1968WI15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3(^\pm):0</td>
<td>76.0 ± 3.0</td>
<td>(8.5(^+4.0)(^{-2.5})) × 10(^{-4}) (M1)</td>
<td>(1967PI01)</td>
</tr>
<tr>
<td>6.92</td>
<td>2(^\pm):0</td>
<td>5</td>
<td>4(^\pm):0</td>
<td>4.2 ± 0.8</td>
<td>(1.72 ± 0.25) × 10(^{-4})</td>
<td>(1968WI15)</td>
</tr>
<tr>
<td>7.12</td>
<td>1(^\pm):0</td>
<td>14</td>
<td>1(^\pm):0</td>
<td>12.6 ± 2.0</td>
<td>12.6 ± 2.0</td>
<td>(1968WI15)</td>
</tr>
<tr>
<td>9.60</td>
<td>1(^\pm):0</td>
<td>0</td>
<td>0(^\pm):0</td>
<td>12.6 ± 2.0</td>
<td>(22 ± 5) × 10(^{-3})</td>
<td>(1964LA16)</td>
</tr>
</tbody>
</table>
Table 16.12: Radiative decays in 16O a (continued)

<table>
<thead>
<tr>
<th>E_i (MeV)</th>
<th>$J_i^\pi: T$</th>
<th>E_f (MeV)</th>
<th>$J_f^\pi: T$</th>
<th>Branch (%)</th>
<th>Γ_γ (eV)</th>
<th>Refs. c</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.05</td>
<td>0$^+$: 0</td>
<td>6.05</td>
<td>0$^+$: 0</td>
<td>4.3 ± 1.4</td>
<td>$(1.8 ± 4) \times 10^{-3}$</td>
<td>A</td>
</tr>
<tr>
<td>6.13</td>
<td>3$^-$: 0</td>
<td>6.13</td>
<td>0$^+$: 0</td>
<td>≤ 5</td>
<td>$(1.2 ± 0.4) \times 10^{-3}$</td>
<td>(1969BR1L), B</td>
</tr>
<tr>
<td>9.85</td>
<td>2$^+$: 0</td>
<td>0</td>
<td>0$^+$: 0</td>
<td>61 ± 4</td>
<td>$(< 0.6) \times 10^{-3}$</td>
<td>A</td>
</tr>
<tr>
<td>10.35</td>
<td>4$^+$: 0</td>
<td>6.05</td>
<td>0$^+$: 0</td>
<td>18 ± 4</td>
<td>$(1.89 ± 0.42) \times 10^{-3}$</td>
<td>(1967GO08), B</td>
</tr>
<tr>
<td>10.95</td>
<td>0$^-$: 0</td>
<td>6.05</td>
<td>0$^+$: 0</td>
<td>< 5</td>
<td>$(1.2 ± 0.4) \times 10^{-3}$</td>
<td>(1969BR1L), B</td>
</tr>
<tr>
<td>11.08</td>
<td>3$^+$: 0</td>
<td>6.13</td>
<td>3$^-$: 0</td>
<td>< 6</td>
<td>< 1.0 × 10^{-3}</td>
<td>(1969BR1L), B</td>
</tr>
<tr>
<td>11.52</td>
<td>2$^+$: 0</td>
<td>6.92</td>
<td>2$^+$: 0</td>
<td>> 99</td>
<td>$(4.0 ± 0.8) \times 10^{-2}$</td>
<td>(1966GO08)</td>
</tr>
<tr>
<td>12.44</td>
<td>1$^-$: 0</td>
<td>7.12</td>
<td>1$^-$: 0</td>
<td>< 100</td>
<td>$(4.6 ± 0.6) \times 10^{-2}$</td>
<td>(1964LA16)</td>
</tr>
</tbody>
</table>

a: 'best' value

1.89 ± 0.42 × 10^{-3} (1967GO08), B

3.0 ± 0.7 × 10^{-2} (HO66C), B
Table 16.12: Radiative decays in 16O (continued)

<table>
<thead>
<tr>
<th>E_i (MeV)</th>
<th>$J_i^\pi: T$</th>
<th>E_f (MeV)</th>
<th>$J_f^\pi: T$</th>
<th>Branch (%)</th>
<th>Γ_γ (eV)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.53 a</td>
<td>$2^-: 0$</td>
<td>0</td>
<td>$0^+: 0$</td>
<td>1.2 ± 0.4</td>
<td>$(87 \pm 29) \times 10^{-3}$</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.05</td>
<td>0</td>
<td>$0^+: 0$</td>
<td>$(21 \pm 6) \times 10^{-3}$</td>
<td>(1968ST31)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.13</td>
<td>$3^-: 0$</td>
<td>60 ± 5.7</td>
<td>2.1 ± 0.2</td>
<td>(1968GO07), B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.92</td>
<td>$2^+: 0$</td>
<td>≤ 9.7</td>
<td>≤ 0.34</td>
<td>(1968GO07), B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.12</td>
<td>$1^-: 0$</td>
<td>15 ± 2.9</td>
<td>0.51 ± 0.10</td>
<td>(1968GO07), B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.87</td>
<td>$2^-: 0$</td>
<td>25 ± 2.9</td>
<td>0.86 ± 0.10</td>
<td>(1968GO07), B</td>
</tr>
<tr>
<td>12.80</td>
<td>$0^-: 1$</td>
<td>6.13</td>
<td>$3^-: 0$</td>
<td>≤ 0.1</td>
<td>(1968GO07)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.92</td>
<td>$2^+: 0$</td>
<td>≤ 0.1</td>
<td>(1968GO07)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.12</td>
<td>$1^-: 0$</td>
<td>≈ 100</td>
<td>2.5 ± 0.2</td>
<td>(1968GO07), B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.87</td>
<td>$2^-: 0$</td>
<td>≤ 0.06</td>
<td>(1968GO07)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.60</td>
<td>$1^-: 0$</td>
<td>$\leq 2 \times 10^{-4}$</td>
<td>(1969BR1L)</td>
<td></td>
</tr>
<tr>
<td>12.97</td>
<td>$2^-: 1$</td>
<td>0</td>
<td>$0^+: 0$</td>
<td>≈ 100</td>
<td>$(78 \pm 16) \times 10^{-3}$</td>
<td>(1968ST31)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.13</td>
<td>$3^-: 0$</td>
<td>63 ± 5.5</td>
<td>2.3 ± 0.2</td>
<td>(1968GO07), B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.92</td>
<td>$2^+: 0$</td>
<td>≤ 2.7</td>
<td>≤ 0.1</td>
<td>(1968GO07), B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.12</td>
<td>$1^-: 0$</td>
<td>12 ± 2.7</td>
<td>0.44 ± 0.10</td>
<td>(1968GO07), B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.87</td>
<td>$2^-: 0$</td>
<td>25 ± 2.7</td>
<td>0.90 ± 0.10</td>
<td>(1968GO07), B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.60</td>
<td>$1^-: 0$</td>
<td>$\leq 7.2 \times 10^{-3}$</td>
<td>(1969BR1L)</td>
<td></td>
</tr>
<tr>
<td>13.09</td>
<td>$1^-: 1$</td>
<td>0</td>
<td>$0^+: 0$</td>
<td>≈ 100</td>
<td>$(72 \pm 15) \times 10^{-3}$</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.05</td>
<td>$0^+: 0$</td>
<td>0.58 ± 0.12</td>
<td>0.8 ± 0.2</td>
<td>(1968WI15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.13</td>
<td>$3^-: 0$</td>
<td>63 ± 5.5</td>
<td>2.3 ± 0.2</td>
<td>(1968GO07), B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.92</td>
<td>$2^+: 0$</td>
<td>≤ 0.1</td>
<td>(1968GO07), B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.12</td>
<td>$1^-: 0$</td>
<td>12 ± 2.7</td>
<td>0.44 ± 0.10</td>
<td>(1968GO07), B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.87</td>
<td>$2^-: 0$</td>
<td>25 ± 2.7</td>
<td>0.90 ± 0.10</td>
<td>(1968GO07), B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.60</td>
<td>$1^-: 0$</td>
<td>$\leq 7.2 \times 10^{-3}$</td>
<td>(1969BR1L)</td>
<td></td>
</tr>
<tr>
<td>13.25</td>
<td>$3^-: 1$</td>
<td>6.13</td>
<td>$3^-: 0$</td>
<td>> 85</td>
<td>$(9.2 \pm 1.5) \times 10^{-2}$</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.92</td>
<td>$2^+: 0$</td>
<td>≤ 2.0</td>
<td>(1966GO1H)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.12</td>
<td>$1^-: 0$</td>
<td>3.1 ± 0.8</td>
<td>1.4 ± 0.4</td>
<td>(1969BR1L), B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.87</td>
<td>$2^-: 0$</td>
<td>≤ 0.1</td>
<td>(1966GO1H)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.60</td>
<td>$1^-: 0$</td>
<td>$\leq 2 \times 10^{-2}$</td>
<td>(1969BR1L)</td>
<td></td>
</tr>
<tr>
<td>16.22</td>
<td>$1^+: 1$</td>
<td>0</td>
<td>$0^+: 0$</td>
<td>86.2</td>
<td>5.1 ± 0.8</td>
<td>(1970ST06)</td>
</tr>
</tbody>
</table>

34
Table 16.12: Radiative decays in 16O \(^a\) (continued)

| E_i (MeV) | $J_i^\pi: T$ | E_f (MeV) | $J_f^\pi: T$ | Branch (%) | Γ_γ (eV) | Refs. | € |
|--------------|--------------|--------------|--------------|------------|------------------|-------|
| 17.14 | 1$^-$; 1 | 6.05 | 0$^+$; 0 | 13.8 ± 4.3 | | (1963GO22), B |
| 17.30 | 1$^-$; 1 | 6.05 | 0$^+$; 0 | ≤ 1.3 | | (1963GO22) |

A: J. Lowe, O. Karban and P.M. Rolph, private communication.
B: I am indebted to Dr. P. Chevallier for pointing out errors and omissions in this table.

\(^a\) See also Tables 16.19, 16.21, and 16.26.

\(^b\) Monopole matrix element in fm\(^2\).

\(^c\) See also (1962GO07, 1962GO15, 1963GO22, 1967GI07).

\(^d\) $\Gamma_{\text{total}} = 34 \times 10^{-4}$ eV (1967PI01). See also (1957WA1B).

\(^e\) See also (1967PI01).

\(^f\) 4.3×10^{-2} W.u. (BE69W).

\(^g\) $\Gamma \leq 0.5$ keV (P. Chevallier, private communication; preliminary results).

In a study of the yield of α_0 and α_1 for $E_\alpha = 18.9$ to 30.1 MeV, (1970MO06) find that the cross section for the α_1 group is in general greater than that for the α_0 group [see also (1964MI08)]. Recent phase-shift analyses are reported by (1968CA11, 1969CL08, 1970MO06). The inclusion of the bound level of 16O\(^8\) at 7.12 MeV produces an improved fit to the low-energy p-wave phase shift data and leads to θ_α^2 for 16O\(^8\)(7.12) = 0.71\(^{+0.37}_{-0.18}\) (1969CL08). The energy dependence of the α_1-\(\gamma_4\) angular correlation has been studied for $E_\alpha = 18$ to 24 MeV by (1968KL07).

Astrophysical considerations are discussed by (1970MO22).

The non-elastic cross section at $E_\alpha = 40$ MeV has been measured by (1963IG01, 1963WI1D). Polarization measurements have been made at $E_\alpha = 22.5$ MeV by (1964EI01) and at $E_\alpha = 22.75$ MeV by (1970HA15). At the higher energy the cross section is free of resonance structure (1970HA15). Spallation studies are reported by (1968JA1J, 1968JU1A, 1969JU03, 1970BA48, 1970JA1Q, 1970JU1B, 1970RA30, 1970SC1F).

10. 12C(α, 8Be)8Be

\[Q_m = -7.464 \]

\[E_\beta = 7.161 \]

The yield of 8Be shows a number of resonances for $E_\alpha = 11.85$ to 19.4 MeV, some of which are attributed to rotational states of 16O: see Table 16.11. J^n assignments were made from angular distribution studies (1967CH21). Levels seen in this reaction are attributed by (1967AB02, 1967AB04) to a rotational band generated by an axially symmetric 8p-8h state.
11. $^{12}\text{C}(^6\text{Li}, d)^{16}\text{O}$ \hspace{1cm} $Q_m = 5.689$

At $E(^6\text{Li}) = 20$ and 29 MeV and at $E(^{12}\text{C}) = 18$ to 24 MeV, deuteron groups are observed to many of the states with $E_x \leq 16.2$ MeV (1967LO01, 1968ME10, 1970CO26). The spectrum at $E(^6\text{Li}) = 20$ MeV is dominated by the groups corresponding to $^{16}\text{O}^*(10.34, 14.8, 16.2)$ with $J^\pi = 4^+, 6^+$ and 6^+, respectively (1967BE24, 1968ME10, 1970CO26). In addition, the excitation of a state at $E_x \approx 20.8$ MeV ($\Gamma \approx 600$ keV) is reported by (1970CO26): it may be the 8^+ member of the first even parity rotational band in ^{16}O, which is believed to have a predominantly 4p-4h character (1970CO26). See also (1969GO19). Measured angular distributions are listed in Table 16.13. (1967LO01) have analyzed their data to obtain θ_2^{α} for all ^{16}O states with $E_x < 10.4$ MeV. See also (1960SH01, 1963OL1A, 1967CA1D, 1967DZ01, 1968OG1A, 1969CO1D, 1969GI1B, 1970CO26, 1970PU01). As in $^{12}\text{C}(^6\text{Li}, d)^{16}\text{O}$, the spectra are dominated by groups corresponding to the 4^+ and 6^+ states at $^{16}\text{O}^*(10.34, 14.8, 16.2)$ and by $^{16}\text{O}^*(20.8)$. Table 16.13 lists the measured angular distributions. From these distributions and the weak excitation of $^{16}\text{O}^*(8.87)$ it is concluded that the reaction proceeds predominantly by a direct α-transfer (1970PU01). See also (1963OL1A, 1967CH34, 1967OG1A, 1968DA20, 1968OG1A, 1970OG1A, 1969DA14, 1970DO07, 1970DU1E; theor.) and ^{18}F in (1972AJ02).

12. $^{12}\text{C}(^7\text{Li}, t)^{16}\text{O}$ \hspace{1cm} $Q_m = 4.694$

At $E(^7\text{Li}) = 15$ to 31.5 MeV, triton groups are observed to many of the states with $E_x \leq 16.2$ MeV (1969GI1B, 1969GO19, 1970CO26, 1970PU01). As in $^{12}\text{C}(^6\text{Li}, d)^{16}\text{O}$, the spectra are dominated by groups corresponding to the 4^+ and 6^+ states at $^{16}\text{O}^*(10.34, 14.8, 16.2)$ and by $^{16}\text{O}^*(20.8)$. Table 16.13 lists the measured angular distributions. From these distributions and the weak excitation of $^{16}\text{O}^*(8.87)$ it is concluded that the reaction proceeds predominantly by a direct α-transfer (1970PU01). See also (1963OL1A, 1967CH34, 1967OG1A, 1968DA20, 1968OG1A, 1970OG1A, 1969DA14, 1970DO07, 1970DU1E; theor.) and ^{18}F in (1972AJ02).

13. (a) $^{12}\text{C}(^{10}\text{B}, ^6\text{Li})^{16}\text{O}$ \hspace{1cm} $Q_m = 2.700$
(b) $^{12}\text{C}(^{11}\text{B}, ^7\text{Li})^{16}\text{O}$ \hspace{1cm} $Q_m = -1.503$
(c) $^{12}\text{C}(^{12}\text{C}, 2\alpha)^{16}\text{O}$ \hspace{1cm} $Q_m = -0.113$

For reaction (a), see (1970JA1B, 1970VO1F). For reaction (b), see (1970JA1B). For reaction (c), see (1959AL1H, 1968JA1F, 1970JA1B) and ^{20}Ne in (1972AJ02).

14. $^{12}\text{C}(^{14}\text{N}, ^{10}\text{B})^{16}\text{O}$ \hspace{1cm} $Q_m = -4.452$

15. (a) $^{12}\text{C}(^{16}\text{O}, ^{12}\text{C})^{16}\text{O}$ \hspace{1cm} $Q_m = 0.934$
(b) $^{12}\text{C}(^{18}\text{O}, ^{14}\text{C})^{16}\text{O}$
Table 16.13: Angular distribution studies of $^{12}\text{C}(^6\text{Li}, d)^{16}\text{O}$ and $^{12}\text{C}(^7\text{Li}, t)^{16}\text{O}$

(a)

<table>
<thead>
<tr>
<th>$E(^6\text{Li})$ (MeV)</th>
<th>Distribution of deuteron groups</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>d_0</td>
<td>(1963BA08)</td>
</tr>
<tr>
<td>3.4 − 4.0</td>
<td>d_0</td>
<td>(1962BL13)</td>
</tr>
<tr>
<td>4.5 − 5.5</td>
<td>d_0, d_{1+2}, d_3, d_4</td>
<td>(1966HE05)</td>
</tr>
<tr>
<td>5.6 − 6.6</td>
<td>d_0, d_{1+2}</td>
<td>(1970JO09)</td>
</tr>
<tr>
<td>9 − 14</td>
<td>$d_0, d_{1+2}, d_{3+4}, d_5$</td>
<td>(1970JO09)</td>
</tr>
<tr>
<td>18 − 24 a</td>
<td>$d_0, d_1, d_2, d_3, d_4, d_5, d_6, d_7, d_8$</td>
<td>(1967LO01)</td>
</tr>
<tr>
<td>18</td>
<td>d_1, d_3, d_8</td>
<td>(1970BE31)</td>
</tr>
<tr>
<td>20</td>
<td>$d_0, d_{1+2}, d_3, d_4, d_7, d_8, d_{11+12}$</td>
<td>(1968ME10)</td>
</tr>
<tr>
<td>25.8</td>
<td>$d_0, d_{1+2}, d_{3+4}, d_8$, and d to $^{16}\text{O}^*(16.2)$</td>
<td>(1969GO19)</td>
</tr>
<tr>
<td>29</td>
<td>d to $^{16}\text{O}^*(16.2, 20.8)$</td>
<td>(1970CO26)</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>$E(^7\text{Li})$ (MeV)</th>
<th>Distribution of triton groups</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 − 3.6</td>
<td>t_0</td>
<td>(1967MO23)</td>
</tr>
<tr>
<td>4 − 14</td>
<td>t_0</td>
<td>(1970CA1N)</td>
</tr>
<tr>
<td>15, 21.1, 24</td>
<td>$t_0 \rightarrow t_8$</td>
<td>(1970PU01)</td>
</tr>
<tr>
<td>17</td>
<td>t_1, t_3, t_8</td>
<td>(1970BE31)</td>
</tr>
<tr>
<td>21.2, 24</td>
<td>t to $^{16}\text{O}^*(11.10)$</td>
<td>(1970PU01)</td>
</tr>
<tr>
<td>28.2, 30.3</td>
<td>$t_0, t_{1+2}, t_{3+4}, t_8$, and t to $^{16}\text{O}^*(16.2)$</td>
<td>(1969GO19)</td>
</tr>
<tr>
<td>31.5</td>
<td>t to $^{16}\text{O}^*(16.2, 20.8)$</td>
<td>(1970CO26)</td>
</tr>
</tbody>
</table>

a $E(^{12}\text{C}) = 18$ to 24 MeV.
Table 16.14: 13C + 3He excitation functions

<table>
<thead>
<tr>
<th>$E(^3\text{He})$ (MeV)</th>
<th>Particles</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 – 3.5</td>
<td>γ_0</td>
<td>(1966PU01)</td>
</tr>
<tr>
<td>1.4 – 2.65</td>
<td>n_0, n_3</td>
<td>(1963DU12)</td>
</tr>
<tr>
<td>1.4 – 5.80</td>
<td>n_0</td>
<td>(1965DI07)</td>
</tr>
<tr>
<td>2.3 – 3.2</td>
<td>n_0</td>
<td>(1961JO24)</td>
</tr>
<tr>
<td>7.5 – 11</td>
<td>n_0</td>
<td>(1964DE1C)</td>
</tr>
<tr>
<td>2.0 – 6.0</td>
<td>$p_0 \rightarrow p_6$</td>
<td>(1970ST1M)</td>
</tr>
<tr>
<td>4.0 – 8.0</td>
<td>p_0, p_{1+2}</td>
<td>(1968WE15)</td>
</tr>
<tr>
<td>5.2 – 8.0</td>
<td>3He</td>
<td>(1967WE06, 1968WE15)</td>
</tr>
<tr>
<td>1.3 – 2.0</td>
<td>α_0</td>
<td>(1960BA25)</td>
</tr>
<tr>
<td>1.5 – 5.7</td>
<td>$\gamma_{12.7}$, $\gamma_{15.1}$</td>
<td>(1968MO1J)</td>
</tr>
<tr>
<td>1.5 – 8.0</td>
<td>$\gamma_{15.1}$</td>
<td>(1968WE13)</td>
</tr>
<tr>
<td>2.1 – 4.9</td>
<td>$\gamma_{15.1}$</td>
<td>(1964KU09)</td>
</tr>
<tr>
<td>2.0 – 8.5</td>
<td>α_0, α_1</td>
<td>(1968WE13, 1968WE15)</td>
</tr>
<tr>
<td>2.6 – 12</td>
<td>$\gamma_{15.1}$</td>
<td>(1969TA09)</td>
</tr>
<tr>
<td>4.0 – 8.0</td>
<td>α_2</td>
<td>(1968WE15)</td>
</tr>
<tr>
<td>8 – 12</td>
<td>α_0</td>
<td>(1969TA09)</td>
</tr>
<tr>
<td>2 – 6</td>
<td>^8Be</td>
<td>(1968JA07)</td>
</tr>
</tbody>
</table>

For reaction (a) see (1968VO1A). See also (1967AB1D, 1970CL1E, 1970HE1E, 1970JA1B, 1970VO1F; theor.). For reaction (b) see (1969BR1D, 1969SU1E, 1970BA1J).

16. 12C(19F, 15N)16O \[Q_m = 3.150 \]

17. 12C(20Ne, 16O)16O \[Q_m = 2.432 \]

See (1970JA1B).

18. 13C(3He, γ)16O \[Q_m = 22.793 \]
Table 16.15: Resonances in 13C + 3He

<table>
<thead>
<tr>
<th>$E(^3\text{He})$ (MeV ± keV)</th>
<th>$\Gamma_{\text{c.m.}}$</th>
<th>Outgoing particles</th>
<th>$^{16}\text{O}^*$ (MeV)</th>
<th>$J^\pi; T$</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.55</td>
<td>≈ 80</td>
<td>n_0, n_3</td>
<td>24.05</td>
<td></td>
<td>(1963DU12)</td>
</tr>
<tr>
<td>1.55 ± 100</td>
<td>450</td>
<td>γ_0</td>
<td>24.05</td>
<td></td>
<td>(1966PU01)</td>
</tr>
<tr>
<td>2.0</td>
<td>≈ 250</td>
<td>n_0</td>
<td>24.4</td>
<td></td>
<td>(1965DI07)</td>
</tr>
<tr>
<td>2.6 ± 100</td>
<td></td>
<td>$\alpha\gamma_{15.1}$</td>
<td>24.9</td>
<td>$(T = 1)$</td>
<td>(1964KU09, 1968MO1J, 1968WE13, 1969TA09)</td>
</tr>
<tr>
<td>2.87 ± 50</td>
<td>600</td>
<td>γ_0</td>
<td>25.12</td>
<td></td>
<td>(1966PU01)</td>
</tr>
<tr>
<td>(3.6)</td>
<td></td>
<td>$p, \alpha\gamma_{15.1}$</td>
<td>25.7</td>
<td></td>
<td>(1956SC01, 1957IL1A, 1964KU09)</td>
</tr>
<tr>
<td>4.1 ± 100</td>
<td>a</td>
<td>$\alpha\gamma_{15.1}$</td>
<td>26.1</td>
<td>$(T = 1)$</td>
<td>(1964KU09, 1969TA09)</td>
</tr>
<tr>
<td>5.2 ± 100</td>
<td>a</td>
<td>$\alpha\gamma_{15.1}$</td>
<td>27.0</td>
<td>$(T = 1)$</td>
<td>(1968MO1J, 1968WE13, 1969TA09)</td>
</tr>
<tr>
<td>5.6 ± 100</td>
<td>≈ 600</td>
<td>$\alpha\gamma_{15.1}, ^8\text{Be}$</td>
<td>27.3</td>
<td>$(2^+; T = 1)$</td>
<td>(1968JA07, 1968WE13)</td>
</tr>
<tr>
<td>6.0 ± 100</td>
<td>≈ 500</td>
<td>$p_0, p_{1+2}, ^3\text{He}, \alpha_0, \alpha_1, \alpha_2$</td>
<td>27.6</td>
<td>$(3^-; T = 0)$</td>
<td>(1968WE15)</td>
</tr>
<tr>
<td>6.5 ± 100</td>
<td>a</td>
<td>$\alpha\gamma_{15.1}$</td>
<td>28.1</td>
<td>$(T = 1)$</td>
<td>(1968WE13, 1969TA09)</td>
</tr>
<tr>
<td>6.8 ± 100</td>
<td>a</td>
<td>$\alpha_0, \alpha_1, \alpha_2$</td>
<td>28.3</td>
<td>$(T = 0)$</td>
<td>(1968WE13)</td>
</tr>
<tr>
<td>7.5 ± 100</td>
<td>a</td>
<td>$\alpha\gamma_{15.1}$</td>
<td>28.9</td>
<td>$(T = 1)$</td>
<td>(1969TA09)</td>
</tr>
<tr>
<td>8.6 ± 100</td>
<td>a</td>
<td>$\alpha\gamma_{15.1}$</td>
<td>29.8</td>
<td>$(T = 1)$</td>
<td>(1969TA09)</td>
</tr>
<tr>
<td>9.4 ± 100</td>
<td>a</td>
<td>$\alpha\gamma_{15.1}$</td>
<td>30.4</td>
<td>$(T = 1)$</td>
<td>(1969TA09)</td>
</tr>
<tr>
<td>10.1 ± 100</td>
<td>a</td>
<td>$\alpha\gamma_{15.1}$</td>
<td>31.0</td>
<td>$(T = 1)$</td>
<td>(1969TA09)</td>
</tr>
</tbody>
</table>

*a Widths (lab.) 0.5 – 1 MeV (1969TA09).
The yield of ground state γ-rays for $E(\text{He}) = 1.0$ to 3.5 MeV shows two strong resonances corresponding to $^{16}\text{O}^*(24.1, 25.1)$ [see Table 16.15] (1966PU01). See also (1970MO1A).

19. $^{13}\text{C}(\text{He}, n)^{15}\text{O}$

$Q_m = 7.125$

$E_b = 22.793$

The excitation functions (see Table 16.14) are marked at low energies by complex structures, and possibly by two resonances at $E(\text{He}) = 1.55$ and 2.0 MeV (see Table 16.15) (1963DE02, 1965DI07). For $E(\text{He}) = 7.5$ to 11 MeV, the n_0 curve is rather featureless (1964DE1C). Polarization measurements are reported by (1968ST19: 3.0 to 3.9 MeV; n_0) and by (1969DE1Q, 1969DE1R: 4.2 to 5.7 MeV; n_0). See also (1961JO07, 1964DI1C). See (1969BA1N) for a discussion of astrophysical implications. See also ^{15}O in (1970AJ04).

20. $^{13}\text{C}(\text{He}, p)^{15}\text{N}$

$Q_m = 10.667$

$E_b = 22.793$

The yield curves for p_0 and p_{1+2} (see Table 16.14) show a resonance corresponding to $^{16}\text{O}^*(27.6)$ (1968WE15). See also (1970ST1M) and ^{15}N in (1970AJ04).

21. $^{13}\text{C}(\text{He}, \alpha)^{12}\text{C}$

$E_b = 22.793$

See (1967WE06, 1968WE15) and Tables 16.14 and 16.15.

22. $^{13}\text{C}(\text{He}, \alpha)^{12}\text{C}$

$Q_m = 15.631$

$E_b = 22.793$

Yields of α_0, α_1, α_2 and γ-rays from the decay of $^{12}\text{C}^*(12.71, 15.11)$ have been studied at many energies: see Table 16.14. Observed resonances are displayed in Table 16.15: those seen in the yield of 15.1 MeV γ-rays are assumed to correspond to ^{16}O states which have primarily a $T = 1$ character since $^{12}\text{C}^*(15.11)$ has $T = 1$ (1964KU09, 1968MO1J, 1968WE15, 1968WE13, 1968WE1C, 1969TA09). See also (1968WE1F) and ^{12}C in (1968AJ02).

23. $^{13}\text{C}(\text{He}, ^8\text{Be})^8\text{Be}$

$Q_m = 8.168$

$E_b = 22.793$

The excitation function for $^8\text{Be}_{g.s.}$ has been studied for $E(\text{He}) = 2$ to 6 MeV. It shows a strong resonance at $E(\text{He}) = 5.6$ MeV corresponding to a state in ^{16}O at $E_x = 27.3$ MeV. J^π appears to be 2^+ from angular distribution measurements. $^{16}\text{O}^*(27.3)$ does not belong to the rotational band studied by (1967CH21) in $^{12}\text{C}(\alpha, ^8\text{Be})^8\text{Be}$: J^π for such a rotational state at $E_x = 27$ MeV would have to be 14^+. The off-resonance cross section is comparable to typical cross sections observed in the (He, α) process (1968JA07).
24. 13C(α, n)16O \quad Q_m = 2.215

A threshold for 16O*(6.05) is observed at $E_\alpha = 5.05$ MeV (1956BO61). The angular distributions of neutrons corresponding to the ground state have been measured for $E_\alpha = 12.8$ to 14.1 MeV (1962NI04), 17.4 to 22.5 MeV (1963DE27, 1965DE1F). See also (1961DE08, 1963WE1C), (1959CA1A, 1959MD1A, 1964KE1C, 1964MC1B; theor.) and 17O.

25. 13C(6Li, t)16O \quad Q_m = 7.000

At $E(^6$Li) = 20 MeV, triton groups corresponding to 16O states with $E_x < 16.9$ MeV have been observed. Angular distributions have been obtained for 16O*(6.13, 6.92, 7.12, 8.87, 9.85, 10.34, 11.10). The triton groups corresponding to 16O*(11.09) dominate the spectra; 16O*(14.4, 14.8) were also strongly excited (1969BA50). See also (1969GI1B, 1970OA1A).

26. 13C(12C, 9Be)16O \quad Q_m = -3.489

See (1969GI1B, 1970JA1B).

27. 14C(3He, n)16O \quad Q_m = 14.616

At $E(^3$He) = 11 to 16 MeV, neutron groups are observed to $T = 2$ states at $E_x = 22.717 \pm 0.008$ and 24.522 \pm 0.011 MeV ($\Gamma < 30$ keV and < 50 keV, respectively). These two states are presumably the first two $T = 2$ states in 16O, the analog states to 16C*(0, 1.75). J^π for 16O*(24.52) is found to be 2^+ from angular distribution measurements (1970AD01). Angular distributions are also reported at 2.1 to 3.4 MeV (1961JO24; n$_0$) and at 6 MeV (1970HO08; n$_0$, n$_{1+2}$, n$_{3+4}$). See also (1969BA1Z) and 17O.

28. 14N(d, γ)16O \quad Q_m = 20.736

The γ_0 yield has been studied for $E_d = 0.5$ to 5.5 MeV. The yield shows a resonance at $E_d = 2.2$ MeV corresponding to a state in 16O at $E_x = 22.7$ MeV, formed with a cross section of $\approx 6 \mu$b. The angular distribution of γ_0 at resonance is on the whole consistent with E1. Structure at $E_x = 22.2$ and 24.5 MeV is also reported (1966SU05, 1966SU1C). See also (1961SU17, 1963SU09). (1969GI1B) attributes the 2.2 MeV resonance to a 2p-2h 1$^-$; $T = 1$ state whose formation is possible because of polarization of the deuterons and isospin impurity. See also Tables 16.16 and 16.17 and (1967GI1C, 1969MA1N, 1969RA1F, 1969WE1H; theor.).
Table 16.16: Summary of recent 14N + d yield and polarization measurements

(a) Yield measurements

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Particles</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 – 5.5</td>
<td>γ_0</td>
<td>(1966SU05, 1966SU1C)</td>
</tr>
<tr>
<td>0.15 – 0.70</td>
<td>n_0</td>
<td>(1963CS02)</td>
</tr>
<tr>
<td>0.66 – 5.62</td>
<td>n_0</td>
<td>(1960RE07)</td>
</tr>
<tr>
<td>1.2 – 2.8</td>
<td>n_0</td>
<td>(1960EL04)</td>
</tr>
<tr>
<td>1.3 – 5.4</td>
<td>n_0</td>
<td>(1965JA1F)</td>
</tr>
<tr>
<td>1.53 – 2.90</td>
<td>n_0</td>
<td>(1960MO18)</td>
</tr>
<tr>
<td>0.5 – 5.5</td>
<td>p_0</td>
<td>(1962GO21)</td>
</tr>
<tr>
<td>0.55 – 0.85</td>
<td>p_0, p_{1+2}</td>
<td>(1961SJ1B)</td>
</tr>
<tr>
<td>1.0 – 2.2</td>
<td>$p_0, p_3 \rightarrow p_7$</td>
<td>(1967BE09)</td>
</tr>
<tr>
<td>1.05 – 3.15</td>
<td>$p_{1+2}, p_3 \rightarrow p_7$</td>
<td>(1969GO14)</td>
</tr>
<tr>
<td>1.4 – 3.2</td>
<td>p_0, p_{1+2}</td>
<td>(1961KA05)</td>
</tr>
<tr>
<td>2.0 – 3.7</td>
<td>$p_0 \rightarrow p_7$</td>
<td>(1967BO37)</td>
</tr>
<tr>
<td>0.65 – 2.0</td>
<td>d_0</td>
<td>(1964SE1D)</td>
</tr>
<tr>
<td>1.1 – 3.3</td>
<td>d_0</td>
<td>(1969GO14)</td>
</tr>
<tr>
<td>1.8 – 5.5</td>
<td>d_0</td>
<td>(1967FL10)</td>
</tr>
<tr>
<td>2.0 – 3.7</td>
<td>d_0</td>
<td>(1967BO37)</td>
</tr>
<tr>
<td>5.5 – 10.2</td>
<td>d_1</td>
<td>(1970DU04)</td>
</tr>
<tr>
<td>5.9 – 12.2</td>
<td>d_2</td>
<td>(1970DU04)</td>
</tr>
<tr>
<td>0.55 – 0.85</td>
<td>α_0</td>
<td>(1961SJ1B)</td>
</tr>
<tr>
<td>1.0 – 2.2</td>
<td>$\alpha_0 \rightarrow \alpha_3$</td>
<td>(1967LA16)</td>
</tr>
<tr>
<td>1.05 – 3.3</td>
<td>$\alpha_0 \rightarrow \alpha_3$</td>
<td>(1969GO14)</td>
</tr>
<tr>
<td>1.1 – 2.5</td>
<td>α_0, α_1</td>
<td>(1964MA53)</td>
</tr>
<tr>
<td>1.1 – 3.1</td>
<td>α_0, α_1</td>
<td>(1962IS02)</td>
</tr>
<tr>
<td>1.3 – 2.2</td>
<td>α_0</td>
<td>(1966EU01)</td>
</tr>
<tr>
<td>1.4 – 2.4</td>
<td>α_0, α_3</td>
<td>(1964MA53)</td>
</tr>
<tr>
<td>1.5 – 3.0</td>
<td>α_0</td>
<td>(1961IS03)</td>
</tr>
<tr>
<td>2 – 4</td>
<td>α_0, α_1</td>
<td>(1962AL09)</td>
</tr>
<tr>
<td>2 – 12</td>
<td>$\alpha_0, \alpha_1, \alpha_2$</td>
<td>(1964CH1B, 1964CH1C)</td>
</tr>
<tr>
<td>2.3 – 5.8</td>
<td>$\alpha_0, \alpha_1, \alpha_2$</td>
<td>(1967BO37)</td>
</tr>
</tbody>
</table>
Table 16.16: Summary of recent 14N + d yield and polarization measurements a (continued)

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Particles</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8 − 12</td>
<td>$\gamma_{15.11}$</td>
<td>(1965BR08)</td>
</tr>
<tr>
<td>3.5 − 4.5</td>
<td>$\alpha_0 \rightarrow \alpha_3$, $\alpha_5 \rightarrow \alpha_7$</td>
<td>(1965SC12)</td>
</tr>
<tr>
<td>11.3, 12.6</td>
<td>α_0, α_1</td>
<td>(1966DR04)</td>
</tr>
</tbody>
</table>

(b) **Polarization measurements**

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Particles</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.32</td>
<td>n_0</td>
<td>(1964EP01)</td>
</tr>
<tr>
<td>1.65 − 2.90</td>
<td>n_0</td>
<td>(1965BU1A)</td>
</tr>
<tr>
<td>3.1 − 3.7</td>
<td>n_0</td>
<td>(1967ME17)</td>
</tr>
<tr>
<td>3.7</td>
<td>n_0</td>
<td>(1965BA24, 1968BA52)</td>
</tr>
<tr>
<td>4.2 − 6</td>
<td>n_0</td>
<td>(1970BU15)</td>
</tr>
<tr>
<td>10, 12</td>
<td>p_0</td>
<td>(1970FI07)</td>
</tr>
<tr>
<td>13.6</td>
<td>p_0</td>
<td>(1963GO1L, 1967GO27)</td>
</tr>
</tbody>
</table>

a See also (1959AJ76).

29. 14N(d, n)15O

| $Q_m = 5.068$ | $E_b = 20.736$ |

For $E_d = 0.66$ to 5.62 MeV, there is a great deal of resonance structure in the excitation curves with the anomalies appearing at different energies at different angles (1960RE07): see Table 16.16 for a summary of recent yield and polarization experiments. Angular distributions have been measured at many energies: see Table 15.27 in (1970AJ04). The more prominent structures in the yield curves are displayed in Table 16.17 (1960RE07, 1965BU1A, 1965JA1F). See also (1958WE1C, 1960EL04, 1960MO18), and (1959AJ76).

30. 14N(d, p)15N

| $Q_m = 8.610$ | $E_b = 20.736$ |

Quite a lot of structure is observed in the yield curves of various proton groups for $E_p = 0.5$ to 5.5 MeV: see Table 16.16 for a summary of recent yield and polarization measurements, and (1961SJ1B, 1962GO21, 1967BO37, 1969GO14) for data showing the fluctuations. Angular distributions have been obtained at many energies: see Table 15.16 in (1970AJ04). Resonant structure reported by (1962GO21, 1970NE1H), is displayed in Table 16.17. See also (1961JO13) and (1959AJ76).
Table 16.17: Structure in $^{14}\text{N} + \text{d}$

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Resonant channel</th>
<th>$J^\pi; T$</th>
<th>E_x (MeV)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>n_0</td>
<td></td>
<td>21.9</td>
<td>(1960RE07)</td>
</tr>
<tr>
<td>1.7 ± 0.1</td>
<td>$\gamma_0, n_0, \alpha_0, \alpha_1, \alpha_2, \alpha_3$</td>
<td></td>
<td>22.2</td>
<td>(1962IS02, 1965JA1F, 1966SU05, 1967LA16)</td>
</tr>
<tr>
<td>1.85</td>
<td>n_0, α_0</td>
<td></td>
<td>22.35</td>
<td>(1961IS03, 1965BU1A)</td>
</tr>
<tr>
<td>2.0 ± 0.1</td>
<td>α_0, α_3</td>
<td>1$^-$; 1</td>
<td>22.7</td>
<td>(1961IS03, 1965JA1F, 1966SU05, 1967FL10)</td>
</tr>
<tr>
<td>2.2</td>
<td>$\gamma_0, n_0, d_0, \alpha_0$</td>
<td></td>
<td>22.74</td>
<td>(1970NE1H)</td>
</tr>
<tr>
<td>2.271 ± 0.005</td>
<td>$p_0, p_{1+2}, (\alpha_0), \alpha_2$</td>
<td>0$^+$; (2)</td>
<td>22.721</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>α_0</td>
<td></td>
<td>22.9</td>
<td>(1961IS03)</td>
</tr>
<tr>
<td>2.6</td>
<td>$(n_0, p_0), \alpha_1$</td>
<td></td>
<td>23.0</td>
<td>(1960RE07, 1962AL09, 1962GO21, 1962IS02, 1965JA1F)</td>
</tr>
<tr>
<td>2.8</td>
<td>$(n_0, p_0), d_0, \alpha_0$</td>
<td></td>
<td>23.2</td>
<td>(1962AL09, 1962GO21, 1965JA1F, 1967FL10)</td>
</tr>
<tr>
<td>3.3</td>
<td>n_0, p_0, d_0, α_0</td>
<td></td>
<td>23.6</td>
<td>(1962AL09, 1962GO21, 1965JA1F, 1967FL10)</td>
</tr>
<tr>
<td>4.2</td>
<td>$\gamma_0, n_0, p_0, d_0, \gamma_{15.11}$</td>
<td></td>
<td>24.4</td>
<td>(1960RE07, 1962GO21, 1965BR08, 1965JA1F, 1966SU05, 1967FL10)</td>
</tr>
<tr>
<td>4.58</td>
<td>$p_0, d_0, \gamma_{15.11}$</td>
<td></td>
<td>24.74</td>
<td>(1965BR08, 1967FL10)</td>
</tr>
<tr>
<td>4.9</td>
<td>n_0, p_0</td>
<td></td>
<td>25.0</td>
<td>(1960RE07, 1962GO21)</td>
</tr>
<tr>
<td>5.95</td>
<td>$d_1, \gamma_{15.11}$</td>
<td></td>
<td>25.94</td>
<td>(1965BR08, 1970DU04)</td>
</tr>
<tr>
<td>7.1</td>
<td>$\gamma_{15.11}$</td>
<td></td>
<td>26.9</td>
<td>(1965BR08)</td>
</tr>
<tr>
<td>7.4</td>
<td>d_2</td>
<td></td>
<td>27.2</td>
<td>(1970DU04)</td>
</tr>
<tr>
<td>7.7</td>
<td>d_1</td>
<td></td>
<td>27.4</td>
<td>(1970DU04)</td>
</tr>
<tr>
<td>(8.5)</td>
<td>$(\gamma_{15.11})$</td>
<td></td>
<td>(28.2)</td>
<td>(1965BR08)</td>
</tr>
<tr>
<td>10.2</td>
<td>d_2</td>
<td></td>
<td>29.6</td>
<td>(1970DU04)</td>
</tr>
</tbody>
</table>

a See reactions 28, 29, 30, 31, 32, 33 and 34.
The yield of elastically scattered deuterons has been studied for $E_d = 0.65$ to 5.5 MeV: see Table 16.16. Angular distributions for various deuteron groups have been measured at many energies: see Table 14.23 in (1970AJ04) and (1967FL10, 1970DU04). (1967FL10) report a number of resonances in the d_0 yield corresponding to states in ^{16}O with $22.6 \leq E_x \leq 25.2$ MeV. There is indication of broad structure at $E_d = 5.9$ MeV and of sharp structure at $E_d = 7.7$ MeV in the total cross section of the d_1 group to the $T = 1$ (isospin-forbidden), $J^\pi = 0^+$ state at $E_x = 2.31$ MeV in ^{14}N. The yield of deuterons (d_2) to $^{14}\text{N}^*(3.95) [J^\pi = 1^+; T = 0]$ shows gross structures at $E_x = 7.4$ and 10.2 MeV (1970DU04). The d_1 resonance at $E_d = 5.9$ MeV is also reported in the (isospin-forbidden) yield of 15.11 MeV γ-rays to the $1^+; T = 1$ state of ^{12}C: see reaction 33. For a display of the information on reported resonances, see Table 16.17. See also (1968NO1C; theor.).

(a) $^{14}\text{N}(t, n)^{16}\text{O}$ \[Q_m = 14.479 \] \[E_b = 20.736 \]

(b) $^{14}\text{N}(t, np)^{15}\text{N}$ \[Q_m = 2.353 \]

(c) $^{14}\text{N}(t, n\alpha)^{12}\text{C}$ \[Q_m = 7.318 \]

At $E_t = 2.2$ to 2.6 MeV, the two-stage reaction (b) proceeds via $^{16}\text{O}^*(14.94, 16.22)$ (1961JA14) while reaction (c) proceeds via $^{16}\text{O}^*(13.10, 15.42)$ (1962SI04).
Table 16.18: ^{16}O states from $^{14}\text{N}(^{3}\text{He}, \text{p})^{16}\text{O}$ a,b

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$\Gamma_{\text{c.m.}}$ (keV)</th>
<th>E_x (MeV ± keV)</th>
<th>$\Gamma_{\text{c.m.}}$ (keV)</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>12.964 ± 3</td>
<td>< 12</td>
<td></td>
</tr>
<tr>
<td>6.052 ± 5</td>
<td>< 20</td>
<td>13.105 ± 15</td>
<td>160 ± 30</td>
<td></td>
</tr>
<tr>
<td>6.131 ± 4</td>
<td>< 20</td>
<td>13.253 ± 5</td>
<td>25 ± 8</td>
<td></td>
</tr>
<tr>
<td>6.916 ± 3</td>
<td>< 20</td>
<td>13.665 ± 6</td>
<td>65 ± 8</td>
<td></td>
</tr>
<tr>
<td>7.115 ± 3</td>
<td>< 20</td>
<td>13.869 ± 10</td>
<td>85 ± 20</td>
<td></td>
</tr>
<tr>
<td>8.870 ± 3</td>
<td>< 20</td>
<td>13.975 ± 4</td>
<td>24 ± 8</td>
<td></td>
</tr>
<tr>
<td>9.614 ± 30</td>
<td>510 ± 60</td>
<td>14.922 ± 6</td>
<td>60 ± 10</td>
<td></td>
</tr>
<tr>
<td>9.847 ± 3</td>
<td>< 20</td>
<td>15.787 ± 15</td>
<td>≈ 35</td>
<td></td>
</tr>
<tr>
<td>10.353 ± 4</td>
<td>27 ± 8</td>
<td>16.219 ± 15</td>
<td>≈ 45 (0)</td>
<td></td>
</tr>
<tr>
<td>10.952 ± 3</td>
<td>< 12</td>
<td>17.144 ± 20</td>
<td>≈ 65 (0)</td>
<td></td>
</tr>
<tr>
<td>11.080 ± 3</td>
<td>< 12</td>
<td>17.755 ± 15</td>
<td>≈ 30</td>
<td></td>
</tr>
<tr>
<td>11.096 ± 3</td>
<td>< 12</td>
<td>18.027 ± 15</td>
<td>< 25 (3)</td>
<td></td>
</tr>
<tr>
<td>11.521 ± 4</td>
<td>78 ± 8</td>
<td>18.983 ± 15</td>
<td>≈ 25 (3)</td>
<td></td>
</tr>
<tr>
<td>12.053 ± 3</td>
<td>< 12</td>
<td>19.382 ± 15</td>
<td>≈ 30 (3)</td>
<td></td>
</tr>
<tr>
<td>12.437 ± 7</td>
<td>94 ± 15</td>
<td>19.913 ± 20</td>
<td>≈ 30 (3)</td>
<td></td>
</tr>
<tr>
<td>12.528 ± 3</td>
<td>< 12</td>
<td>20.348 ± 15</td>
<td>≈ 30 (3)</td>
<td></td>
</tr>
<tr>
<td>12.798 ± 5</td>
<td>41 ± 10</td>
<td>≈ 21.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a (1964BR08): $E(^{3}\text{He}) = 3.74$ and 3.97 MeV; $E_x < 15$ MeV.

b (1968CO1R, 1968CO1T): $E(^{3}\text{He}) = 12.99$ MeV; $E_x > 15$ MeV.

35. (a) $^{14}\text{N}(^{3}\text{He}, \text{p})^{16}\text{O}$
 $Q_m = 15.243$

(b) $^{14}\text{N}(^{3}\text{He}, \text{pα})^{12}\text{C}$
 $Q_m = 8.081$

At $E(^{3}\text{He}) = 3.7, 4.0$ and 13.0 MeV, high-resolution spectral studies have led to E_x and Γ determinations for 33 excited states of ^{16}O with $E_x < 21.1$ MeV: see Table 16.18 (1964BR08, 1968CO1R, 1968CO1T). The separation of $^{16}\text{O}^*(6.05, 6.13)$, is $81.0 ± 1.0$ keV (C.P. Browne, private communication). The states with $E_x > 15$ MeV are believed to have $T = 1$ (1968CO1T). Angular distributions have been measured at $E(^{3}\text{He}) = 2.5$ to 5.5 MeV (1963GO09; p0), 4.5 and 5.5 MeV (1963GO09; p1+2, p5), 8.0 to 10.6 MeV (1962BI01) and 13.0 MeV (1968CO1T: see Table 16.18).

The branching ratios of $^{16}\text{O}^*(8.87, 10.95, 11.08)$ are listed in Table 16.12 (1959BR68, BE69W). These, as well as p-γ angular correlation measurements, lead to the assignments $J^\pi = 2^-, 0^-$ and
3^+, respectively for $^{16}\text{O}*(8.87, 10.95, 11.08)$ (1959BR68, 1959KU78). The mean lifetimes for these states are displayed in Table 16.19 (1968HE1K, 1969FI02, 1970BE27, 1970FI06).

At $E(^3\text{He})=8$ MeV, a study of the protons in coincidence with 4.4 MeV γ-rays (reaction (b)) indicates that the reaction proceeds via ^{16}O states with $E_x=12.51, 13.97, 14.39, 14.92, 15.82, 16.23, 17.16, 17.82, 18.04$ MeV (± 40 keV) (1969HO13).

36. (a) $^{14}\text{N}(\alpha, d)^{16}\text{O}$ $Q_m=-3.111$

(b) $^{14}\text{N}(\alpha, d\alpha)^{12}\text{C}$ $Q_m=-10.272$

The excitation of a number of ^{16}O states with $E_x<17.2$ MeV has been reported at $E_\alpha=40$ to 48 MeV by (1962CE01, 1962HA40, 1966RI04, 1970ZI03). In particular strong deuteron groups are reported to states with $E_x=14.40 \pm 0.03, 14.82 \pm 0.03, 15.80 \pm 0.04, 16.24 \pm 0.04$ and 17.17 ± 0.04 MeV, with $\Gamma_{c.m.} = 30 \pm 30, 69 \pm 30, 69 \pm 30, (60), 125 \pm 50$ and (70) keV, respectively (1970ZI03). Angular distributions of the deuteron groups corresponding to $^{16}\text{O}*(14.39, 14.82, 16.23)$ have been measured at $E_\alpha=40$ and 42 MeV. A $T=0$ state at $E_x \approx 13.1$ MeV is also reported (1966RI04); see, however, (1970ZI03). See also (1962CE01, 1962HA40). Angular distributions are also reported by (1959ZE1A: 43 MeV; d$_0$ and (1962CE01: 48 MeV; d$_0$, d$_{1+2}$, d$_5$).

An experiment to test time-reversal invariance by the principle of detailed balance in this reaction and in the reaction $^{16}\text{O}(d, \alpha)^{14}\text{N}$ [see ^{14}N in (1970AJ04)] shows that detailed balance is satisfied to $\pm 0.5\%$ (1967TH1E, 1968TH1J).

The two-stage reaction (reaction (b)) at $E_\alpha=22.9$ MeV appears to proceed via ^{16}O states at $E_x=9.85 \pm 0.07, 10.37 \pm 0.07$ and 11.14 ± 0.07 MeV (1968KU1C, 1969BA17). See also (1969BR1D) and (1963GL1C, 1965GR1F; theor.).

37. $^{14}\text{N}(^6\text{Li}, \alpha)^{16}\text{O}$ $Q_m=19.264$

Angular distributions of the α-particles to $^{16}\text{O}*(0, 6.05 + 6.13, 6.92 + 7.12)$ have been determined at $E(^6\text{Li})=5.3$ to 6.0 MeV (1968RI13). See also reaction 1.

38. $^{14}\text{N}(^{11}\text{B}, ^{9}\text{Be})^{16}\text{O}$ $Q_m=4.918$

See (1966PO1E, 1967PO1E, 1967VO1A).

39. $^{15}\text{N}(p, \gamma)^{16}\text{O}$ $Q_m=12.126$
<table>
<thead>
<tr>
<th>$^{16}\text{O}^*$ (MeV)</th>
<th>τ_m</th>
<th>Reaction</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.05</td>
<td>72 ± 7 psec</td>
<td>$^{19}\text{F}(p, \alpha)$</td>
<td>(1954DE36)</td>
</tr>
<tr>
<td>6.13</td>
<td>25 ± 2 psec</td>
<td>$^{19}\text{F}(p, \alpha)$</td>
<td>(1965AL14)</td>
</tr>
<tr>
<td></td>
<td>12 ± 6 psec</td>
<td>$^{19}\text{F}(p, \alpha)$</td>
<td>(1958KO63)</td>
</tr>
<tr>
<td>6.92 a</td>
<td>24 ± 2 psec</td>
<td></td>
<td>mean</td>
</tr>
<tr>
<td></td>
<td>12 ± 3 fsec</td>
<td>$^{16}\text{O}(\gamma, \gamma)$</td>
<td>(1957SW17)</td>
</tr>
<tr>
<td></td>
<td>9 $< \tau < 25$ fsec</td>
<td></td>
<td>(1958DU06)</td>
</tr>
<tr>
<td></td>
<td>6.4$^{+1.9}_{-1.6}$ fsec</td>
<td>$^{19}\text{F}(p, \alpha)$</td>
<td>(1970CO09)</td>
</tr>
<tr>
<td>7.12 a</td>
<td>8.4 ± 1.6 fsec</td>
<td>$^{16}\text{O}(\gamma, \gamma)$</td>
<td>mean</td>
</tr>
<tr>
<td></td>
<td>10 ± 3 fsec</td>
<td>$^{16}\text{O}(\gamma, \gamma)$</td>
<td>(1957SW17)</td>
</tr>
<tr>
<td></td>
<td>4 $< \tau < 8$ fsec</td>
<td>$^{16}\text{O}(\gamma, \gamma)$</td>
<td>(1958DU06)</td>
</tr>
<tr>
<td></td>
<td>7.2 ± 1.7 fsec</td>
<td></td>
<td>mean</td>
</tr>
<tr>
<td>8.87 a</td>
<td>240 ± 40 fsec</td>
<td>$^{14}\text{N}(^3\text{He}, p)$</td>
<td>(1970BE27)</td>
</tr>
<tr>
<td></td>
<td>192 ± 80 fsec</td>
<td>$^{14}\text{N}(^3\text{He}, p)$</td>
<td>(1968HE1K)</td>
</tr>
<tr>
<td></td>
<td>136$^{+46}_{-36}$ fsec</td>
<td>$^{14}\text{N}(^3\text{He}, p)$</td>
<td>(1970FI06)</td>
</tr>
<tr>
<td></td>
<td>150 ± 30 fsec</td>
<td>$^{19}\text{F}(p, \alpha)$</td>
<td>(1970GA09)</td>
</tr>
<tr>
<td></td>
<td>192 ± 29 fsec</td>
<td>$^{19}\text{F}(p, \alpha)$</td>
<td>(1967PI01)</td>
</tr>
<tr>
<td>10.95</td>
<td>180 ± 16 fsec</td>
<td></td>
<td>mean</td>
</tr>
<tr>
<td></td>
<td>8 ± 5 fsec</td>
<td>$^{14}\text{N}(^3\text{He}, p)$</td>
<td>(1970BE27)</td>
</tr>
<tr>
<td></td>
<td>< 48 fsec</td>
<td>$^{14}\text{N}(^3\text{He}, p)$</td>
<td>(1968HE1K)</td>
</tr>
<tr>
<td></td>
<td>58$^{+120}_{-58}$ fsec</td>
<td>$^{14}\text{N}(^3\text{He}, p)$</td>
<td>(1970FI06) b</td>
</tr>
<tr>
<td>11.08</td>
<td>8 ± 5 fsec</td>
<td></td>
<td>“best” value</td>
</tr>
<tr>
<td></td>
<td>57 ± 19 fsec</td>
<td>$^{14}\text{N}(^3\text{He}, p)$</td>
<td>(1970BE27)</td>
</tr>
<tr>
<td></td>
<td>172 ± 60 fsec</td>
<td>$^{14}\text{N}(^3\text{He}, p)$</td>
<td>(1968HE1K)</td>
</tr>
<tr>
<td></td>
<td>184$^{+360}_{-146}$ fsec</td>
<td>$^{14}\text{N}(^3\text{He}, p)$</td>
<td>(1970FI06)</td>
</tr>
<tr>
<td></td>
<td>57 ± 19 fsec</td>
<td></td>
<td>“best” value</td>
</tr>
</tbody>
</table>

a See also (1969NY1A, 1969TH01).

b See also (1969FI02).

c See also Table 16.12.
The yield of ground state radiation (γ_0) has been measured for $E_p = 0.17$ to 18 MeV: see Table 16.20 for a summary of the measurements and Table 16.21 for a display of the observed resonances. Angular distributions of the γ_0 radiation have been measured at many energies. The cross section shows a great deal of structure in quite good agreement with the results of high-resolution studies of $^{16}O(\gamma, n)^{15}O$ and $^{16}O(e, ep)^{15}N$ (see reactions 49 and 56). The excitation energies corresponding to the most pronounced resonances are in good agreement with the predictions of the shell model (1964TA06). Above $E_p = 8$ MeV, the angular distributions indicate the presence of a very broad 2^+ state ($E_x \approx 30$ MeV, $\Gamma \approx 5$ MeV), and imply the presence of a similarly broad 1^- state. In addition a number of weak 1^- states with $\Gamma \approx 0.5$ MeV appear to be present (1967EA02). The main part of the giant resonance at $E_x \approx 22.2$ MeV [$E_p = 10.7$ MeV] shows some structure (1967BL23). (1970BA33) suggest that $^{16}O^*(19.90, 20.39)$, observed in the $(\gamma_1 + \gamma_2)$ yield, are 2^+ states from the coupling of the 1^- states at 12.44 and 13.10 MeV to the 3^- state at 6.13 MeV. Above $E_p = 14$ MeV, no pronounced structures are observed but there is some evidence for weak structures corresponding to $E_x \approx 25.5$ and 26.4 MeV (1967BL23).

Branching ratios and Γ_γ values for the low-energy resonances are listed in Table 16.12 (1963GO22, 1968GO07, 1968WI15, 1969BR1L). See also (1966GO1H). It appears that one needs to introduce $3p-3h$ admixtures into the $T = 0$ states and probably into those of $T = 1$ (1968WI15). An analysis of (p, γ) structure in terms of the theory of statistical fluctuations and a comparison with direct radiative capture calculations have been made by (1965TA1E). See also (1959TA1A, 1961WE01, 1962RI08), (1962WA1C, 1967TA1D) and (1965MA1H, 1966LE1M, 1967BU05, 1967KO1H, 1969SA12, 1969WE1H; theor.). See also (1959AJ76).

40. $^{15}N(p, p)^{15}N$ \hspace{1cm} $E_b = 12.126$

Elastic scattering studies are reported for $E_p = 0.6$ to 11.7 MeV (see Table 16.20): observed anomalies are shown in Table 16.21 (see also (1962DE09)). The inelastic scattering of protons has also been studied for $E_p = 9$ to 11.7 MeV (p_{1+2}) and 10.3 to 11.5 MeV (p_3). In addition to other structures, a strong resonance in the (p_{1+2}) scattering occurs at $E_p \approx 10.0$ MeV (1969DR1C). See also (1966WA1L) and (1959AJ76).

41. $^{15}N(p, n)^{15}O$ \hspace{1cm} $Q_m = -3.542$ \hspace{1cm} $E_b = 12.126$

The absolute total cross section has been measured with excellent resolution and statistics for $E_p = 3.8$ to 12 MeV by (1968BA42): observed resonances are displayed in Table 16.22. (1968BA42) also discusses in detail the relationship of his results and the data reported in other experiments, including a comparison with analog states in ^{16}N [see Fig. 5]. Excitation functions have also been reported from threshold to 13.6 MeV: see Table 16.20. Angular distributions have been measured at many energies: see ^{15}O in (1970AJ04). Polarization measurements have been made for the n_0 group from $E_p = 7.9$ to 12.3 MeV (1964WA1G, 1965WA02). (1969BA1N) discuss the astrophysical implications of this reaction. See also (1961SA01) and (1966WA1L, 1967KA1E, 1968HA15, 1968KA1G, 1969HA1J, 1969PE1J; theor.).
Table 16.20: Summary of 15N + p yield measurements a

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Particles</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17 – 0.63</td>
<td>γ_0</td>
<td>(1960HE02)</td>
</tr>
<tr>
<td>0.2 – 1.6</td>
<td>γ_0</td>
<td>(1952SC1B)</td>
</tr>
<tr>
<td>0.4 – 1.9</td>
<td>γ_0</td>
<td>(1968GO07)</td>
</tr>
<tr>
<td>1 – 14</td>
<td>γ_0</td>
<td>(1967EA02)</td>
</tr>
<tr>
<td>4.1 – 12.8</td>
<td>γ_0, γ_{1+2}</td>
<td>(1970BA33)</td>
</tr>
<tr>
<td>1 – 14.4</td>
<td>γ_0</td>
<td>(1964TA05, 1964TA06)</td>
</tr>
<tr>
<td>10 – 15</td>
<td>γ_0</td>
<td>(1959CO1C, 1961CO02)</td>
</tr>
<tr>
<td>10.5 – 18</td>
<td>γ_0</td>
<td>(1967BL23)</td>
</tr>
<tr>
<td>3.8 – 6.4</td>
<td>n_0</td>
<td>(1958JO28, 1958WE1C)</td>
</tr>
<tr>
<td>3.8 – 12</td>
<td>$n_0(\sigma_t)$</td>
<td>(1968BA42)</td>
</tr>
<tr>
<td>4.0 – 13.6</td>
<td>n_0</td>
<td>(1961WO03, 1963HA46)</td>
</tr>
<tr>
<td>0.6 – 1.8</td>
<td>p_0</td>
<td>(1957HA1A)</td>
</tr>
<tr>
<td>1.0 – 3.6</td>
<td>p_0</td>
<td>(1959BA15)</td>
</tr>
<tr>
<td>2.7 – 11.7</td>
<td>p_0</td>
<td>(1962DE09)</td>
</tr>
<tr>
<td>9 – 11.7</td>
<td>p_{1+2}</td>
<td>(1969DR1C)</td>
</tr>
<tr>
<td>10.3 – 11.5</td>
<td>p_3</td>
<td>(1969DR1C)</td>
</tr>
<tr>
<td>0.2 – 1.6</td>
<td>α_0, $\gamma_{4.4}$</td>
<td>(1952SC1B)</td>
</tr>
<tr>
<td>0.27 – 0.41</td>
<td>$\gamma_{4.4}$</td>
<td>(1960HE02)</td>
</tr>
<tr>
<td>0.4 – 1.9</td>
<td>$\gamma_{4.4}$</td>
<td>(1968GO07)</td>
</tr>
<tr>
<td>0.8 – 1.65</td>
<td>$\gamma_{4.4}$</td>
<td>(1969CL07)</td>
</tr>
<tr>
<td>0.9 – 2.9</td>
<td>α_0</td>
<td>(1957HA1B)</td>
</tr>
<tr>
<td>1 – 3.6</td>
<td>α_0, $\gamma_{4.4}$</td>
<td>(1959BA15)</td>
</tr>
<tr>
<td>3.3 – 12.6</td>
<td>α_0, α_1</td>
<td>(1962RO04, 1963RO01)</td>
</tr>
<tr>
<td>3.4 – 3.7</td>
<td>α_0, α_1</td>
<td>(1968VA1M)</td>
</tr>
<tr>
<td>6.7 – 15.2</td>
<td>α_0</td>
<td>(1967NO02)</td>
</tr>
<tr>
<td>9.1 – 15.2</td>
<td>α_1</td>
<td>(1967NO02)</td>
</tr>
</tbody>
</table>

a See also (1959AJ76).
Table 16.21: Levels of 16O from 15N(p, γ)16O, 15N(p, p)15N and 15N(p, α)12C

<table>
<thead>
<tr>
<th>E_p (keV)</th>
<th>Γ_{γ_0} a,f (eV)</th>
<th>Γ_{γ_1} a,f (eV)</th>
<th>Γ_p a (keV)</th>
<th>Γ_{α_0} a (keV)</th>
<th>Γ_{α_1} a (keV)</th>
<th>Γ_{lab} (keV)</th>
<th>J^π, T</th>
<th>E_x (MeV)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>338</td>
<td>7 ± 1</td>
<td>0.12 ± 0.04</td>
<td>1.1</td>
<td>93</td>
<td>0.025</td>
<td>94</td>
<td>1−; 0</td>
<td>12.443</td>
<td>(1952SC1B, 1960HE02, 1966AD04, 1957HA1B)</td>
</tr>
<tr>
<td>429 ± 1</td>
<td>(21 ± 6) × 10$^{-3}$</td>
<td>2.1 ± 0.2</td>
<td>0.020</td>
<td>n.r.</td>
<td>0.90</td>
<td>0.9</td>
<td>2−; 0</td>
<td>12.528</td>
<td>(1952SC1B, 1960HE02, 1968GO07)</td>
</tr>
<tr>
<td>710 ± 7</td>
<td>40</td>
<td>n.r.</td>
<td>40 ± 4</td>
<td>0−; 1</td>
<td>12.791</td>
<td>(1957HA1A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>897.37 ± 0.29 (78 ± 16) × 10$^{-3}$</td>
<td>1.2</td>
<td>n.r.</td>
<td>0.69 ± 0.07</td>
<td>2.0 ± 0.2</td>
<td>2−; 1</td>
<td>12.9668</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1028 ± 10</td>
<td>31 ± 8</td>
<td>110</td>
<td>r.</td>
<td>r.</td>
<td>140 ± 10</td>
<td>1−; 1</td>
<td>13.089 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1050 ± 150</td>
<td></td>
<td></td>
<td>$\Gamma_p\Gamma_{\alpha_0} = 500$ keV2</td>
<td>2$^+$</td>
<td>13.1</td>
<td>(1966AD04)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_p (keV)</td>
<td>$\Gamma_{\gamma 0}$ a,f (eV)</td>
<td>$\Gamma_{\gamma 1}$ a,f (eV)</td>
<td>Γ_p a (keV)</td>
<td>$\Gamma_{\alpha 0}$ a (keV)</td>
<td>$\Gamma_{\alpha 1}$ a (keV)</td>
<td>Γ_{lab} (keV)</td>
<td>$J^\pi; T$</td>
<td>E_x (MeV)</td>
<td>Refs.</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>1640 ± 3</td>
<td>10</td>
<td>n.r.</td>
<td>59 ± 6</td>
<td>68 ± 3</td>
<td>1+; 0</td>
<td>13.663</td>
<td>1957HA1A, 1957HA1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1890 ± 20</td>
<td></td>
<td></td>
<td>90 ± 20</td>
<td>13.90</td>
<td></td>
<td>1959BA15, 1957HA1B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979 ± 3</td>
<td>0.5</td>
<td>n.r.</td>
<td>23 ± 2</td>
<td>13.980</td>
<td></td>
<td>1957HA1B, 1959BA15, 1962DE09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000 ± 30</td>
<td>r.</td>
<td>r.</td>
<td>45 ± 10</td>
<td>14.94</td>
<td></td>
<td>1962DE09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3300 ± 35</td>
<td>r.</td>
<td>n.r.</td>
<td>75 ± 15</td>
<td>15.22</td>
<td></td>
<td>1959BA15, 1959BA15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3350 ± 50</td>
<td>≈ 0.6</td>
<td>≈ 125</td>
<td>r.</td>
<td>15.26</td>
<td></td>
<td>1959BA15, 1967EA02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3520 ± 40</td>
<td>r. g</td>
<td>r.</td>
<td>100 ± 25</td>
<td>15.42</td>
<td></td>
<td>1962DE09, 1970BA33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4280 ± 20)</td>
<td>r.</td>
<td>r.</td>
<td>100 ± 25 (1 → 4)</td>
<td>15.42</td>
<td></td>
<td>1970BA33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5200</td>
<td>r.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.01, 1967EA02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5350 ± 20</td>
<td>16</td>
<td>26 d</td>
<td>65</td>
<td>17.14</td>
<td></td>
<td>1962DE09, 1967EA02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 16.21: Levels of ^{16}O from $^{15}\text{N}(p, \gamma)^{16}\text{O}$, $^{15}\text{N}(p, p)^{15}\text{N}$ and $^{15}\text{N}(p, \alpha)^{12}\text{C}$ (continued)
Table 16.21: Levels of 16O from 15N(p, γ)16O, 15N(p, p)15N and 15N(p, α)12C (continued)

<table>
<thead>
<tr>
<th>E_p</th>
<th>Γ_{γ_0} a,f</th>
<th>Γ_{γ_1} a,f</th>
<th>Γ_p a</th>
<th>Γ_{α_0} a</th>
<th>Γ_{α_1} a</th>
<th>Γ_{lab}</th>
<th>$J^\pi; T$</th>
<th>E_x (MeV)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>keV</td>
<td>(eV)</td>
<td>(eV)</td>
<td>(keV)</td>
<td>(keV)</td>
<td>(keV)</td>
<td>(keV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5490 ± 20</td>
<td>67</td>
<td>45 e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td>1−; 1</td>
</tr>
<tr>
<td>6320 ± 20</td>
<td>n.r.</td>
<td>≤ 5 g</td>
<td>(r.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>2, 3; 1</td>
</tr>
<tr>
<td>7330 ± 30</td>
<td>38</td>
<td>≤ 3 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>260</td>
<td>1−; 1</td>
</tr>
<tr>
<td>7420</td>
<td>r.</td>
<td>≈ 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130</td>
<td>2+; (1)</td>
</tr>
<tr>
<td>7600 ± 30</td>
<td>n.r.</td>
<td>1.5 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>2, 3; 1</td>
</tr>
<tr>
<td>7840 ± 30</td>
<td>59</td>
<td>(r.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td>1−; 1</td>
</tr>
<tr>
<td>8300 ± 20</td>
<td>n.r.</td>
<td>8 h,i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>2, 3; 1</td>
</tr>
<tr>
<td>8830 ± 20</td>
<td>n.r.</td>
<td>47 h,i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>2, 3; 1</td>
</tr>
<tr>
<td>9300 ± 100</td>
<td>170</td>
<td>(r.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>700</td>
<td>(T = 1)</td>
</tr>
<tr>
<td>10590</td>
<td>r.</td>
<td>(r.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(22.05)</td>
<td></td>
</tr>
<tr>
<td>10700 ± 100</td>
<td>870</td>
<td>(r.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>700</td>
<td>(T = 1)</td>
</tr>
<tr>
<td>10770</td>
<td>r.</td>
<td>(r.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(22.21)</td>
<td></td>
</tr>
</tbody>
</table>
Table 16.21: Levels of 16O from 15N(p, γ)16O, 15N(p, p)15N and 15N(p, α)12C (continued)

<table>
<thead>
<tr>
<th>E_p (keV)</th>
<th>$\Gamma_{\gamma0}$ a,f (eV)</th>
<th>$\Gamma_{\gamma1}$ a,f (eV)</th>
<th>Γ_p a (keV)</th>
<th>$\Gamma_{\alpha0}$ a (keV)</th>
<th>$\Gamma_{\alpha1}$ a (keV)</th>
<th>Γ_{lab} (keV)</th>
<th>$J^\pi; T$</th>
<th>E_∞ (MeV)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11450 ± 50</td>
<td>120 r.</td>
<td>27 g</td>
<td>350</td>
<td>T = 1</td>
<td>22.85 (26.4)</td>
<td>1967BL23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1970BA33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1961CO02)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1967CO23)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a n.r. = non resonant; r. = resonant.
b This state has a large p$^{-1}$d component (1967EA02).
c $\Gamma_n = 6$ keV (1964TA06).
d $\Gamma_n = 19$ keV (1964TA06).
e $\Gamma_n = 45$ keV (1964TA06).
g These values are for $\gamma_1 + \gamma_2$.

h The decay is through 16O*(6.13) (A.R. Barnett and J. Lowe, private communication).
i There is no indication (< 10%) of decay to 16O*(6.92, 7.13) (1970BA33).
42. (a) $^{15}\text{N}(p, \alpha)^{12}\text{C}$

 \[Q_m = 4.965 \quad E_h = 12.126 \]

 (b) $^{15}\text{N}(p, t)^{13}\text{N}$

 \[Q_m = -12.906 \]

 (c) $^{15}\text{N}(p, ^3\text{He})^{13}\text{C}$

 \[Q_m = -10.667 \]

 Excitation functions for α_0 and α_1 particles (corresponding to $^{12}\text{C}*(0, 4.43)$) and of 4.43 MeV γ-rays have been measured for $E_p = 0.2$ to 15.2 MeV: see Table 16.20. Several resonances are reported for $E_p < 3.5$ MeV (1952SC1B, 1957HA1B, 1959BA15, 1959VA04, 1960HE02, 1964BO13, 1966AD04, 1968GO07, 1969CL07): see Table 16.21, and see also (1959AJ76). At higher energies, there is continuing structure in the yield curves, which is interpreted in terms of fluctuations: see (1962RO04, 1964TE1D, 1964TE1E, 1964TE1F).

 Angular distributions have been obtained at many energies: see ^{12}C in (1968AJ02). Angular correlation measurements lead to $J^\pi = 2^-$, 1^-, 3^-, and 1^+, respectively for the resonances at $E_p = 0.898$, 1.08, 1.21, and 1.64 (1969CL07). For polarization measurements see (1966AD04). See also (1963MI1C, 1964EC03, 1969BR1L, 1963MI1H, Table 16.12 and (1965MA1H; theor.).

 Polarization measurements of tritons and ^3He particles (reactions (b) and (c)) at $E_p = 43.8$ MeV are reported by (1970HA23): some of the transitions exhibit asymmetries at variance with DWBA predictions (1970HA23).

43. $^{15}\text{N}(d, n)^{16}\text{O}$

 \[Q_m = 9.901 \]

 Neutron groups corresponding to many of the ^{16}O states with $E_x < 13.3$ MeV have been observed: see Table 16.23. Angular distributions are reported at $E_d = 1.0$ MeV (1967CO1R; n_0, n_{1+2}, n_{5+4}, n_5), 1.1 to 5.2 MeV (1958WE31; n_0), 1.8 and 3.0 MeV (1967CO1R; n_0), 2.5 to 3.0 MeV (1963FE01, 1963FE1B; n_0, $n_2 \rightarrow n_5$), 5 and 6 MeV (1970MU1H; see Table 16.23), and 6 MeV (1967FU07; n_0, $n_2 \rightarrow n_5$); l-values are displayed in Table 16.23. The angular distribution of the n_5 group (to $^{16}\text{O}^*(6.92)$) does not show a stripping pattern.

 Slow neutron thresholds have been observed at $E_d = 1.192$ and 1.335 MeV corresponding to $^{16}\text{O}^* = 10.952 \pm 0.010$ and 11.078 \pm 0.015 MeV (1957WE1A, 1958WE1C). The 10.94 MeV state is observed to decay only to $^{16}\text{O}^*(7.12)$, $J^\pi = 1^−$. This suggests $J^\pi = 0^−$ for $^{16}\text{O}^*(10.94)$, an assignment strongly favored also by the $\gamma-\gamma$ correlation (1957BE61): see also Table 16.12.

 See also (1962LE1A; theor.) and ^{17}O.

44. $^{15}\text{N}(^3\text{He}, d)^{16}\text{O}$

 \[Q_m = 6.632 \]

 Angular distributions of the deuterons corresponding to a number of states of ^{16}O have been measured at $E(^3\text{He}) = 11$ MeV (1969BO13) and at $E(^3\text{He}) = 16.0$ and 24.9 MeV (1969FU08): l and S values derived from DWBA analyses are shown in Table 16.23. See also (1963PA01, 1965SE01, 1968SE1C, 1969FU1J).
Table 16.22: Resonances in 15N(p, n)15O (1968BA42) a

<table>
<thead>
<tr>
<th>E_p (MeV ± keV)</th>
<th>$\Gamma_{c.m.}$ (keV)</th>
<th>$J^\pi; T$ d</th>
<th>E_x (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.37 ± 15</td>
<td>19 ± 6</td>
<td>$1^{(+)}; 1$</td>
<td>16.22</td>
</tr>
<tr>
<td>4.45 ± 30</td>
<td>240 ± 30</td>
<td>0$^{(-)}$</td>
<td>16.30</td>
</tr>
<tr>
<td>5.35 ± 15</td>
<td>33 ± 5</td>
<td>1$^{(-)}; 1$</td>
<td>17.14</td>
</tr>
<tr>
<td>5.52 ± 15</td>
<td>90 ± 10</td>
<td>1$^{-}; 1$</td>
<td>17.30</td>
</tr>
<tr>
<td>5.88 ± 15</td>
<td>59 ± 10</td>
<td>$\geq 1; 1$</td>
<td>17.63</td>
</tr>
<tr>
<td>6.12 ± 15</td>
<td>101 ± 10</td>
<td>$\geq 1; 1$</td>
<td>17.86</td>
</tr>
<tr>
<td>6.23 ± 15 b</td>
<td>≤ 50</td>
<td>$T = 1$</td>
<td>17.96</td>
</tr>
<tr>
<td>6.33 ± 15</td>
<td>26 ± 5</td>
<td>$\geq 1; 1$</td>
<td>18.05</td>
</tr>
<tr>
<td>6.43 ± 30</td>
<td>≈ 300</td>
<td></td>
<td>18.15</td>
</tr>
<tr>
<td>6.76 ± 25</td>
<td>≈ 160</td>
<td></td>
<td>18.46</td>
</tr>
<tr>
<td>7.03 ± 30</td>
<td>260 ± 30</td>
<td></td>
<td>18.71</td>
</tr>
<tr>
<td>7.59 ± 25</td>
<td>90 ± 10</td>
<td>2$^{-}; 1$</td>
<td>19.24</td>
</tr>
<tr>
<td>7.86 ± 30</td>
<td>300 ± 80</td>
<td>$1^{-}c$</td>
<td>19.49</td>
</tr>
<tr>
<td>8.30 ± 25</td>
<td>120 ± 40</td>
<td></td>
<td>19.90</td>
</tr>
<tr>
<td>8.82 ± 25</td>
<td>150 ± 30</td>
<td>≥ 2</td>
<td>20.39</td>
</tr>
<tr>
<td>8.99 ± 25</td>
<td>140 ± 30</td>
<td>≥ 1</td>
<td>20.55</td>
</tr>
<tr>
<td>9.36 ± 25</td>
<td>≈ 300</td>
<td></td>
<td>20.89</td>
</tr>
<tr>
<td>10.7 ± 100</td>
<td>≈ 650</td>
<td>1</td>
<td>22.2</td>
</tr>
</tbody>
</table>

b Probably a doublet: see (1968BA42).

c 1$^{-}$ is from (p, γ); $J \geq 2$ is required from (p, n) yield.

d T-assignments by energy and width comparisons with states in 16N.
Table 16.23: States in ^{16}O from $^{15}\text{N}(d, n)^{16}\text{O}$ and $^{15}\text{N}(^3\text{He}, d)^{16}\text{O}$

<table>
<thead>
<tr>
<th>^{16}O state at (MeV)</th>
<th>$J^\pi; T$</th>
<th>l a,b</th>
<th>l c</th>
<th>S a</th>
<th>S b</th>
<th>$S_{\text{rel.}}$ d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0$^+$; 0</td>
<td>1</td>
<td>1</td>
<td>2.60</td>
<td>3.52</td>
<td>3.5 ± 1.0</td>
</tr>
<tr>
<td>6.05</td>
<td>0$^+$; 0</td>
<td>1</td>
<td></td>
<td>0.09</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>6.13</td>
<td>3$^-$; 0</td>
<td>2</td>
<td>2</td>
<td>0.72</td>
<td>0.63</td>
<td>≡ 1</td>
</tr>
<tr>
<td>6.92</td>
<td>2$^+$; 0</td>
<td>1 + 3</td>
<td>not direct</td>
<td>0.02 f</td>
<td></td>
<td>< 0.18</td>
</tr>
<tr>
<td>7.12</td>
<td>1$^-$; 0</td>
<td>0 + 2</td>
<td>0</td>
<td>0.41 g</td>
<td>0.54</td>
<td>0.35 ± 0.10</td>
</tr>
<tr>
<td>8.87</td>
<td>2$^-$; 0</td>
<td>2</td>
<td>2</td>
<td>0.87</td>
<td>0.55</td>
<td>0.80 ± 0.10</td>
</tr>
<tr>
<td>9.60</td>
<td>1$^-$; 0</td>
<td>0</td>
<td></td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.85</td>
<td>2$^+$; 0</td>
<td>not direct</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.34</td>
<td>4$^+$; 0</td>
<td>3</td>
<td></td>
<td>0.037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.95</td>
<td>0$^-$; 0</td>
<td>0</td>
<td>0</td>
<td>1.77</td>
<td></td>
<td>1.20</td>
</tr>
<tr>
<td>11.08</td>
<td>3$^+$; 0</td>
<td>3</td>
<td>3</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.26</td>
<td>0$^+$; 0</td>
<td>broad state</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.44</td>
<td>1$^-$; 0</td>
<td>0</td>
<td>0 + 2</td>
<td>(0.75 ± 0.2)</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>12.53</td>
<td>2$^-$; 0</td>
<td>2</td>
<td>2</td>
<td>(0.9 ± 0.2)</td>
<td></td>
<td>1.45</td>
</tr>
<tr>
<td>12.80</td>
<td>0$^-$; 1</td>
<td>0</td>
<td>0</td>
<td>(2.8 ± 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.97</td>
<td>2$^-$; 1</td>
<td>2</td>
<td>2</td>
<td>(0.7 ± 0.2)</td>
<td></td>
<td>0.85</td>
</tr>
<tr>
<td>13.10</td>
<td>1$^-$; 1</td>
<td>0</td>
<td></td>
<td>(0.7 ± 0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.13 e</td>
<td>3$^-$; 0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0.96</td>
</tr>
<tr>
<td>13.26</td>
<td>3$^-$; 1</td>
<td>2</td>
<td>2</td>
<td>(0.5 ± 0.2)</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>17.14</td>
<td>1$^-$; 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>17.17</td>
<td>2$^+$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a (1969BO13): ($^3\text{He}, d$).
b (1969FU08): ($^3\text{He}, d$).
c (1967FU07, 1970MU1H): (d, n).
d (1967FU07); relative to $S(6.13) ≡ 1$.
e $\Gamma = 128$ keV.
f $l = 1$.
g $l = 0$.

57
45. $^{15}\text{N}(\alpha, \text{t})^{16}\text{O}$

$Q_m = -7.688$

Not reported.

46. $^{15}\text{N}^{(11}\text{B}, 10\text{Be})^{16}\text{O}$

$Q_m = 0.898$

See (1967PO13, 1969BR1D).

47. $^{16}\text{N}(\beta^-)^{16}\text{O}$

$Q_m = 10.422$

^{16}N decays to seven states of ^{16}O: reported branching fractions are listed in Table 16.24. The ground state transition has the unique first-forbidden shape corresponding to $\Delta J = 2$, yes, fixing J^π of ^{16}N as 2^-. This assignment is also indicated by the fact that the transitions to $^{16}\text{O}*(6.13, 7.12)$ are both allowed (see (1959AJ76)).

A 1% allowed branch leads to $^{16}\text{O}*(8.88)$: J^π is then $1^-, 2^-$ or 3^-. The α-decay from this state has been reported: $\Gamma_\alpha = (1.8 \pm 0.8) \times 10^{-10}$ eV; $E_\alpha = 1278 \pm 10$ keV (1970HA42). The γ-branching and γ-γ correlation ($8.88 \rightarrow 6.13 \rightarrow \text{g.s.}$) are consistent with the assignment $J^\pi = 2^-$ (1956WI1A). See also (1961KA06, 1961SE01, 1969HA42). The α-decays of $^{16}\text{O}*(9.59, 9.85)$ have been observed: see (1961KA06, 1961SE01, 1969HA42). See (1969GA10) for a discussion of parity-forbidden alpha decays of ^{16}O levels.

Recently reported transition energies derived from γ-ray measurements are: $E_x = 6130.96 \pm 0.28$ and 7118.72 ± 0.49 keV [$E_\gamma = 6129.70 \pm 0.28$ and 7117.02 ± 0.49 keV] (1967CH19) and 6129.6 ± 0.4 keV (1968SP01). $E_\gamma = 6128.9 \pm 0.4$ keV (1966GR18). ΔE_x for $^{16}\text{O}*(7.12, 6.13) = 987 \pm 3$ keV (1965CR01). See also (1959PR73, 1963AL18, 1964AL22) and (1960ZI1B, 1963SO04, 1964NA1C, 1966CO1H, 1966LA1J, 1968JA10, 1969HE1R, 1969WA1C, 1970MC1J, 1971TO08).

48. (a) $^{16}\text{O}(\gamma, \text{n})^{15}\text{O}$

$Q_m = -15.668$

(b) $^{16}\text{O}(\gamma, 2\text{n})^{14}\text{O}$

$Q_m = -28.887$

The absorption cross section and the (γ, n) cross section are marked by a number of resonances. The reported structure is displayed in Table 16.25 (1962BU23, 1962FI04, 1963BU18, 1963FU05, 1963GE13, 1964BR03, 1964TE04, 1965CA1B, 1965DO05, 1966CO08, 1967DO1A, 1967MI15, 1970IV01). There are still conflicting reports on which structures are real [there are relatively few results obtained with monochromatic γ-rays] and on their widths, when these are given. For curves
Table 16.24: Beta decay of 16N

<table>
<thead>
<tr>
<th>Final state</th>
<th>Branch (%)</th>
<th>log $f t$ a</th>
</tr>
</thead>
<tbody>
<tr>
<td>16O (MeV)</td>
<td>J^π</td>
<td>26 ± 2 e</td>
</tr>
<tr>
<td>0</td>
<td>0+</td>
<td></td>
</tr>
<tr>
<td>6.05</td>
<td>0+</td>
<td>(1.2 ± 0.4) $\times 10^{-2}$ f</td>
</tr>
<tr>
<td>6.13</td>
<td>3-</td>
<td>68 ± 2 e</td>
</tr>
<tr>
<td>7.12</td>
<td>1-</td>
<td>4.9 ± 0.4 e</td>
</tr>
<tr>
<td>8.87 b</td>
<td>2-</td>
<td>1.0 ± 0.2 e</td>
</tr>
<tr>
<td>9.60 c</td>
<td>1-</td>
<td>(1.20 ± 0.05) $\times 10^{-3}$ g</td>
</tr>
<tr>
<td>9.85 d</td>
<td>2+</td>
<td>(6.5 ± 2.0) $\times 10^{-7}$ h</td>
</tr>
</tbody>
</table>

a $\tau_{1/2} = 7.13 \pm 0.02$ sec: Table 16.3.
b See also (1961AL05, 1961KA06, 1961SE01, 1968BO1V).
c See also (1961AL05, 1961SE01).
d See also (1961SE01).
e (1956WI1A, 1958AL13, 1959AL06).
f (1968WA18).
g (1961KA06).
h (1969HA42).
i log $f_1 t$ values: E.K. Warburton, private communication and (1968WA18).
j log $f_0 t$ values: B. Zimmerman, private communication.

The splitting of the giant resonance peak is ascribed by (1967GI1B) to the existence of a 2p-2h coherent quasi-bound state lying in the dip of the photoabsorption cross section.

Branching ratios for the decays of 16O in the giant resonance region to various excited states in 15O have been reported by many groups: see reaction 22 in 15O (1970AJ04). The cross section is reported to display a maximum at 23.5 MeV for emission of neutrons to 15O*(6.18) [$J^\pi = \frac{3}{2}^-$] (1966MA1T). See (1970HO21). See also (1964TA1C, 1965WI03, 1967CA1C, 1967CA1P, 1967FU1G, 1969MU07).

Table 16.25: Resonance structure in 16O $+$ γ

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>Γ (keV)</th>
<th>Γ_γ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.23</td>
<td>17.10</td>
<td>16.2</td>
<td>16.3</td>
<td>16.21</td>
<td>17.21</td>
<td>17.55</td>
<td>18.25</td>
<td>18.44</td>
<td>32 c</td>
</tr>
<tr>
<td>17.10</td>
<td>17.14</td>
<td>17.1</td>
<td>17.3</td>
<td>17.30</td>
<td>17.21</td>
<td>17.55</td>
<td>18.25</td>
<td>18.44</td>
<td>45 c</td>
</tr>
<tr>
<td>(17.3)</td>
<td>17.30</td>
<td>17.3</td>
<td>17.30</td>
<td>± 30</td>
<td>17.21</td>
<td>17.55</td>
<td>18.25</td>
<td>18.44</td>
<td>300 d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90 c</td>
</tr>
<tr>
<td>17.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 400 c</td>
</tr>
<tr>
<td>18.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.44</td>
<td>50 c</td>
</tr>
<tr>
<td>18.70</td>
<td>18.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300 d</td>
</tr>
<tr>
<td>19.1</td>
<td>19.08</td>
<td>19.1</td>
<td>19.06</td>
<td>± 60</td>
<td>19.1</td>
<td>19.0</td>
<td></td>
<td></td>
<td>200 c</td>
</tr>
<tr>
<td>(19.4)</td>
<td>19.47</td>
<td>19.6</td>
<td>19.56</td>
<td>± 100</td>
<td>19.6</td>
<td>19.4</td>
<td>19.53</td>
<td>600 d</td>
<td>375 d</td>
</tr>
<tr>
<td></td>
<td>19.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300 c</td>
</tr>
<tr>
<td>20.2</td>
<td>20.45</td>
<td>20.20</td>
<td>± 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40 c</td>
</tr>
<tr>
<td>20.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200 c</td>
</tr>
<tr>
<td>(21.2)</td>
<td>21.02</td>
<td>± 40</td>
<td>21.10</td>
<td>21.0</td>
<td>21.0</td>
<td>21.0</td>
<td>20.9</td>
<td>20.75</td>
<td>700 d</td>
</tr>
<tr>
<td></td>
<td>21.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25 c</td>
</tr>
<tr>
<td></td>
<td>21.7</td>
<td>21.59</td>
<td>21.7</td>
<td>± 30</td>
<td>21.72</td>
<td>25 c</td>
<td>25 c</td>
<td>210 c</td>
<td>52 c</td>
</tr>
<tr>
<td></td>
<td>21.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250 c</td>
</tr>
<tr>
<td></td>
<td>22.1</td>
<td>22.15</td>
<td>22.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40 c</td>
</tr>
<tr>
<td>22.3</td>
<td>22.47</td>
<td></td>
<td></td>
<td>22.26</td>
<td>± 38</td>
<td>22.2</td>
<td>22.3</td>
<td>1000 d</td>
<td>2500 d</td>
</tr>
<tr>
<td></td>
<td>22.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600 c</td>
</tr>
<tr>
<td>23.05</td>
<td>23.0</td>
<td>23.15</td>
<td>± 34</td>
<td>23.0</td>
<td>23.1</td>
<td>300 d</td>
<td>23.0</td>
<td>23.1</td>
<td>530 d</td>
</tr>
</tbody>
</table>
Table 16.25: Resonance structure in 16O + γ a (continued)

<table>
<thead>
<tr>
<th>E_γ (MeV ± keV) b</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>Γ (keV)</th>
<th>Γ_γ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1</td>
<td>24.1</td>
<td>24.3</td>
<td>24.3</td>
<td>24.3</td>
<td>24.3</td>
<td>700 d</td>
<td>1200 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.3</td>
<td>24.4</td>
<td>25.0</td>
<td>25.2</td>
<td>24.9 ± 210</td>
<td>25.2</td>
<td>700 d</td>
<td>1260 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.15</td>
<td>25.4</td>
<td>26.3</td>
<td>26.38 ± 180</td>
<td>25.55 ± 50</td>
<td>25.8</td>
<td>1000 d</td>
<td>1000 d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.8</td>
<td>27.4</td>
<td>27.45 ± 230</td>
<td>28.55 ± 195</td>
<td>29.6 ± 230</td>
<td>31.4 ± 140</td>
<td>33.0 ± 300 f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A: (1962BU23, 1963BU18): γ-absorption. The structures are each several hundred keV wide.
B: (1964TE04): γ-absorption [monochromatic γ-rays]; (1962FI04, 1963FU05, 1964FI03): (γ, n).
C: (1963GE13): (γ, n). See also (1964DE1D).
D: (1965CA1B): (γ, n) and S.C. Fultz, private communication. See also (1964BR03).
E: (1966CO08): (γ, n).
F: (1967MI15): (γ, n).
G: (1965DO05, 1967DO1A): γ-absorption.
H: (1970IV01): (γ, n).

a See also (1959AJ76).
b See also study of “breaks” by (1959KI89, 1960GE06).
c (1963GE13).
d (1967DO1A).
e There is some indication that this broad peak is composed of two narrower structures at $E_\gamma = 20.86$ and 21.05 MeV. There is also some indication of structure at $E_\gamma = 20.62$ MeV (1964TE04). See also (1962FI04).
f Six additional structures to $E_\gamma = 60.2$ MeV are reported by (1966CO08).
g Several additional structures are also reported for $E_x = 16.4 - 17.0$ MeV. Γ_p and Γ_n are also listed (1963GE13).

(Note: This footnote is not labeled in the tabular.)

49. 16O(γ, p)15N

$Q_m = -12.126$

Angular distribution coefficients show strong correlation with the structure in the cross section. It is predominantly d-wave protons from the 1^{-} states of 16O which are emitted, although some s-wave emission is required by the data (1969FR20). (1969BA39) report that, in the region between 20 and 30 MeV, there is interference from the E2, p-wave proton channel, and possibly also from an M1 absorption channel. The peak interfering amplitude is > 10% of the corresponding E1 amplitude (1969BA39). $\int_{21}^{20} \sigma dE = 37$ MeV · mb (1969BA39).

Branching ratios for the decays of 16O states in the giant resonance region to various excited states in 15N have been reported by many groups: see reaction 55 in 15N (1970AJ04) and (1970HO21).

For a calculation of the (γ, p) cross section from the 15N(p, γ)16O cross section (reaction 39) using the principle of detailed balance, see (1967BL23).

50. (a) 16O(γ, d)14N $Q_m = -20.736$
 (b) 16O(γ, pn)14N $Q_m = -22.961$
 (c) 16O(γ, dn)13N $Q_m = -31.289$
 (d) 16O(γ, dp)13C $Q_m = -28.286$

For reactions (a) see (1966FU1C) and (1962MA1F, 1963BA1K, 1965OS1A; theor.). For reaction (b) see (1962MI07, 1965GA1E) and (1963KO1B; theor.). For reactions (c) and (d), see (1962KO19).

51. 16O(γ, α)12C $Q_m = -7.161$

The cross section for production of 12C exhibits a maximum near 17.5 MeV ($\Gamma \approx 5$ MeV), $\sigma_{\text{max}} \approx 50 \mu b$ (1953MI31). See also reaction 5 (1970VO13), (1959AJ76), (1957JO20, 1962GO1E, 1964GR08, 1964TO1B, 1965RO05, 1965RO1J, 1967CA1C) and (1968ER1B, 1969MA1N; theor.).

52. 16O(γ, 4α) $Q_m = -14.436$

See (1959AJ76) and (1958MA1A, 1962GO1E, 1964GR08, 1964TO1B, 1965RO1J).
Table 16.26: Excited states observed in $^{16}\text{O}(e, e')^{16}\text{O}^*$

<table>
<thead>
<tr>
<th>$E_x \text{MeV} \pm \text{keV}$</th>
<th>$J^\pi; T$</th>
<th>Mult.</th>
<th>Γ keV</th>
<th>$\Gamma_{7\nu}$ eV</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.05</td>
<td>0$^+$</td>
<td>E0</td>
<td>3.66 ± 0.55</td>
<td>(1968ST31)</td>
<td></td>
</tr>
<tr>
<td>6.13</td>
<td>3$^-$</td>
<td>E3</td>
<td>(2.3 ± 1.1) × 10$^{-5}$</td>
<td>(1968ST31)</td>
<td></td>
</tr>
<tr>
<td>6.92</td>
<td>2$^+$</td>
<td>E2</td>
<td>0.093 ± 0.010</td>
<td>(1968ST04, 1968ST31)</td>
<td></td>
</tr>
<tr>
<td>6.92</td>
<td>2$^+$</td>
<td></td>
<td>0.100 ± 0.015</td>
<td>(1967AR1A)</td>
<td></td>
</tr>
<tr>
<td>9.85</td>
<td>2$^+$</td>
<td>E2</td>
<td>0.010 ± 0.004</td>
<td>(1968ST04, 1968ST31)</td>
<td></td>
</tr>
<tr>
<td>11.0 ± 250</td>
<td>2$^+$</td>
<td>E2</td>
<td>< 0.1</td>
<td>(1966ST13)</td>
<td></td>
</tr>
<tr>
<td>11.52</td>
<td>2$^+$</td>
<td>E2</td>
<td></td>
<td>2.7</td>
<td>(1966VA02)</td>
</tr>
<tr>
<td>12.0 ± 250</td>
<td>2$^+$</td>
<td>E2</td>
<td>0.55 ± 0.07</td>
<td>(1968ST04, 1968ST31)</td>
<td></td>
</tr>
<tr>
<td>12.05</td>
<td>0$^+$</td>
<td>E0</td>
<td>0.52 ± 0.13</td>
<td>(1967AR1A)</td>
<td></td>
</tr>
<tr>
<td>12.53</td>
<td>2$^-$</td>
<td>M2</td>
<td>0.021 ± 0.006</td>
<td>(1968ST31)</td>
<td></td>
</tr>
<tr>
<td>12.97</td>
<td>2$^-$</td>
<td>M2</td>
<td>0.108 ± 0.015</td>
<td>(1970KI02)</td>
<td></td>
</tr>
<tr>
<td>13.0</td>
<td>2$^+$</td>
<td>E2</td>
<td>0.85 ± 0.09</td>
<td>(1970KI02)</td>
<td></td>
</tr>
<tr>
<td>13.10 ± 250</td>
<td>1$^-$; 1</td>
<td>E1</td>
<td>0.071 ± 0.002</td>
<td>(1970KI02)</td>
<td></td>
</tr>
<tr>
<td>14.00 ± 50</td>
<td>0$^+$</td>
<td>E0</td>
<td>1.0 ± 0.3</td>
<td>(1966VA02)</td>
<td></td>
</tr>
<tr>
<td>14.00 ± 50</td>
<td>0$^+$</td>
<td>E0</td>
<td>1.0 ± 0.3</td>
<td>(1966VA02)</td>
<td></td>
</tr>
<tr>
<td>15.15 ± 150</td>
<td>2$^+$</td>
<td>E2</td>
<td>4.40 ± 0.44</td>
<td>(1968ST04, 1968ST31, 1970KI02)</td>
<td></td>
</tr>
<tr>
<td>16.21 ± 30</td>
<td>1$^+$</td>
<td>M1</td>
<td>0.078 ± 0.016</td>
<td>(1968ST31)</td>
<td></td>
</tr>
<tr>
<td>16.46 ± 70</td>
<td>2$^+$</td>
<td>E2</td>
<td>0.071 ± 0.002</td>
<td>(1970KI02)</td>
<td></td>
</tr>
<tr>
<td>16.80 ± 100</td>
<td>(3$^+$)</td>
<td></td>
<td>0.89</td>
<td>(1968ST31)</td>
<td></td>
</tr>
<tr>
<td>17.20</td>
<td>1$^-$; 1</td>
<td>E1</td>
<td>31 ± 8</td>
<td>(1966VA02, 1968ST31)</td>
<td></td>
</tr>
<tr>
<td>17.60 ± 100</td>
<td>(2$^-$)</td>
<td></td>
<td>48.5 ± 12.8</td>
<td>(1970KI02)</td>
<td></td>
</tr>
<tr>
<td>18.50 ± 100</td>
<td>(2$^-$)</td>
<td></td>
<td></td>
<td>(1970KI02)</td>
<td></td>
</tr>
<tr>
<td>19.00 ± 100</td>
<td>1$^-$; 1</td>
<td>E1</td>
<td>51 ± 20</td>
<td>(1965VA1D, 1970ST06)</td>
<td></td>
</tr>
<tr>
<td>19.04 ± 50</td>
<td>2$^-$; 1</td>
<td>M2</td>
<td>0.07 ± 0.04</td>
<td>(1970ST06)</td>
<td></td>
</tr>
<tr>
<td>19.50 ± 100</td>
<td>1$^-$; 1</td>
<td>E1</td>
<td>1.0 ± 0.3</td>
<td>(1970ST06)</td>
<td></td>
</tr>
<tr>
<td>20.36 ± 70</td>
<td>2$^-$</td>
<td>M2</td>
<td>0.08 ± 0.04</td>
<td>(1970ST06)</td>
<td></td>
</tr>
<tr>
<td>20.95 ± 50</td>
<td>1$^-$; 1</td>
<td>E1</td>
<td>300 ± 100</td>
<td>(1965VA1D, 1968DR01)</td>
<td></td>
</tr>
<tr>
<td>22.0 ± 250</td>
<td>1$^+$</td>
<td>M1</td>
<td>300 ± 100</td>
<td>(1965VA1D)</td>
<td></td>
</tr>
</tbody>
</table>
Table 16.26: Excited states observed in $^{16}\text{O}(e,e')^{16}\text{O}^*$ (continued)

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>$J^\pi; T$</th>
<th>Mult.</th>
<th>Γ (keV)</th>
<th>Γ_{γ_0} (eV)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8 ± 250</td>
<td>1$^-$; 1</td>
<td>E1</td>
<td>2000 – 3000</td>
<td>5300</td>
<td>(1961IS06, 1962BI19)</td>
</tr>
<tr>
<td>23.7 ± 250</td>
<td>(2$^-$; 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.4 ± 250</td>
<td>2$^+$</td>
<td>E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.5 ± 250</td>
<td>1$^-$; 1</td>
<td>E1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.7 ± 250</td>
<td>1$^+$</td>
<td>M1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.5</td>
<td>(1$^-$; 1)</td>
<td></td>
<td>2000 – 3000</td>
<td>19000</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>(1$^-$; 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(b\) Monopole matrix element in fm\(^2\).

\(c\) Unresolved doublet.

\(d\) See, however, (1969SI10).

53. (a) $^{16}\text{O}(\gamma, t)^{13}\text{N}$ \(Q_m = -25.032\)

(b) $^{16}\text{O}(\gamma$, breakup)

54. $^{16}\text{O}(\gamma, \gamma')^{16}\text{O}^*$

The differential scattering cross section has been measured for $E_\gamma = 18.5$ to 33 MeV: the main giant resonance peaks are located at ≈ 22 and ≈ 25 MeV (1967LO1B, 1970AH02) report resonances at $E_\gamma = 22.5 \pm 0.3, 25.2 \pm 0.3, 31.8 \pm 0.6$ and 50 ± 3 MeV: the dipole sum up to 80 MeV exceeds the classical value $60\, N\, Z / A \, \text{MeV} \cdot \text{mb}$ by a factor 1.4. See also (1959PE32, 1960RE05, 1962SE02). For lifetime measurements of $^{16}\text{O}^*(6.9, 7.1)$, see Table 16.19 (1957SW17, 1958DU06); for widths, see Table 16.12 (1970SW03). The separation between the (7.12) and (6.92) γ-lines is 199.8 ± 0.5 keV (1970SW03). Based on 7118.67 ± 0.35 keV (Table 16.9), E_x for the lower state is 6918.9 ± 0.6 keV. See also (1962BA58, 1968SI1A; theor.).

55. (a) $^{16}\text{O}(e, e')^{16}\text{O}^*$

(b) $^{16}\text{O}(e, ep)^{15}\text{N}$ \(Q_m = -12.126\)
The ^{16}O charge radius, $r_{\text{rms}} = 2.65 \pm 0.04$ fm (1966CR07), 2.674 ± 0.022 fm (using a distorted wave approximation), 2.712 ± 0.022 fm (using a Born approximation) (1970SI02), 2.666 ± 0.033 fm (1969BE21). See also (1959EH1A, 1959ME24).

Form factors for transitions to the ground state and to excited states of ^{16}O have been reported by (1961LA09, 1963GO04, 1964BI08, 1967BI12, 1969SI10, 1969TO01, 1970BE03) as well as in some of the papers which follow.

See also (1959AJ76).

Reaction (b) studied at $E_e = 30$ MeV shows resonances (assuming ground state transitions) at $E_x = 17.27, 18.07, 18.99, 19.57, 20.65, 22.30, 23.10$ and 24.35 MeV. The states corresponding to the three highest resonances have $\Gamma = 620, 170$ and 790 keV, respectively (1962DO1A). See also (1967AM1E) and (1966RA1C, 1967DE1P, 1968MA1M).

56. $^{16}\text{O}(n, n')^{16}\text{O}^*$

57. (a) $^{16}\text{O}(p, p')^{16}\text{O}^*$

(b) $^{16}\text{O}(p, 2p)^{15}\text{N}$

(c) $^{16}\text{O}(p, pd)^{14}\text{N}$

(d) $^{16}\text{O}(p, p\alpha)^{12}\text{C}$

$Q_m = -12.126$

$Q_m = -20.736$

$Q_m = -7.161$

65

Table 16.27: Recent 16O(n, n), (p, p), (d, d), (t, t), (3He, 3He), (α, α) angular distribution studies

<table>
<thead>
<tr>
<th>E_n (MeV)</th>
<th>Angular distribution of groups</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.51 − 2.25</td>
<td>n_0</td>
<td>(1962MA05)</td>
</tr>
<tr>
<td>3.07 − 4.67</td>
<td>n_0</td>
<td>(1966LI03)</td>
</tr>
<tr>
<td>14.0</td>
<td>n_0, $n_1+2+3+4$</td>
<td>(1963BA46)</td>
</tr>
<tr>
<td>14.1</td>
<td>n_0, n_1+2, n_3+4</td>
<td>(1969ME15)</td>
</tr>
<tr>
<td>14.1</td>
<td>n_0, n_1+2, n_3+4, n_5</td>
<td>(1966MC01)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_p (MeV)</th>
<th>Angular distribution of groups</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.47 − 2.98</td>
<td>p_0</td>
<td>(1965GO08)</td>
</tr>
<tr>
<td>5.91</td>
<td>p_0</td>
<td>(1968AN13, 1968AN27)</td>
</tr>
<tr>
<td>6.9 − 15.6</td>
<td>p_0</td>
<td>(1960KO09)</td>
</tr>
<tr>
<td>7.2 − 10.5</td>
<td>p_0, p_1, p_2, p_3, p_4</td>
<td>(1964DA02)</td>
</tr>
<tr>
<td>7.3 − 13.3</td>
<td>p_0</td>
<td>(1959HU17)</td>
</tr>
<tr>
<td>12.9 − 15.6</td>
<td>p_{1+2}</td>
<td>(1960KO09)</td>
</tr>
<tr>
<td>13.8 − 18.2</td>
<td>p_0</td>
<td>(1964KE01)</td>
</tr>
<tr>
<td>13.9 − 15.6</td>
<td>p_{3+4}</td>
<td>(1960KO09)</td>
</tr>
<tr>
<td>14.8 − 19.2</td>
<td>p_0, p_{1+2}, p_{3+4}, p_5</td>
<td>(1964DA07)</td>
</tr>
<tr>
<td>19.8 − 30.5</td>
<td>p_0</td>
<td>(1969KA14)</td>
</tr>
<tr>
<td>20.9</td>
<td>p_0</td>
<td>(1969BA23)</td>
</tr>
<tr>
<td>23.4 − 46.1</td>
<td>p_0</td>
<td>(1968CA1D)</td>
</tr>
<tr>
<td>23.4 − 46.1</td>
<td>p_{1+2}, p_5</td>
<td>(1968AU1C, 1970AU1C)</td>
</tr>
<tr>
<td>25.5 − 45.1</td>
<td>p_0</td>
<td>(1969SN03)</td>
</tr>
<tr>
<td>30.3</td>
<td>p_0</td>
<td>(1964RI1B)</td>
</tr>
<tr>
<td>31</td>
<td>p_0</td>
<td>(1964KI1C)</td>
</tr>
<tr>
<td>49.5</td>
<td>p_0</td>
<td>(1967FA06)</td>
</tr>
<tr>
<td>100</td>
<td>p_0</td>
<td>(1970HO07)</td>
</tr>
<tr>
<td>142</td>
<td>p_0</td>
<td>(1961TA06)</td>
</tr>
<tr>
<td>185</td>
<td>p to 16O*(11.5, 13.1, 15.3, 18.7, 20.2)</td>
<td>(1965HA17)</td>
</tr>
<tr>
<td>185</td>
<td>p_2, p_3, p_4</td>
<td>(1969SU03)</td>
</tr>
</tbody>
</table>
Table 16.27: Recent 16O(n, n), (p, p), (d, d), (t, t), (3He, 3He), (α, α) angular distribution studies (continued)

<table>
<thead>
<tr>
<th>E_d (MeV)</th>
<th>Angular distribution of groups</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.95 – 3.63</td>
<td>d_0</td>
<td>(1968DI06)</td>
</tr>
<tr>
<td>4.0</td>
<td>d_0</td>
<td>(1966GA09)</td>
</tr>
<tr>
<td>4.0 – 6.0</td>
<td>d_0</td>
<td>(1970DA14)</td>
</tr>
<tr>
<td>8.0 – 10.5</td>
<td>d_0</td>
<td>(1963CA17, 1963CA1E, 1963CA1F, 1963GA1D)</td>
</tr>
<tr>
<td>10.95</td>
<td>d_0</td>
<td>(1960TA08)</td>
</tr>
<tr>
<td>11.8</td>
<td>d_0</td>
<td>(1967FI07)</td>
</tr>
<tr>
<td>12</td>
<td>d_0</td>
<td>(1967AL06)</td>
</tr>
<tr>
<td>13.6</td>
<td>d_0</td>
<td>(1963NE1C, 1964NE1D)</td>
</tr>
<tr>
<td>14.25</td>
<td>d_0, d_1, d_2, d_3, d_4</td>
<td>(1966NG1A)</td>
</tr>
<tr>
<td>15.8</td>
<td>d_0</td>
<td>(1966CO24)</td>
</tr>
<tr>
<td>26.3</td>
<td>d_0</td>
<td>(1962MA25, 1964TE1C)</td>
</tr>
<tr>
<td>28</td>
<td>d_0</td>
<td>(1968GA13)</td>
</tr>
<tr>
<td>34.4</td>
<td>d_0</td>
<td>(1967NE1E)</td>
</tr>
<tr>
<td>52</td>
<td>d_0</td>
<td>(1966DU08, 1968HI1B)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_t (MeV)</th>
<th>Angular distribution of groups</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4, 6.8, 7.2</td>
<td>t_0</td>
<td>(1964PU01)</td>
</tr>
<tr>
<td>12</td>
<td>t_0</td>
<td>(1965GL04, 1966GL1B)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$E(\alpha)$ (MeV)</th>
<th>Angular distribution of groups to 16O</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.94, 2.37</td>
<td>g.s.</td>
<td>(1961SI09)</td>
</tr>
<tr>
<td>2.7 – 4.0</td>
<td>g.s.</td>
<td>(1965JI1A)</td>
</tr>
<tr>
<td>8.5, 9.4</td>
<td>g.s.</td>
<td>(1965AL05)</td>
</tr>
<tr>
<td>9.80 – 11.74</td>
<td>g.s.</td>
<td>(1969BR07, 1969NU02)</td>
</tr>
<tr>
<td>12</td>
<td>g.s.</td>
<td>(1965YO1B)</td>
</tr>
<tr>
<td>15</td>
<td>g.s.</td>
<td>(1969ZU02)</td>
</tr>
<tr>
<td>16.6, 25.8, 36.6</td>
<td>g.s.</td>
<td>(1965AR1E)</td>
</tr>
<tr>
<td>17.3</td>
<td>g.s.</td>
<td>(1967HA1F)</td>
</tr>
<tr>
<td>18</td>
<td>g.s.</td>
<td>(1970MC1F)</td>
</tr>
<tr>
<td>28.9</td>
<td>g.s.</td>
<td>(1962SE13)</td>
</tr>
<tr>
<td>29</td>
<td>g.s.</td>
<td>(1963AG1A)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_{α} (MeV)</th>
<th>Angular distribution of groups</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 – 12.5</td>
<td>α_0</td>
<td>(1969JO18)</td>
</tr>
</tbody>
</table>
Table 16.27: Recent 16O(n, n), (p, p), (d, d), (t, t), (3He, 3He), (α, α) angular distribution studies (continued)

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Angular Distributions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.64, 9.31, 10.15</td>
<td>α_0, α_0, α_{1+2}, α_{3+4}, α_5</td>
<td>(1967BR1F)</td>
</tr>
<tr>
<td>18.3</td>
<td>$\alpha_0, \alpha_{1+2}, \alpha_{3+4}, \alpha_5$</td>
<td>(1959CO70)</td>
</tr>
<tr>
<td>20.0 – 23.2</td>
<td>α_0</td>
<td>(1969AG06, 1969FE10)</td>
</tr>
<tr>
<td>20.1, 21.5</td>
<td>$\alpha_{1+2}, \alpha_{3+4}$</td>
<td>(1970FE07)</td>
</tr>
<tr>
<td>20.2 – 23.4</td>
<td>α_0</td>
<td>(1968CE1B)</td>
</tr>
<tr>
<td>21.2 – 22.7</td>
<td>α_0</td>
<td>(1962JO14)</td>
</tr>
<tr>
<td>22.5</td>
<td>$\alpha_0, \alpha_{1+2}, \alpha_{3+4}, \alpha_5$</td>
<td>(1963CR04, 1965BL03)</td>
</tr>
<tr>
<td>23.05</td>
<td>α_0</td>
<td>(1968TA1Q)</td>
</tr>
<tr>
<td>24.7</td>
<td>α_0</td>
<td>(1964BU1C)</td>
</tr>
<tr>
<td>25.4 – 32.2</td>
<td>α_0</td>
<td>(1970CO13)</td>
</tr>
<tr>
<td>27.3</td>
<td>$\alpha_0, \alpha_{1+2}, \alpha_{3+4}, \alpha_5, \alpha_6+7, \alpha_8$</td>
<td>(1965KO1A)</td>
</tr>
<tr>
<td>28.5</td>
<td>$\alpha_0, \alpha_{1+2}, \alpha_{3+4}, \alpha_5, \alpha_6+7, \alpha_9$</td>
<td>(1964KO02, 1965KO07)</td>
</tr>
<tr>
<td>31.8, 39.5</td>
<td>$\alpha_0, \alpha_{1+2}, \alpha_{3+4}, \alpha_5$</td>
<td>(1964BO1E, 1965PR1E)</td>
</tr>
<tr>
<td>38.1</td>
<td>$\alpha_0, \alpha_{1+2}, \alpha_{3+4}$</td>
<td>(1960AG01)</td>
</tr>
<tr>
<td>40</td>
<td>$\alpha_0, \alpha_{1+2}, \alpha_{3+4}$</td>
<td>(1959YA01)</td>
</tr>
<tr>
<td>40.5</td>
<td>$\alpha_0, \alpha_2, \alpha_3, \alpha_4, \alpha_5$</td>
<td>(1966HA19)</td>
</tr>
<tr>
<td>40.6</td>
<td>α_{1+2}</td>
<td>(1965BU05)</td>
</tr>
<tr>
<td>41.9, 49.7</td>
<td>α_0</td>
<td>(1965VA11)</td>
</tr>
<tr>
<td>56</td>
<td>α_0</td>
<td>(1968GA1C)</td>
</tr>
<tr>
<td>50, 80.7</td>
<td>$\alpha_0, \alpha_2, \alpha_{3+4}, \alpha_5$</td>
<td>(1968RE1F)</td>
</tr>
<tr>
<td>65</td>
<td>α_0 (and see Table 16.29)</td>
<td>(1964HA16)</td>
</tr>
<tr>
<td>104</td>
<td>α_0</td>
<td>(1968HA1D, 1969HA14)</td>
</tr>
</tbody>
</table>

For polarization measurements see reaction 7 in 17F and see also (1960KA1E, 1961SA1B, 1963DU1B, 1963HO1D, 1965BA1M, 1965HA28; theor.).

For reaction (b), see the reviews by (1965RI1A, 1967RI1C) and 15N. See also (1966TY01, 1968PE1A) and (1965BE1E, 1966JA1A, 1967JA1E, 1968HE1J, 1969KO1J; theor.).

For reaction (c) see (1967SU1C, 1968FR1J) and (1963SH1A, 1964BA1P, 1968KO1P, 1968RO1F; theor.). For reaction (d) see (1961KO02, 1962FO03, 1962RO25, 1962VA1A, 1965ZH1A, 1967CH04, 1970GO12). For spallation studies, see reaction 7 in 17F.
Table 16.28: Energy levels of ^{16}O from $^{16}\text{O}(p, p')^{16}\text{O}^*$

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>(1955HO1B)a</th>
<th>(1969SU03)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.14 ± 30</td>
<td>6.13 ± 40</td>
<td>6.92</td>
</tr>
<tr>
<td>7.02 ± 30</td>
<td></td>
<td>7.12</td>
</tr>
<tr>
<td>8.87 ± 30</td>
<td>8.75 ± 150</td>
<td></td>
</tr>
<tr>
<td>9.85 ± 30</td>
<td>9.70 ± 150</td>
<td></td>
</tr>
<tr>
<td>10.34 ± 30</td>
<td>10.25 ± 150</td>
<td></td>
</tr>
<tr>
<td>11.08 ± 30</td>
<td></td>
<td>11.35 ± 100</td>
</tr>
<tr>
<td>11.51 ± 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.02 ± 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.53 ± 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.06 ± 30</td>
<td>12.93 ± 100</td>
<td></td>
</tr>
<tr>
<td>(13.39 ± 30)</td>
<td></td>
<td>13.80 ± 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.15 ± 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.30 ± 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.10 ± 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.70 ± 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.80 ± 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.80 ± 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.35 ± 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(22.1 ± 150)</td>
</tr>
</tbody>
</table>

a $E_p = 19$ MeV.

b $E_p = 185$ MeV.
58. 16O(d, d')16O*

59. 16O(t, t)16O

Angular distributions are reported for $E_t = 6.4$ to 12 MeV: see Table 16.27 (1964PU01, 1965GL04, 1966GL1B). See also (1968HO1C).

60. 16O(3He, 3He)16O

61. (a) 16O(α, α')16O*

(b) 16O(α, 2α)12C $Q_m = -7.161$

Reaction (b) proceeds via excited states of 16O: see (1962VA25, 1964DO1C, 1968PA12) and (1970PI1D). See also (1968BA1H; theor.).
Table 16.29: Energy levels of 16O from 16O$(\alpha, \alpha')^{16}$O*
(1964HA16, 1966HA19)

<table>
<thead>
<tr>
<th>E_x a (MeV)</th>
<th>L</th>
<th>λ</th>
<th>$B(\lambda) \downarrow /e^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.137 b</td>
<td>3</td>
<td>E3</td>
<td>90 fm6</td>
</tr>
<tr>
<td>6.903</td>
<td>2</td>
<td>E2</td>
<td>7.7 fm4</td>
</tr>
<tr>
<td>6.973</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.876 b</td>
<td>3 c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.797</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.308</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.069</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.480</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.997</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.492 d</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.989 d</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.966</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.975</td>
<td>e</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a ±50 keV (1964HA16).
b Used to set energy scale.
c Weakly excited.
d Unresolved groups.
e Angular distribution measured but L-value not assigned.

62. (a) 16O(6Li, 6Li)16O
(b) 16O(7Li, 7Li)16O

The elastic scattering has been studied for $E(^6$Li) and $E(^7$Li) = 20 MeV by (1969BE90).

63. (a) 16O(9Be, 9Be)16O
(b) 16O(10B, 10B)16O
(c) 16O(11B, 11B)16O

For reaction (a), see (1969KR03). For reaction (b), see (1968OK06, 1969KR03). For reaction (c), see (1968OK06, 1969VO10, 1970SC1G).
64. 16O(12C, 12C)16O

65. 16O(14N, 14N)16O

66. 16O(16O, 16O)16O

The angular distributions of elastically scattered 16O ions have been measured at $E(^{16}$O) = 14 to 30 MeV (1961BR15), 25 to 63 MeV (1969MA40), and at 140.4 MeV (1962WI09). At the highest energy the angular distribution corresponding to the excitation of 16O to the first four excited states (unresolved) has also been measured (1962WI09). See also (1962RO15). Excitation curves are reported by (1961BR15, 1965CA02, 1967SI1D, 1968PA1V, 1969MA40, 1970SP1E). Very striking structure is observed in the elastic scattering for $E(^{16}$O) = 34 to 72 MeV: see (1969MA40).

67. 17O(p, d)16O $Q_m = -1.918$

At $E_p = 31$ MeV, angular distributions are reported for the deuterons corresponding to 16O*(0, 6.05 + 6.13, 7.12, 8.87, 10.34, 12.97, 13.26). States at $E_x = 15.22$ and 15.42 MeV were also observed. Spectroscopic factors were obtained from a DWBA analysis (1970ME01). The strength of the group to 16O*(10.34) is ≈ 20 times less than predicted by the shell-model wave functions of (1968ZU02) and (1970ME01).

68. 17O(d, t)16O $Q_m = 2.115$

Not reported.
69. $^{17}\text{O}(^{3}\text{He}, \alpha)^{16}\text{O}$ $Q_m = 16.435$

Angular distributions of ground state α-particles have been measured for $E(^3\text{He}) = 2.7$ to 6.5 MeV (1965WA1D).

70. $^{18}\text{O}(p, t)^{16}\text{O}$ $Q_m = -3.707$

Angular distributions of tritons have been measured at $E_p = 17.6$ MeV (1961LE1A, 1963LE03; t_0), 18.2 MeV (1967LU05; t_0, t_{1+2}, t_3, t_4, t_5) and at 43.7 MeV (1964CE05, 1966CE05). At the higher energy, angular distributions are reported for the tritons corresponding to ^{16}O states at $E_x = 0$, 9.85, 22.9 and 24.7 MeV, with $L = 0$, 2, 0 and 2, respectively. The $E_x = 22.9$ and 24.7 MeV states are presumably the 0^+; $T = 2$ and 2^+; $T = 2$ analogs of $^{16}\text{O}^*(0, 1.75)$, respectively (1964CE05). See also (1965RE1A, 1968BL1G), (1969GA1P) and (1967DO1B, 1969JA1P; theor.).

71. $^{18}\text{O}(\alpha, ^6\text{He})^{16}\text{O}$ $Q_m = -11.219$

At $E_\alpha = 42$ MeV, angular distributions of the ^6He particles corresponding to the ground state of ^{16}O and to the (unresolved) states at 6.1 and at 7.0 MeV have been measured (1970AR1H).

72. $^{18}\text{O}(^7\text{Li}, ^9\text{Li})^{16}\text{O}$ $Q_m = -6.104$

See (1969TO1D).

73. $^{18}\text{O}(^{12}\text{C}, ^{14}\text{C})^{16}\text{O}$ $Q_m = 0.934$

See (1968GO1Q).

74. $^{19}\text{F}(p, \alpha)^{16}\text{O}$ $Q_m = 8.115$

$Q_0 = 8.122 \pm 0.009$ (1967SP09).
Table 16.30: Angular distributions of α-particles in 19F(p, α)16O

<table>
<thead>
<tr>
<th>E_0 (MeV)</th>
<th>Alpha-particle group(s)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.49 − 0.72</td>
<td>α_0</td>
<td>(1959BR67)</td>
</tr>
<tr>
<td>2.64 − 3.35</td>
<td>α_0</td>
<td>(1966MO25)</td>
</tr>
<tr>
<td>4.26 − 12.00</td>
<td>α_0</td>
<td>(1963WA12)</td>
</tr>
<tr>
<td>4.1 − 6.5</td>
<td>α_0</td>
<td>(1960TE03)</td>
</tr>
<tr>
<td>6.0 − 7.4</td>
<td>α_0</td>
<td>(1961YA09)</td>
</tr>
<tr>
<td>8.0 − 14.2</td>
<td>α_0</td>
<td>(1959OG15)</td>
</tr>
<tr>
<td>18.5</td>
<td>α_0</td>
<td>(1956LI37)</td>
</tr>
<tr>
<td>22.8</td>
<td>α_0, α_{1+2}, α_{3+4}</td>
<td>(1963HO24)</td>
</tr>
<tr>
<td>26.7</td>
<td>α_0</td>
<td>(1970GU06)</td>
</tr>
<tr>
<td>30.5</td>
<td>α_0</td>
<td>(1967CO05)</td>
</tr>
<tr>
<td>38</td>
<td>α_0</td>
<td>(1969GA03)</td>
</tr>
<tr>
<td>44.5</td>
<td>α_0</td>
<td>(1966CR05, 1967CR05)</td>
</tr>
</tbody>
</table>

Angular distributions of various α-particle groups have been obtained at many energies: see Table 16.30. Observed excited states are displayed in Table 16.31 (1956SQ1A, 1957YO04, 1965BE1J, 1967CH19, 1967DO1C). In addition to the very accurate γ-ray energies listed in Table 16.31, (1970GA09) report $E_\gamma = 2741.5 \pm 0.5$ keV for the (8.87 → 6.13) transition. The E0 transition (6.05 → 0; $0^+ \rightarrow 0^+$) has been investigated in some detail: $E = 6051 \pm 5$ keV (1962NE02), 6052 ± 4 keV (1963LE06). The internal conversion to pair production ratio is $(4.00 \pm 0.46) \times 10^{-5}$ (1963LE06). See also (1962NE02, 1963GO18). The ratio of double γ-emission to pair production, $\Gamma_{E1E1}/\Gamma_{E0}(\pi)$, is $\leq 1 \times 10^{-4}$ (1964AL18). Gamma-ray branching ratios and widths for γ-emission have been obtained for many transitions: see Table 16.12 (1960PI04, 1962GO07, 1962GO15, 1963GO31, 1965FU05, 1966LO06, 1967GI07, 1967LO08, 1967PI01, 1968EV03, 1968WI15). For lifetime measurements see Table 16.19 (1954DE36, 1958KO63, 1965AL14, 1967PI01, 1970CO09, 1970GA09).

75. 19F(d, nα)16O \hspace{1cm} Q_m = 5.890

74
Table 16.31: 16O levels from 19F(p, α)16O

<table>
<thead>
<tr>
<th>E_x (MeV ± keV)</th>
<th>(\Gamma^a) (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1956SQ1A))</td>
<td>((1957YO04))</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.051 ± 10</td>
<td>6.058 ± 17</td>
</tr>
<tr>
<td>6.131 ± 10</td>
<td>6.138 ± 11</td>
</tr>
<tr>
<td>6.920 ± 10</td>
<td>6.926 ± 11</td>
</tr>
<tr>
<td>7.120 ± 10</td>
<td>7.122 ± 11</td>
</tr>
<tr>
<td>8.874 ± 12</td>
<td>8.882 ± 11</td>
</tr>
<tr>
<td>9.852 ± 12</td>
<td>< 20</td>
</tr>
<tr>
<td>10.363 ± 14</td>
<td>≈ 25 – 30</td>
</tr>
<tr>
<td>11.085 ± 14</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) \((1956SQ1A)\).

\(^b\) From \(\gamma\)-ray measurements: \(E_\gamma = 6129.70 \pm 0.28\) and \(7117.02 \pm 0.49\) keV \((1967CH19)\). \((1965BE1J)\) report \(E_\gamma = 6127.8 \pm 1.2\) keV \((1967DO1C)\) \(E_\gamma = 6129 \pm 2\) keV.

See \((1965PE01)\).

76. 19F(3He, 6Li)16O \hspace{1cm} Q_m = 4.094

Angular distributions of the 6Li ions corresponding to the transition to the ground state of 16O have been measured for \(E(^3\text{He}) = 5\) MeV \((1968ME13)\) and at 40.7 MeV \((1969OH1B, 1970DE1T)\).

77. 19F(α, 7Li)16O \hspace{1cm} Q_m = -9.232

The angular distribution of the 7Li ions corresponding to 16O(0) has been measured at \(E_\alpha = 42\) MeV \((1968MI05)\).

78. (a) 20Ne(p, $p\alpha$)16O \hspace{1cm} Q_m = -4.730

(b) 20Ne(α, 2α)16O \hspace{1cm} Q_m = -4.730

75
For reaction (a) see (1967CH04, 1969EP1C). For reaction (b) see (1968YA1C).

79. 20Ne(d, 6Li)16O

$Q_m = -3.257$

At $E_d = 50$ MeV, strong transitions are reported to 16O*(0, 6.05 + 6.13, 6.92, 9.85). The 4$^+$ state at $E_x = 10.34$ MeV is very weakly excited (1970DU1E, 1970MC1G).

80. 20Ne(3He, 7Be)16O

$Q_m = -3.143$

At $E(^3$He) = 30 MeV, angular distributions of 7Be ions [7Be(0) and (1)] associated with the transitions to 16O*(0, 6.05 + 6.13) (1970DE12) are reported. See also (1970DU1E).

81. 28Si(α, 16O)16O

$Q_m = -9.592$

See (1967VA18).
GENERAL: See (1966LE1H, 1967DI1B).

Mass of 16F: From the Q-value of the 14N(3He, n)16F reaction [$Q_0 = -969 \pm 14$ keV (1965ZA01, 1968AD03)] and the (1965MA54) masses for 14N, 3He and n, the mass excess of 16F is 10.693 ± 0.014 MeV. 16F is then unstable with respect to proton emission by 0.544 MeV. The binding energies of a deuteron, a 3He particle and an α-particle in 16F are, respectively, 10.451, 9.584 and 9.074 MeV. (1966KE16) predict $M - A = 11.204$ from the isobaric multiplet mass equation [the difference between this value and the experimentally observed mass excess is due to a Thomas-Ehrman shift of the unbound 16F ground state]. See also the general discussion in (1969GA1G) and (1964GA1C, 1966GA25).

1. 14N(3He, n)16F

$$Q_m = -0.969$$
$$Q_0 = -0.970 \pm 0.015 \ (1968AD03);$$
$$Q_0 = -0.963 \pm 0.040 \ (1965ZA01).$$

Observed neutron groups are displayed in Table 16.33 (1965ZA01, 1968AD03). Angular distributions of the neutrons corresponding to 16F$^*(0, 0.43, 0.72)$ have been measured at $E(^3$He) = 3.5 MeV. The widths of the first four states of 16F (see Table 16.33) [and comparison with the analog states in 16N, 16O] suggest that J^π for 16F$^*(0, 0.24, 0.43, 0.71)$ are (0$^-$, 2$^-$, 1$^-$ and 3$^-$, respectively) [see, however, reaction 3] (1965ZA01). See also (1960BO1B, 1964BR13).

2. 16O(p, n)16F

$$Q_m = -16.212$$
$$Q_0 = -16.4 \pm 0.2 \ (1965GR15).$$

At $E_p = 30$ and 50 MeV, neutron groups are reported to eight excited states of 16F with $E_x \lesssim 19.5$ MeV, including two states at $E_x = 4.20 \pm 0.05$ and 6.16 ± 0.05 MeV (1965GR15). See also (1970WI1B).

3. 16O(3He, t)16F

$$Q_m = -15.448$$

Triton groups observed at $E(^3$He) = 40.2 MeV are displayed in Table 16.33. The angular distributions of the tritons to 16F$^*(0, 0.24)$ are similar, as are those of the tritons to 16F$^*(0.43, 0.71)$: comparison with analog states in 16N, 16O then suggests $J^\pi = 0^-, 1^-, 2^-$ and 3$, respectively, for these states (1965PE04). See also (1966TO04; theor.) and (1965RI1C, 1967HA1Q).
Table 16.32: Energy levels of 16F

<table>
<thead>
<tr>
<th>E_x (MeV \pm keV)</th>
<th>$J^\pi; T$</th>
<th>Γ (keV)</th>
<th>Decay</th>
<th>Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0$^-$); 1</td>
<td>50 \pm 30</td>
<td>p</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>0.236 \pm 20</td>
<td></td>
<td>< 40</td>
<td>p</td>
<td>1, 3</td>
</tr>
<tr>
<td>0.425 \pm 14</td>
<td></td>
<td>40 \pm 30</td>
<td>p</td>
<td>1, 3</td>
</tr>
<tr>
<td>0.714 \pm 14</td>
<td>(3$^-$)</td>
<td>< 15</td>
<td></td>
<td>1, 3</td>
</tr>
<tr>
<td>3.78 \pm 60</td>
<td></td>
<td>< 40</td>
<td></td>
<td>1, 3</td>
</tr>
<tr>
<td>4.25 \pm 50</td>
<td></td>
<td></td>
<td></td>
<td>2, 3</td>
</tr>
<tr>
<td>5.45 \pm 50</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5.9 \pm 50</td>
<td></td>
<td></td>
<td></td>
<td>2, 3</td>
</tr>
<tr>
<td>6.4 \pm 50</td>
<td></td>
<td></td>
<td></td>
<td>2, 3</td>
</tr>
</tbody>
</table>

Table 16.33: 16F levels from 14N(3He, n)16F and 16O(3He, t)16F

<table>
<thead>
<tr>
<th>16F* a (MeV \pm keV)</th>
<th>16F* b (MeV \pm keV)</th>
<th>Γ b (keV)</th>
<th>16F* c (MeV \pm keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>50 \pm 30</td>
<td>0</td>
</tr>
<tr>
<td>0.253 \pm 35</td>
<td>0.20 \pm 50</td>
<td>< 40</td>
<td>d</td>
</tr>
<tr>
<td>0.422 \pm 15</td>
<td>0.436 \pm 30</td>
<td>40 \pm 30</td>
<td>d</td>
</tr>
<tr>
<td>0.711 \pm 15</td>
<td>0.736 \pm 40</td>
<td>< 15</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>3.78 \pm 60</td>
<td>< 40</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.25 \pm 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.45 \pm 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.9 \pm 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.4 \pm 50</td>
</tr>
</tbody>
</table>

a 14N(3He, n)16F: (1968AD03).
b 14N(3He, n)16F: (1965ZA01).
c 16O(3He, t)16F: (1965PE04).
d These states were observed but E_x was not determined.
\[^{16}\text{Ne} \]
(Fig. 5)

\(^{16}\text{Ne}\) has not been observed. The isobaric multiplet mass equation predicts \(M - A = 25.15 \pm 0.6\) MeV (1968CE1A); \(^{16}\text{Ne}\) is then unbound with respect to breakup into \(^{14}\text{O}\) + 2p by 2.6 MeV. See also (1960GO1B, 1960GO1D, 1961BA1C, 1961GO1D, 1962GO1B, 1962GO28, 1964GA1C, 1965JA1C, 1966KE16). A search has been made for the two-proton decay of \(^{16}\text{Ne}\) in the bombardment of nickel by 150 MeV \(^{20}\text{Ne}\) ions: the cross section is either \(\leq 1.8 \mu\text{b}\) (if \(E_{pp} > 1\) MeV and \(\tau(^{16}\text{Ne}) \geq 10^{-8}\) sec), or else \(\tau(^{16}\text{Ne}) < 10^{-8}\) sec (1964KA28). See also (1965GO1D, 1966GO1B, 1966LE1H, 1970WA1G).
References

(Closed 30 November 1970)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author’s name and then by two additional characters. Most of the references appear in the National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form 1A, 1B, etc. In response to many requests for more informative citations, we have, when possible, included up to ten authors per paper and added the authors’ initials.

1953HI1A Hill, Phys. Rev. 90 (1953) 845
1953WI1A Wilkinson, Phil. Mag. 44 (1953) 450
1954BI1A Bittner and Moffat, Phys. Rev. 96 (1954) 374
1954MA1B Martin, Phys. Rev. 93 (1954) 498
1955HO1B Hornyak and Sherr, Phys. Rev. 100 (1955) 1409
1955RA1B Rasmussen, Miller and Sampson, Phys. Rev. 100 (1955) 181
1956BO61 T.W. Bonner, A.A. Kraus, Jr., J.B. Marion and J.P. Schiffer, Phys. Rev. 102 (1956) 1348
1956SQ1A Squires, Bockelman and Buechner, Phys. Rev. 104 (1956) 413
1956WI1A Wilkinson, Toppel and Alburger, Phys. Rev. 101 (1956) 673
1956WI1D Wilkinson, Phil. Mag. 1 (1956) 379
1956ZI1A Zimmerman, Phys. Rev. 104 (1956) 387
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1957</td>
<td>HA1A</td>
<td>Hagedorn</td>
<td>Phys. Rev.</td>
<td>108</td>
<td>(1957) 735</td>
</tr>
<tr>
<td>1957</td>
<td>HA1B</td>
<td>Hagedorn and Marion</td>
<td>Phys. Rev.</td>
<td>108</td>
<td>(1957) 1015</td>
</tr>
<tr>
<td>1957</td>
<td>IL1A</td>
<td>Illsley, Holmgren, Johnston and Wolicki</td>
<td>Phys. Rev.</td>
<td>107</td>
<td>(1957) 538</td>
</tr>
<tr>
<td>1957</td>
<td>WE1A</td>
<td>Weil, Jones and Lidofsky</td>
<td>Phys. Rev.</td>
<td>108</td>
<td>(1957) 800</td>
</tr>
<tr>
<td>1958</td>
<td>AL1D</td>
<td>Alkhazov, Gangpskii and Lemberg</td>
<td>JETP (Sov. Phys.)</td>
<td>6</td>
<td>(1958) 892</td>
</tr>
<tr>
<td>1958</td>
<td>DA1A</td>
<td>Dabrowski</td>
<td>Bull. Acad. Polon. Sci.</td>
<td>6</td>
<td>(1958) 635</td>
</tr>
<tr>
<td>1958</td>
<td>HU18</td>
<td>D.J. Hughes and R.B. Schwartz</td>
<td>BNL-325, 2nd Ed.</td>
<td>(1958)</td>
<td></td>
</tr>
<tr>
<td>1958</td>
<td>WEIC</td>
<td>Weil, CU-180</td>
<td>(1958)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1959</td>
<td>AJ76</td>
<td>F. Ajzenberg and T. Lauritsen</td>
<td>Nucl. Phys.</td>
<td>11</td>
<td>(1959) 1</td>
</tr>
<tr>
<td>1959</td>
<td>BL31</td>
<td>J.S. Blair</td>
<td>Phys. Rev.</td>
<td>115</td>
<td>(1959) 928</td>
</tr>
<tr>
<td>1959</td>
<td>BR1E</td>
<td>Brink and Kerman</td>
<td>Nucl. Phys.</td>
<td>12</td>
<td>(1959) 314</td>
</tr>
</tbody>
</table>
1959CA1A Cameron, Bull. Amer. Phys. Soc. 4 (1959) 247
1959CA1B Cameron, Astrophys. J. 130 (1959) 452
1959CA1C Carroll, Thesis, Univ. of Pennsylvania (1959)
1959EG1C Egardt, Nucl. Phys. 12 (1959) 84
1959EG20 L. Egardt, Nucl. Phys. 11 (1959) 349
1959EH1A Ehpenberg et al., Phys. Rev. 113 (1959) 666
1959EL41 J.O. Elliot and F.C. Young, Nucl. Sic. Eng. 5 (1959) 55
1959FA1A Fagg and Hanna, Rev. Mod. Phys. 31 (1959) 711
1959FA1B Fallieros, Unpublished Thesis, Univ. of Maryland (1959)
1959FA1C Fallieros and Ferrell, Phys. Rev. 116 (1959) 660
1959GO84 P. Goldhammer, Phys. Rev. 116 (1959) 676
1959KO60 E. Kondaiah, C. Badrinathan and K.V.K. Iyengar, Nucl. Phys. 9 (1959) 561
1960IS04 D. Isabelle and G. Bishop, Compt. Rend. 251 (1960) 697
1960JA1F Jancovici, Nucl. Phys. 21 (1960) 256
1960NO1A Norbeck, Bull. Amer. Phys. Soc. 5 (1960) 476
1960PI04 R.E. Pixley, J.V. Kane and D.H. Wilkinson, Phil. Mag. 5 (1960) 359
1960RA1A Raz, Phys. Rev. 120 (1960) 169
1960RI05 J. Rickards, Rev. Mex. Fis. 9 (1960) 35
1960RO1C Roth and Wildermuth, Nucl. Phys. 20 (1960) 10
1960SA1C Sakamoto, Prog. Theor. Phys. 23 (1960) 183
1960SA1E Sakamoto, Prog. Theor. Phys. 23 (1960) 382
<table>
<thead>
<tr>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>Sawicki and Soda, Nucl. Phys. 28 (1961) 270</td>
</tr>
<tr>
<td>1962</td>
<td>Barker and Treacy, Nucl. Phys. 38 (1962) 33</td>
</tr>
<tr>
<td>1962</td>
<td>Barker, Nucl. Phys. 31 (1962) 535</td>
</tr>
<tr>
<td>Year</td>
<td>Author(s)</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>1962DO1A</td>
<td>Dodge and Barber</td>
</tr>
<tr>
<td>1962GO1J</td>
<td>Gorshkov, Zyabkin and Tsvetkov</td>
</tr>
<tr>
<td>1962GO21</td>
<td>S. Gorodetzky, P. Fintz and A. Gallmann</td>
</tr>
<tr>
<td>Year</td>
<td>ID</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>1962</td>
<td>IN1A</td>
</tr>
<tr>
<td>1962</td>
<td>LA1D</td>
</tr>
<tr>
<td>1962</td>
<td>LE1A</td>
</tr>
<tr>
<td>1962</td>
<td>MA1F</td>
</tr>
<tr>
<td>1962</td>
<td>MO16</td>
</tr>
<tr>
<td>1962</td>
<td>NA1A</td>
</tr>
<tr>
<td>1962</td>
<td>PA1A</td>
</tr>
<tr>
<td>1962</td>
<td>RE1A</td>
</tr>
<tr>
<td>1962</td>
<td>SA1A</td>
</tr>
</tbody>
</table>
1962SE02 F.D. Seward, Phys. Rev. 125 (1962) 335
1962SI05 C.P. Sikkema, Nucl. Phys. 32 (1962) 470
1962VA25 S.S. Vasilyev, V.V. Komarov and A.M. Popova, Nucl. Phys. 38 (1962) 344
1962WI09 D.J. Williams and F.E. Steigert, Nucl. Phys. 30 (1962) 373
1963AB1A Abgrall, J. Physique 24 (1963) 1113
1963BA08 S. Bashkin, V.P. Hart and W.A. Seale, Phys. Rev. 129 (1963) 1750
1963BA1H Balashov, Nucl. Phys. 40 (1963) 93
1963BI05 G.R. Bishop, Nucl. Phys. 41 (1963) 118
1963BR1B Brink, Nucl. Phys. 40 (1963) 593
1963BR1D Brown, Evans and Thouless, Nucl. Phys. 45 (1963) 164
1963BU1C Bunakov, Phys. Lett. 7 (1963) 14
1963CO1D Costa et al., Phys. Lett. 6 (1963) 226
1963DA1D Davis, 3rd Conf. on Reactions between Complex Nuclei (1963) 61
1963DO1B Douglas, Sala, Gomes and Polga, Padua (1963) 558A
1963DU1B Duke, Phys. Rev. 129 (1963) 681
1963ED1A Edwards, Padua (1963) 469
1963EV01 F. Everling, Nucl. Phys. 40 (1963) 670
1963FE1B Ferguson, Gale, Morrison and White, Padua (1963) 510

91
1963FI1B Finck et al., Z. Phys. 174 (1963) 337
1963FU05 H. Fuchs and D. Haag, Z. Physik 171 (1963) 403
1963GO04 J. Goldemberg and Y. Torizuka, Phys. Rev. 129 (1963) 312
1963GO1J Gorshkov and Tsvetkov, Atomnaya Energ.14 (1963) 550
1963GO1L Gofman et al., Zh. Eksp. Teor. Fiz. 45 (1963) 1317; JETP (Sov. Phys) 18 (1964) 906
1963GO22 S. Gorodetzky, W. Benenson, P. Chevallier, D. Disdier and F. Scheibling, Phys. Lett. 6 (1963) 269
1963GR1D Greiner, Nucl. Phys. 49 (1963) 522
1963GR35 J.E. Griffin and C.L. Hammer, IS-676 (1963)
1963HA05 M. Harvey, Phys. Lett. 3 (1963) 209
1963HA1E Hayward, Rev. Mod. Phys. 35 (1963) 324
1963HO1E Hortig, Werner and Gentner, 3rd Conf. on Reactions between Complex Nuclei (1963) 178
1963IG01 G. Igo and B.D. Wilkins, Phys. Rev. 131 (1963) 1251
1963KO1B Kopaleishvili and Jibuti, Nucl. Phys. 44 (1963) 34
1963MA1D Matthies, Neudachin and Smirnov, Nucl. Phys. 49 (1963) 97
1963ME17 P. Mennrath, Thesis, Univ. of Strasbourg (1962); Ann. de Phys. 8 (1963) 385
1963MI1C Mikumo, Nonaka, Yamaguchi and Maki, Padua (1963) 1088A
1963MI1H Mikumo, Padua (1963) 1046
1963MO1B Morrison, Gale, Hussain and Murray, 3rd Conf. on Reactions between Complex Nuclei (1963) 168
1963NO1C Nonaka et al., INSJ-56 (1963)
1963OL1A Ollerhead, Chasman and Bromley, 3rd Conf. on Reactions between Complex Nuclei (1963) 191
1963SH1A Shapiro and Kolybasov, Nucl. Phys. 49 (1963) 515
1963SP1B Sperduto and Buchner, 2nd Int. Conf. on Nucl. Masses, Vienna, July 1963 (1963)
1963WI09 R.S. Willey, Phys. Lett. 6 (1963) 336; Erratum Phys. Lett. 8 (1964) 220
1963WI1D Wilkins, UCR-10783 (1963)
1964AL18 D.E. Alburger and P.D. Parker, Phys. Rev. 135 (1964) B294
1964AM1A Amsel, Ann. Phys. 9 (1964) 297
1964AS1A Astbury et al., Bull. Amer. Phys. Soc. 9 (1964) 81
1964AT1A Atneosen, Wilson, Sampson and Miller, Phys. Rev. 135 (1964) B660
1964BA04 D. Bachelier, M. Bernas, I. Brissaud, C. Detraz, N.K. Ganguly and P. Radvanyi, Phys. Lett. 8 (1964) 56
1964BA1L Barker, Nucl. Phys. 59 (1964) 513
1964BA1M Barlow, Sens, Duke and Kemp, Phys. Lett. 9 (1964) 84
1964BA1N Balashov, Beliaev, Eramjian and Kabachnik, Phys. Lett. 9 (1964) 168
1964BA1Q Bar-Touv, Bassichis, Levinson and Kelson, 30/C223, Paris (1964)
1964BA1R Bapber, Nucl. Instrum. Meth. 28 (1964) 220
1964BE1E Bertozzi et al., Paris (1964) 1026
1964BI02 J.K. Bienlein and E. Kalsch, Nucl. Phys. 50 (1964) 202
1964BI08 G.R. Bishop, C. Betourne and D.B. Isabelle, Nucl. Phys. 53 (1964) 366
1964BI1D Bishop, Isabelle and Betourne, Nucl. Phys. 54 (1964) 97
1964ER1A Erikson, Nucl. Phys. 55 (1964) 497
1964FE02 J.M. Ferguson, Nucl. Phys. 59 (1964) 97
1964FI03 F.W.K. Firk, Nucl. Phys. 52 (1964) 437
1964FO1C Foldy and Walecka, 5/C55, Paris (1964)
1964FU1B Fujii and Sugimoto, Nucl. Phys. 56 (1964) 73
1964GA1A Gardner and Yu, Nucl. Phys. 60 (1964) 49
1964GA1D Garside, Bull. Amer. Phys. Soc. 9 (1964) 416
1964GA1E Garin et al., J. Phys. 25 (1964) 768
1964GI1A Gillet and Melkanoff, Phys. Rev. 133 (1964) B1190
1964GI1B Gillet, Nucl. Phys. 51 (1964) 410
1964GI1C Gillet and Vinh Mau, Nucl. Phys. 54 (1964) 321
1964GO14 J. Goldemberg and W.C. Barber, Phys. Rev. 134 (1964) B963
1964GO1F Gorodetzky, Bassompierre and Gallmann, 4B (II)/C247, Paris (1964)
1964HA1F Hanser et al., Bull. Amer. Phys. Soc. 9 (1964) 444
1964HI09 J.C. Hiebert and G.T. Garvey, Phys. Rev. 135 (1964) B346
1964KA1C Kallito and Kolltveit, Nucl. Phys. 53 (1964) 87
1964KE1C Kelley and Henley, Phys. Lett. 10 (1964) 95
1964KI1C Kim, Bunch, Devins and Forster, Nucl. Phys. 58 (1964) 32
1964KO02 J. Kokame, K. Fukunaga, N. Inoue and H. Nakamura, Phys. Lett. 8 (1964) 342
1964KU09 H.-M. Kuan, P.R. Almond, G.U. Din and T.W. Bonner, Nucl. Phys. 60 (1964) 509
1964KU1D Kuehner and Almqvist, Phys. Rev. 134 (1964) B1229
1964LA16 J.D. Larson and R.H. Spear, Nucl. Phys. 56 (1964) 497
1964LE1B Lewis, Phys. Rev. 134 (1964) B331
1964LI1B Lindskog, Sundstrom and Sparman, Perturbed Angular Correlations (Amsterdam, North-Holland Publ. Company, 1964) 411
1964MA1K MacDonald, Nucl. Phys. 56 (1964) 636, 647
1964MA1L Mailing, Smirnov and Neudachin, Phys. Lett. 11 (1964) 49
1964MC1C McIntosh, Park and Rawitscher, Phys. Rev. 134 (1964) B1016
1964MI05 R. Middleton and D.J. Pullen, Nucl. Phys. 51 (1964) 63
1964MI16 F.C. Michel, Phys. Rev. 133 (1964) B329
1964MI1E Mikesha, Z. Phys. 177 (1964) 441
1964MO1D Morgan, Bull. Amer. Phys. Soc. 9 (1964) 653
1964NA1A Nash, Nuovo Cim. 31 (1964) 992
1964NA1B Nash, Nuovo Cim. 34 (1964) 1062
1964NE1D Nemets, Pikar, Slyusarenko and Tokarevskyi, Ukr. Fiz. Zh. 9 (1964) 599; Phys. Abs. 25420 (1964)
1964PA11 G. Paic, I. Slaus and P. Thomas, Phys. Lett. 9 (1964) 147
1964PE1C Perkin, Nucl. Phys. 60 (1964) 561
1964PU01 D.J. Pullen, J.R. Rook and R. Middleton, Nucl. Phys. 51 (1964) 88
1964RI1A Ripka, 3A (II)/C174, Paris (1964)
1964RI1B Ridley and Turner, Nucl. Phys. 58 (1964) 497
1964RO1B Rozsnyai, Bull. Amer. Phys. Soc. 9 (1964) 74
1964SC1G Schmidt, Z. F. Phys. 181 (1964) 532
1964SE1D Seiler, Herring and Jones, Phys. Rev. 136 (1964) B994
1964ST1B Stovall, Phys. Rev. 133 (1964) B268
1964TA05 N.W. Tanner, G.C. Thomas and E.D. Earle, Nucl. Phys. 52 (1964) 29
1964TA06 N.W. Tanner, G.C. Thomas and E.D. Earle, Nucl. Phys. 52 (1964) 45
1964TA1C Tanner and Earle, Phys. Rev. Lett. 13 (1964) 410
1964TE1C Testoni, Mayo and Hodgson, Nucl. Phys. 50 (1964) 479
1964TE1E Temmer, 4A (I)/C75, Paris (1964)
1964TO1B Toms, Nucl. Phys. 54 (1964) 625
1964VA1D Valentin, Albouy, Cohen and Gusakow, J. Physique 25 (1964) 704
1964VI1A Villars and Weiss, Phys. Lett. 11 (1964) 318
1964VO1A Volkin, Bull. Amer. Phys., Soc. 9 (1964) 439
1964VO1B Volkov, Phys. Lett. 12 (1964) 118
1964WA1B Wachter, Phys. Rev. 135 (1964) B1180
1964WA1G Walker, UCRL 7676 (1964)
1964WE1A Webb et al., Bull. Amer. Phys. Soc. 9 (1964) 351
1965AL05 W.P. Alford, L.M. Blau and D. Cline, Nucl. Phys. 61 (1965) 368
1965BA1M Barrett, Hill and Hodgson, Nucl. Phys. 62 (1965) 133
1965BA1N Balashov et al., Yad. Fiz. 2 (1965) 643
1965BA1Q Bassompierre, Thesis, Univ. of Strasbourg (1965)
1965BE1E Berggren, Ark. Fys. 30 (1965) 508
1965BE1H Beregi, Zelenskaja, Neudatchin and Smirnov, Nucl. Phys. 66 (1965) 513
1965BI1D Bishop, Bottino, Ciocchetti and Molinari, Phys. Lett. 14 (1965) 140
1965BL03 D.E. Blatchley and R.D. Bent, Nucl. Phys. 61 (1965) 641
1965BO1J Boeker, Physica 31 (1965) 1133
1965BR08 C.P. Browne, W.A. Schier and I.F. Wright, Nucl. Phys. 66 (1965) 49
1965BR1J Brown and Green, Phys. Lett. 15 (1965) 168
1965BU05 A. Bussiere, N.K. Glendenning, B.G. Harvey, J. Mahoney, J.R. Meriwether and D.J. Horen, Phys. Lett. 16 (1965) 296
1965BU1A Busser, Christiansen, Niebergall and Sohngren, Nucl. Phys. 69 (1965) 103
1965BU1E Burdlt and Poizat, J. Phys. 26 (1965) 153A
1965DE1C Deforest, Walecka, Vanpraet and Barber, Phys. Lett. 16 (1965) 311
1965NI1A Nissim-Sabat, Thesis, Columbia Univ. (1965)
1965OK1A Okai, Park and Wildermuth, Z. F. Phys. 184 (1965) 451
1965OS1A Ostgaard, Nucl. Phys. 64 (1965) 289
1965PRI1E Priest, Vincent, Boschitz and Bercau, Bull. Amer. Phys. Soc. 10 (1965) 638
1965RE1A Reynolds, Maxwell and Hintz, Bull. Amer. Phys. Soc. 10 (1965) 439
1965RI1A Riou, Rev. Mod. Phys. 37 (1965) 375
1965RI1C Rickey and Matluck, Bull. Amer. Phys. Soc. 10 (1965) 442
1965RO1K Rost and Brown, Bull. Amer. Phys. Soc. 10 (1965) 487
1965RO1L Rose and Fujii, Bull. Amer. Phys. Soc. 10 (1965) 470
1965SA1F Sanderson, IS T 45 (1965)
1965SE1D Seaborn and Eisenberg, Nucl. Phys. 70 (1965) 264
1965SI1C Sitenko and Simenog, Yad. Fiz. 2 (1965) 603
1965SP1B Spicer and Eisenberg, Nucl. Phys. 63 (1965) 520
1965SP1C Spicer, Nature 206 (1965) 813
1965ST02 D.M. Stanojevic, N.R. Berovic and F.M. Boreli, Nucl. Phys. 61 (1965) 235
1965ST1C Stewart, Cannington and Spicer, Aust. J. Phys. 18 (1965) 661
1965TA1E Tanner, Nucl. Phys. 63 (1965) 383
1965TS1A Tsenter and Silin, Atomnaya Energ. 19 (1965) 48
1965UB1A Uberall, Phys. Rev. 139 (1965) B1239
1965VA1D Van Praet, Nucl. Phys. 74 (1965) 219
1965VE03 V.V. Verbinski and J.C. Courtney, Nucl. Phys. 73 (1965) 398
1965VO1A Volkov, Nucl. Phys. 74 (1965) 33
1965WA08 K.L. Warsh and S. Edwards, Nucl. Phys. 65 (1965) 382
1965WA1D Waggoner and Jaffe, Nucl. Phys. 69 (1965) 305
1965WE06 M.S. Weiss, Phys. Lett. 19 (1965) 393
1965WY1A Wyckoff, Ziegler, Koch and Uhlig, Phys. Rev. 137 (1965) B576
1965YO1B Young, Enge and Chen, Bull. Amer. Phys. Soc. 10 (1965) 539
1965YO1C Young, Nucl. Phys. 73 (1965) 449
1965ZA1B Zamick, Phys. Lett. 19 (1965) 580
1966AB1C Abgrall and Monsonego, Nucl. Phys. 75 (1966) 632
1966AG1B Aguilar, de la Rubia, Sanchez and Martinez, An. de Fisica Y Quim. 62 (1966) 279
1966BA2K Bassel, Satchler and Drisko, Nucl. Phys. 89 (1966) 419
1966BE1J Bertsch, Phys. Lett. 21 (1966) 70
1966BE1K Becker and MacKellar, Phys. Lett. 21 (1966) 201
<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td>BH1B</td>
<td>Bhaduri and Tomusiak, Nucl. Phys. 88 (1966) 353</td>
</tr>
<tr>
<td>1966</td>
<td>BO1K</td>
<td>Boeker, Phys. Lett. 21 (1966) 69</td>
</tr>
<tr>
<td>1966</td>
<td>BO1L</td>
<td>Boeker, Physica 32 (1966) 669</td>
</tr>
<tr>
<td>1966</td>
<td>BO1N</td>
<td>A. Bottino, G. Ciocchetti and A. Molinari, Nucl. Phys. 89 (1966) 192</td>
</tr>
<tr>
<td>1966</td>
<td>BR1W</td>
<td>Bremond, Nucl. Phys. 77 (1966) 559</td>
</tr>
<tr>
<td>1966</td>
<td>CE1E</td>
<td>R. Ceuleneer, M. Demeur and J. Reignier, Nucl. Phys. 82 (1966) 625</td>
</tr>
<tr>
<td>1966</td>
<td>CE1F</td>
<td>R. Ceuleneer, M. Demeur and J. Reignier, Nucl. Phys. 89 (1966) 177</td>
</tr>
<tr>
<td>1966</td>
<td>CO04</td>
<td>A. Covello and G. Sartoris, Nucl. Phys. 75 (1966) 297</td>
</tr>
<tr>
<td>1966</td>
<td>CO1H</td>
<td>Coulter, NASA CR 81059 (1966)</td>
</tr>
<tr>
<td>1966</td>
<td>DA1F</td>
<td>Davies, Krieger and Baranger, Nucl. Phys. 84 (1966) 545</td>
</tr>
<tr>
<td>Year</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>Lemmer, Rept. Prog. Phys. 29 (1966) 131</td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>D. Lister and A. Sayres, Phys. Rev. 143 (1966) 745</td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>J.B. Marion, Rev. Mod. Phys. 38 (1966) 660</td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>L. McFadden and G.R. Satchler, Nucl. Phys. 84 (1966) 177</td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>Morgan et al., Antwepp 1965 Neutron Conf. (North-Holland, 1966) 537</td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td>H. Ohtsubo, Phys. Lett. 22 (1966) 480</td>
<td></td>
</tr>
</tbody>
</table>
1966SC05 S.A. Scott and A. Notea, Nucl. Phys. 77 (1966) 641
1966SE05 J.B. Seaborn and J.M. Eisenberg, Nucl. Phys. 82 (1966) 308
1966SO05 M. Soga, Nucl. Phys. 89 (1966) 697
1966SU05 M. Suffert, Nucl. Phys. 75 (1966) 226
1966SW01 C.P. Swann, Phys. Rev. 148 (1966) 1119
1966TO04 T.A. Tombrello, Phys. Lett. 23 (1966) 134
1966UL1A Ulelha, Struct. of Complex Nuclei; Ed. N.N. Bogolyubov, Atomizdat (1966), Consultants Bureau, New York (1969) 1
1966VA02 G.J. Vanpraet and W.C. Barber, Nucl. Phys. 79 (1966) 550

108
1966YO1B Yoccoz, J. Phys. C1-3 (1966)
1966ZH1A Zhivopistsev and Yudin, Bull. Acad. Sci. USSR Phys. 30 (1966) 317
1967AB1D Abul-Magd, Yad. Fiz. 6 (1967) 288
1967BR1E D.M. Brink and E. Boeker, Nucl. Phys. A91 (1967) 1
1967CA1C Caldwell, UCRL 50287 (1967)
1967CA1J Cabrespine, Gauvin, Lefort and Sauvage, Ark. Fys. 36 (1967) 463
1967CE1A Celenza, Dissertation Abs. 28 (1967); Phys. Abs. 42841 (1968)
1967CH34 V.I. Chuev, V.V. Davidov, A.A. Ogloblin and S.B. Sakuta, Ark. Fys. 36 (1967) 263
<table>
<thead>
<tr>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967</td>
<td>Crawley and Garvey, Private Communication (1967)</td>
</tr>
<tr>
<td>1967</td>
<td>Daniel et al., Z. Phys. 205 (1967) 472</td>
</tr>
<tr>
<td>1967</td>
<td>T.G. Dzubay, Phys. Rev. 158 (1967) 977</td>
</tr>
</tbody>
</table>
1967GR1F Grushin and Nikitin, Yad. Fiz. 5 (1967) 173

113
1967LO1B Loiseaux, Maison and Langevin, J. Phys. 28 (1967) 11
1967MO1J Moszkowski, Rev. Mod. Phys. 39 (1967) 657
<table>
<thead>
<tr>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967</td>
<td>Parikh, Lect. on Nucl. Many Body Pbs., Herceg Novi (1967)</td>
</tr>
<tr>
<td>1967</td>
<td>Rowe, Private Communication (1967)</td>
</tr>
</tbody>
</table>
1968BR1K K.A. Brueckner, J.R. Buchler and M.M. Kelly, Phys. Rev. 173 (1968) 944
1968CE1B Cervera, Garcia and Senent, An. Real. Soc. Espan. Fis. y Quim. 64 (1968) 33
1968CO1T Comfort, Baglin and Thompson, Private Communication (1968)
1968DA20 V.V. Davydov, A.A. Ogloblin, S.B. Sakuta and V.I. Chuev, Yad. Fiz. 7 (1968) 758; Sov. J. Nucl. Phys. 7 (1968) 463
1968EL1D El Wakil and Kresmin, Ann. Phys. 21 (1968) 113
1968ER1B Erdas and Quarati, Nuovo Cim. B57 (1968) 238
1968FA1B Faessler, Sauer and Stingl, Z. Phys. 212 (1968) 1
1968FU1B Fujii, Morita and Ohtsubo, Suppl. Prog. Theor. Phys. (1968) 303
1968GA1C Gaillard, Univ. Lyon, Rept. No. Lycen 6828 (1968)
1968GA1H Garvey, Haight and Lynch, PUO-937-275 (1968)
1968GO1Q Goldring, Loebenstein, Plesser and Sachs, Tokyo (1968) 206
1968HE1K Hennenberg, Nature 55 (1968) 80
1968HO1C Hodgson, Proc. Symp. on Direct Reactions with 3He, IPCR, Japan, Sept. 1967 (1968) 41
1968HU1F J. Hufner and R.H. Lemmer, Phys. Rev. 175 (1968) 1394
1968IS1A Ishidzu, Kawarada and Sato, Tokyo (1968) 53
1968JA1F Jacmart et al., Tokyo (1968) 209
1968JA1J Jacquot et al., Compt. Rend. B266 (1968) 963
1968JU1A Jung et al., Compt. Rend. B266 (1968) 815
1968KA1G Kabachnik, Korotkikh and Unger, Sov. J. Nucl. Phys. 6 (1968) 708
1968KA1H Kabachnik, Yad. Fiz. 7 (1968) 823
1968KL1D Kleber, Z. Phys. 210 (1968) 251
1968KO1C Kopaleishvili, Machabeli, Gogsadze and Krupennikova, Yad. Fiz. 7 (1968) 292
1968KO1N Kohut and Harvey, Can. J. Phys. 46 (1968) 1491
1968KO1P Kolybasov and Smorodinskaya, JETP Lett. (USSR) 8 (1968) 206
1968KU1C Kuhlmann, BMWF FBK 68 06 (1968)
1968MA1N Malecki and Picchi, LNF 68/48 (1968)

120
1968MI05 P.F. Mizera and J.B. Gerhart, Phys. Rev. 170 (1968) 839
1968MI1E Mittelstaedt, Ristig, Rohl and Stockle, Tokyo (1968) 34
1968MO1K Moszkowski, Nucl. Struct., Dubna Symp., 1968, IAEA (1968) 577
1968MU1D R. J. Munn, B. Block, and F. B. Malik, Phys. Rev. Lett. 21 (1968) 159
1968NE1C Nemirovskii, Sov. J. Nucl. Phys. 6 (1968) 29
1968NO1C J.V. Noble, Phys. Rev. 173 (1968) 1034
1968OG1A Ogloblin, Nucl. Struct., Dubna Symp., 1968 (IAEA, 1968) 204
1968PA1J Palevsky, Proc. of Symp. on Use of Nimrod, 1968, RHEL-R166 (1968) 19
1968PA1V Patterson, Spinka and Winkler, Bull. Amer. Phys. Soc. 13 (1968) 1465
1968PI1A Pipiraite and Shugurov, Lietuvos Fizikos Rinkinys 8 (1968) 775
1968RE1F Reed, UCRL 18414 (1968)
1968RO1G Rohl and Stocker, Z. Phys. 212 (1968) 477
1968SE1C Seth, Proc. Symp. on Direct Reactions with 3He, IPCR, Japan, Sept. 1967 (1968) 179
1968ST1Q S.J. Stack, Nucl. Phys. A120 (1968) 241
1968ST31 M. Stroetzel, Z. Phys. 214 (1968) 357
1968SU1E Sukhoruchkin, Neutron Cross Sections Tech., NBS Special Pub. 299 (1968) 923
1968TA1Q Takeda, Kato and Yamazaki, Tokyo (1968) 280

122
1968 TO 1J Toktarov, Yad. Fiz. 8 (1968) 940
1968 VA 1N Vashakidze, Dzhalaganiya and Mebuniya, Yad. Fiz. 7 (1968) 1016
1968 YA 1C Yanabu et al., Tokyo (1968) 261
1968 YA 1E F.B. Yano, Nucl. Phys. A118 (1968) 592
1968 ZU 1A Zupancic, Proc. Symp. on Use of Nimrod, 1968; RHEL/R166 (1968) 67

123
1969BA1L Batusov et al., Yad. Fiz. 10 (1969) 354
1969BR1L Brochard et al., Contrib., Montreal (1969) 125

126
1969KU1D Kujawski, Tech. Rept. No. 70-048, Univ. of Maryland (1969)
<table>
<thead>
<tr>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969</td>
<td>S. Ramirez, E. Yepez and M. de Llano, Rev. Mex. Fis. 18 (1969) 283</td>
</tr>
</tbody>
</table>
1969TR1E Truran and Arnett, Private Communication (1969)
1969UL02 N. Ullah and D.J. Rowe, Phys. Rev. 188 (1969) 1640
1970AU1C Austin et al., Private Communication (1970)
1970BL1E Blair, in Nucl. Reactions Induced by Heavy Ions, Heidelberg, 1969 (North-Holland, 1970) 1
1970CI1E Clarkson, Gutbrod, Brentano and Bock, Nucl. Reactions Induced by Heavy Ions, Heidelberg, 1969 (North-Holland, 1970) 110
1970EC1A Eck et al., Nucl. Reactions Induced by Heavy Ions, Heidelberg, 1969 (North-Holland, 1970) 80

133
Greiner, Nucl. Reactions Induced by Heavy Ions, Heidelberg, 1969 (North-Holland, 1970) 748

134
1970JA1Q Jacquot et al., Nucl. Reactions Induced by Heavy Ions, Heidelberg, 1969 (North-Holland, 1970) 701
1970PE1A Petry, Schutte and Bleuler, Energi Nucl. 17 (1970) 53

136
1972AJ02 F. Ajzenberg-Selove, Nucl. Phys. A190 (1972) 1
BE69W Unknown Source
HO66C Unknown Source
JA69K Unknown Source
LE63K Unknown Source